CS-UY 6923: Lecture 14
Reinforcement Learning

NYU Tandon School of Engineering, Prof. Christopher Musco

REINFORCEMENT LEARNING

Today: Give flavor of the area and insight into one algorithm
(Q-learning) which has been successful in recent years.

Basic setup:

- Agent interacts with environment over time 1,...,t.

- Takes repeated sequence of actions, a4, ... ,’at_which
effect the environment.

- State of the environment over time denoted s4,. .., S:.
— — —

- Barn rewards ry, . .. N depending on actions taken and
states reached.

- Goal is to maximize reward over time.

REINFORCEMENT LEARNING EXAMPLES

Classic inverted pendulum problem:

- Agent: Cart/software
controlling cart.

-(State: Position of the car,
pendulum head, etc.

- Actions: Move cart left or

move right.

- Reward: 1 for every time

step that |0] < 90°
(pendulum is upright)
when ﬂ_: 90°

REINFORCEMENT LEARNING EXAMPLES

This problem has a long history in Control Theory. Other
applications of classical control:
- Semi-autonomous vehicles (airplanes, helicopters, rockets, etc.)
- Industrial processes (e.g. controlling large chemical reactions)

- Robotics

control theory : reinforcement learning :: stats : machine learning

REINFORCEMENT LEARNING EXAMPLES

Strategy games, like Go:

¢ o e _
g0 ¢ P
1]
.ALP-NAG'O os EE SEDOL
'
E5paundm
ek
((State: Position of all pieces Reward: 1if in winning
on board. position at time t. 0

{Actions: Place new piece. otherwise.

This is a(sparse reward problem) Payoff only comes after many times
steps, which makes the problem very challenging.

REINFORCEMENT LEARNING EXAMPLES

Video games, like classic Atari games:

screen)(sometlmes there is (up,down,left,right,click).
also hidden state which

can't be observed by the {/Reward 1if point scored at
player). time t

(State Raw pixels on the (Actmns Actuate controller

MATHEMATICAL FRAMEWORK FOR RL

Model problem as a Markov Decision Process (MDP): $(°

© S Set of all possible states.lﬂ. seS Wlep)z 5.4, -1

- A Set of all possible actions. |A|. = l/ o, |

o _E : Set of possible rewards. Could have R=R

9 -

L9,

- Reward function
. S x A — probability distribution overE ~ R(st, ay).

- State transition function
P(s,a) : S x A — probability distribution over §. Seiq ~ P(st, Gr).

Why is this called aA/\arkov decision process? What does the term
Markov refer to?

MATHEMATICAL FRAMEWORK FOR RL

Goal: Find a % A_from states to actions which maximize

expe reward.

- Start is state sq.
‘o
. — — [Nl &
Fort=0...,T~ /jc\c,“‘ﬂé k:\(. W b
* It~ R(st, T1(s1)). P
* Stg1 ~ P(st, N(st)).

4

Thetime horizon T coutdeé short (game with fixed number of steps),
very long (stock investing), or infinite. Goal is to maximize:

reward =F Z 7 /

[S0, a0, rol, [S1, a1, 11], - - -, [St, at, 1] is called a trajectory of the MDP
under policy N

"It is not a priori clear that a fixed policy makes sense. Maybe we could get
better reward by changing the policy over time. We will discuss this shortly. s

FLEXIBILITY OF MDPS

- Can b;}sad/fo mo;Win viron . Just
add time t to the s evecj,ey/g/eﬂ)fmfs

- Can be used to model games where actions have different
effect if play in sequence (e.g. combo in a video game).
Just add list of previous few actions to state.

(Can be used to model two-player games. Model adversary

as part of the transition function. ’;Z

+

s ==
Sia=l—
.

A
__‘vvv'r'
™\ A A Al ALY

L

SIMPLE EXAMPLE: GRIDWORLD

rstart

actions:

L

c —
—

- r = —.01if not at an end position. 1 if at end position.
0 Pist/,g) : 70% of the time move in the direction indicated
by a. 30% of the time move in a random direction.

What is the optimal policy M?

SIMPLE EXAMPLE: GRIDWORLD

[0
ﬁ ’1.
gk 17
-
actions:] — l —
u " od !
- rr = —.5if not at an end position. &1 if at end position.

—_
- P(st,a) : 70% of the time move in the direction indicated
by a. 30% of the time move in a random direction.

What is the optimal policy M? .

DISCOUNT FACTOR

>0

For infinite or very longtimes horizon games (large T), we often
introduce a discount factor v and seek instead to take actions
/:‘4:>

which minimize: Y < !
T y - AR
E t
(;1; Y-. 9

where ry ~ R(s¢, M(st)) and sty ~ P(st, M(s¢)) as before.
~ — 1: No discount. Standard MDP expected reward.

~ — 0: Care about short term reward more.

12

VALUE FUNCTION

From now on assume T = co. We can do this without loss of
generality by adding a time parameter to state and moving into
an “end state” with no additional rewards once the time hits T.

Value function: Measures the expected return if we start in
state s and follow policy;

t
B T
t>0

Let IM¥ = arg max V”@. If we are in state s, at any point, we

should always take action Mx(s).
=

VALUE FUNCTION

Value function:

Vn (S) =] EFLSO: @

—

Claim: Let M} = arg max V''(s). If we are in state s, at any point,
we should always take actio

Proof: Suppose we has already taken j — 1 steps and seen

trajectory [so, Ao, ro], - - [s,,a,,‘ ri. Then our expected reward is:
fo+~n—+...+ -,1+Enzﬂyrj > 2 y*”r
- t>] t20) R
T
= o F +v/1+1@3 > Ay) vy
t>0

- , P
=fo+7rq+...+7’r-+7 > ¥ ™™ % (s
~_/_,..} - (\‘th.,g_ \’ 2 \lc, (“)

14

VALUE FUNCTION

Value function: ﬂ—

Vi (S) = Ensy=s Z ’Ytrt
t>0

Claim: Let M} = arg max V''(s). If we are in state s, at any point,
we should always take action M%(s).
—

So, there is a single optimal policy M* which simultaneously

maximizes VI(s) for all s. l.e. Np=M=...=MN=0" Wwe do
not need to change the policy over time to maximize expected
reward.

Goal in RL is to find this optimal policy M*.
—_——

15

TWO SETTINGS

Full information: We/know S, A, the transition functiond
eward functiem R, The optimal policy car@an be found via
dynamic programming. Sometimes called “planning” problem.

Reinforcement Learning setting: We do not know P or R, but we
can repeatedly play the MDP, running whatever policy we like.

t/wf_f

16

VALUE ITERATION

V(<)

Le VI (s). This function is equal to the expected
future reward if we play optimally start in state s.

17

VALUE ITERATION

In the full information setting, if we knew V* we can easily find
the optimal policy M -1 e

.=+1 I:‘=_1

? Pe(s)c|s, o)
77 '(r+yV(‘>)]

(7,4 ()
i (7,-1) - L)

¢P(7}+\)(_)
V(7,1) Gl)

= fs

18

VALUE ITERATION

U(2) # wore 2 [rayG6NY

V*(s) satisfies what is called a Bellman equation:

\i*(%) :(maaxz Pr(s’,r| S,a)[r—F’y\/*_(_S/)y

—
= shr

oL) 'S P?(S o
Run a fixed point iteration to find V*: ~ ’)
G-
+ Start with initial guess V2. V/ ’ﬁ
- Fori=1,....z:
- Forse S v?
< VI(s) =maxq >, - Pr(s’,r | s,a)[r+~V'(s")]
= S ——

Can be shown to converge in roughly z :@iterations. What
is the computational cost of each iteration?

)
l —_ ,_))?oba

19

TWO SETTINGS

Full information: We know S, A, the transition function P and
reward function R.

Reinforcement Learning setting: We do not know/P or R, butwe
can repeatedly play the MDP, running whatever policy we like.

S5 5.
-(Model-based RL methods essentially try to learn P and R__ e
very accurately and then find IM* via dynamic :'.:l
programming. Require a lot of samples of the MDP. 2
(’/’_———

How many parameters do we need to learn if we hope to l€a

gandre Pl,0) = (15 4] 1A 1R
(Model-free RL methods try to learn I without necessarily

obtaining an accurate model of the world - i.e. without
learning P and R.

20

Q FUNCTION

: , 7
Another important function: V C$>

- Q-function: QU/’(:E,@ = En sp=s.00=a 2120 ~Atri. Measures
the expected return if we start in state s, play action a,

and then follow policy .

(@(s.0)=maxQ"(5.0) = @7 (s.0),

) =~ |end" Q*(s,a)
i {‘@ +1 states !
e ¢ end 0 u
-1
T ool c = L
{)
EH e l
aCtIOﬂS I -_— l
u '’ d -=/“1 |:| = -1

21

Q FUNCTION

Q*(S, a) = ml'aIX ErLSo:S,Uo:a ;’ytrt.

If we knew the function Q*, we would immediately know an
optimal policy. Whenever we're in state s, we should always
play action a* = arg max, Q*(s, a).

*,

states >3 / S ‘
(. N

4) sl)

on

=+1 |:|=_1

Q has more parameters than V, but you can use it to determine
an optimal policy without knowing transition probabilities. 2

BELLMAN EQUATION

Q* also satisfies a Bellman equation:

Q*(s, a) = E[R(S, a)] + VEs~p(s,q) maf Q" (s', a').

23

Q LEARNING

crv B KD
€03 - Bl)]

g(sv a) - E[R(Sv a)] + ’Y]ES’NP(S,G ma/le (S ,a)
a

Bellman equation:

Again use fixed point iteration to find Q*. Let Q"~" be our
current guess for Q* and suppose we are at some state s, a.

Voo ™=V w2 ATl) _ QNP(SQ)
IE[/SG_)] +YES A max QY(,a)

In reality, drop expectations and use a learning rate «
o+ .0l
-~

Q'(s,a) = (1— a)Q'(s,a) + <%//a') + 7 max Qs a’))

\1(9& - ®'|-\ AN
B'198) = Cx y s &5 D

24

Q LEARNING

How do we choose states s and a to make the update for? In

princi ou can do anything you want! E.g. choose some
poli nd run:

+ Initialize Q° (e.g. all zeros) s

- Startats, play action a = I'I(s) observe reward R(s, a).
- Fori —1

- Ql(s, a) = (1 —a)Qi(s,a) +a Wg@ + v maxe Q7Y(s', a'))
© S« P(s,a)
c a < FI s

Dvl/_?éb Qb
(restart |f we r)each a terminating state)
Q-learning is considered an off-policy RL method because it
runs a policy I that is not necessarily related to its current
guess for an optimal policy, which in this case would be

MN(s) = maxq Q'(s,a) at time |. 25

EXPLORATION VS. EXPLOITATION

For small enough «, Q-learning converges to Q* as long as we follow
a policy M that visits every start (s, a) with non-zero probability.

Mild condition, but exact choice of I matters for convergence rate.

- Random: At state s, choose a random action a.

- Greedy: At state s, choose arg max, Q'(s, a). l.e. the current
guess for the best aetiom

\ P,_a)eﬂl d
(i e
C sta)I

Random can be wasteful. Spend time improving parts of Q that
aren't relevant to optimal play. Greedy can cause you to zero in on a

. . ‘ . . 26
locally optimal policy without learning new strategies.

EXPLORATION VS. EXPLOITATION

Possible choices for I:

- Random: At state s, choose a random action a.

- Greedy: At state s, choose arg max, Q'(s, a). l.e. the current

guess for the best action.
state s, choose arg max, Q'(s, a) with
probability 1 — e and a random action with probability e.
—— e

)

%

Exploration-exploitation tradeoff. Increasing e = more

exploration.

r_/) - e+r]|d
N end
fx— |start

27

CENTRAL ISSUE IN MODERN REINFORCEMENT LEARNING

Another issue: Even writing down Jou is intractable... This is a
function ove

@‘m- ossible mputs Even for relatively simple

IC... ﬁf
Back of the envelope calculations: —

- Tic-tac-toe: 3>3) ~(20, 000)

- Chess: z<§6f (due to Claude Shannon).
- Go: 3(’]9><19) ~ 10171.

- Atari; 128(71021%0) ~ 10710,

Number of atoms in the universe: ~ 1082,
—

28

MACHINE LEARNING APPROACH

Learn a simpler function Q(s, a, #) ~ Q*(s, a) parameterized by
a small number of parametersﬁ —

Example: Suppose our state can be represented by a vector in
R? and our action a by an integer in 1,...,|.A|. We could use a
linear function where € is a small matrix:

@

f "
|

(‘7‘ Q(s,a,0) = z[a]

D
")

—_—

29

MACHINE LEARNING APPROACH

Learn a simpler function Q(s. g gm Q*(s,a) parameterized by

a small number of parameters &

Example: Could also use a (deep) neural network.

Convg\uuon Fully annecled Fully cgnnecled

E /e
E]/ m
y
H o©®: | ©®: =
Ei\ = :
E \e 2

4

&Deepl\/\ind: “Human-level control through deep reinforcement
learning”, Nature 2015.

30

MACHINE LEARNING APPROACH

If Q(s, a,8) is a good approximation to Q*(s, a) then we have
an approximately optimal policy: [1%(s) = arg max, Q(s, a,).

- Start in state so.
cFort=12,...
- a* = argmax, Q(s, a,0)
+ St~ P(st_1,0%)

How do we find an optimal 87 If we knew Q*(s, a) could use
supervised learning, but the true Q function is infeasible to
compute.

31

Q-LEARNING W/ FUNCTION APPROXIMATION

Find 6 which satisfies the Bellman equation:

Q*(s,a) = Egp(s,a) {R(s, a) + vy max Q*(s/, a’)}
—_——a A — - a/

¢ Q(S,a,@) ‘g//ES’NP(S,G) |:R(S,G) +’)/maE/iXQ(S,Cl,9):| . y

—

Should be true for all a,s. Should also be true for a,s ~ D for
. . . ’_e—-—
any distribution D:

Es,a~pQ(S, a,0) = Es g~pEs p(s,q) {R(s, a)+-~ max Q(s,a, 0)] .
R k/;“(—

Loss function: >

(L(H_D: IEs a~D (y - Q(Sv a, 9))2

where y = Eg/p(s,q) [R(S, a) + v maxy Q(s', d’, 0)].

32

Q-LEARNING W/ FUNCTION APPROXIMATION

Minimize loss with gradient descent:

w = IEE’(]’N—Q [—2VQ(57 a, 9) : [y - Q(Sa a, 9)]]

In practice use stochastic gradient:

VL(8,s,a) = —2-VQ(s,a,0) - |R(s,a) +ymaxQ(s',a’,0) — Q(s,a,0)
e P

- Initialize @,’

- Fori=0,1,2,...

- Run policy M to obtain s,a and s’ ~ P(s,a)
- Set 9,‘_;,_1 =0; — - VL(Q,',S, G)
%
n is a learning rate parameter.

33

Q-LEARNING W/ FUNCTION APPROXIMATION

Again, the choice of N matters a lot. Random play can be
wastefully, putting effort into approximating Q* well in parts of
the state-action space that don't actually matter for optimal
play. e-greedy approach is much more common:

- Initialize so.
- Fort=0,1,2,...,
Ca {arg max, Q(St, A, 0curr) With probabilty (1 — €)
random action with probabilty e

34

REFERENCES

Lots of other details we don’t have time for! References:

&
-f Original DeepMind Atari paper: 7 [{
https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf,
hich is very readable.

- Stanford lecture video:
https://www.youtube.com/watch?v=1voHnicueoE and
slides: http://cs231n.stanford.edu/slides/2017/
€s231n_2017_lecturels.pdf

Important concept we did not cover: experience replay.

35

https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
https://www.youtube.com/watch?v=lvoHnicueoE
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture14.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture14.pdf

ATARI DEMO

https://www.youtube.com/watch?v=VleYniJORnk

36

https://www.youtube.com/watch?v=V1eYniJ0Rnk

THANKS!

- Don't forget about the last problem set!

- | will release a study document for the exam and also
schedule and extra office hours for next week.

37

