
CS-UY 6923: Lecture 14
Reinforcement Learning

NYU Tandon School of Engineering, Prof. Christopher Musco

ࠀ

REINFORCEMENT LEARNING

Today: Give flavor of the area and insight into one algorithm
(Q-learning) which has been successful in recent years.

Basic setup:

• Agent interacts with environment over time ,ࠀ . . . , t.
• Takes repeated sequence of actions, aࠀ, . . . , at which
effect the environment.

• State of the environment over time denoted sࠀ, . . . , st.
• Earn rewards rࠀ, . . . , rt depending on actions taken and
states reached.

• Goal is to maximize reward over time.

ࠁ

-

- - -

-

- -

- -

REINFORCEMENT LEARNING EXAMPLES

Classic inverted pendulum problem:

• Agent: Cart/software
controlling cart.

• State: Position of the car,
pendulum head, etc.

• Actions: Move cart left or
move right.

• Reward: ࠀ for every time
step that |θ| < ◦߿ࠈ

(pendulum is upright). ߿
when |θ| = ◦߿ࠈ ࠂ

- o

-

r
-

o

REINFORCEMENT LEARNING EXAMPLES

This problem has a long history in Control Theory. Other
applications of classical control:

• Semi-autonomous vehicles (airplanes, helicopters, rockets, etc.)

• Industrial processes (e.g. controlling large chemical reactions)

• Robotics

control theory : reinforcement learning :: stats : machine learning

ࠃ

REINFORCEMENT LEARNING EXAMPLES

Strategy games, like Go:

• State: Position of all pieces
on board.

• Actions: Place new piece.

• Reward: ࠀ if in winning
position at time t. ߿
otherwise.

This is a sparse reward problem. Payoff only comes after many times
steps, which makes the problem very challenging.

ࠄ

•

A
•

r
()

REINFORCEMENT LEARNING EXAMPLES

Video games, like classic Atari games:

• State: Raw pixels on the
screen (sometimes there is
also hidden state which
can’t be observed by the
player).

• Actions: Actuate controller
(up,down,left,right,click).

• Reward: ࠀ if point scored at
time t.

ࠅ

Oo
f' f

MATHEMATICAL FRAMEWORK FOR RL

Model problem as a Markov Decision Process (MDP):

• S : Set of all possible states. |S|.

• A : Set of all possible actions. |A|.

• R : Set of possible rewards. Could have R = R.

• Reward function
R(s,a) : S ×A→ probability distribution over R. rt ∼ R(st,at).

• State transition function
P(s,a) : S×A→ probability distribution over S . st+ࠀ ∼ P(st,at).

Why is this called a Markov decision process? What does the term
Markov refer to?

ࠆ

l o

f? I r i s '? : p ;
= T-4--9=9,1

- 0 - -

- - = -

C)

MATHEMATICAL FRAMEWORK FOR RL

Goal: Find a policy Π : S → A from states to actions which maximize
expected cumulative reward.

• Start is state s߿.

• For t = ߿ . . . , T
• rt ∼ R(st,Π(st)).
• st+ࠀ ∼ P(st,Π(st)).

The time horizon T could be short (game with fixed number of steps),
very long (stock investing), or infinite. Goal is to maximize:

reward(Π) = E
T∑

t=߿
rt

[s߿,a߿, r߿], [sࠀ,aࠀ, rࠀ], . . . , [st,at, rt] is called a trajectory of the MDP
under policy Π.ࠀ
Itࠀ is not a priori clear that a fixed policy makes sense. Maybe we could get
better reward by changing the policy over time. We will discuss this shortly. ࠇ

D - -

astacio-
ppg":#time

t

⇐

FLEXIBILITY OF MDPS

• Can be used to model time-varying environments. Just
add time t to the state vector.

• Can be used to model games where actions have different
effect if play in sequence (e.g. combo in a video game).
Just add list of previous few actions to state.

• Can be used to model two-player games. Model adversary
as part of the transition function.

ࠈ

- = -
- -

"

÷.:*:
'÷÷
¥:gI

SIMPLE EXAMPLE: GRIDWORLD

• rt = ࠀ߿.− if not at an end position. ࠀ± if at end position.
• P(st,a) : %߿ࠆ of the time move in the direction indicated
by a. %߿ࠂ of the time move in a random direction.

What is the optimal policy Π? ߿ࠀ

÷÷o
=

SIMPLE EXAMPLE: GRIDWORLD

• rt = ࠄ.− if not at an end position. ࠀ± if at end position.
• P(st,a) : %߿ࠆ of the time move in the direction indicated
by a. %߿ࠂ of the time move in a random direction.

What is the optimal policy Π? ࠀࠀ

•
→ → →G:p p

→
→

t ←

-

DISCOUNT FACTOR

For infinite or very long times horizon games (large T), we often
introduce a discount factor γ and seek instead to take actions
which minimize:

E
T∑

t=߿
γtrt

where rt ∼ R(st,Π(st)) and st+ࠀ ∼ P(st,Π(st)) as before.

γ → :ࠀ No discount. Standard MDP expected reward.

γ → :߿ Care about short term reward more.

ࠁࠀ

" ' ° *÷§,
" a

-
y e l

Y = . 9 9 9

-

VALUE FUNCTION

From now on assume T =∞. We can do this without loss of
generality by adding a time parameter to state and moving into
an “end state” with no additional rewards once the time hits T.

Value function: Measures the expected return if we start in
state s and follow policy Π.

VΠ(s) = EΠ,s߿=s
∑

t≥߿
γtrt

Let Π∗
s = argmax VΠ(s). If we are in state s, at any point, we

should always take action Π∗
s(s).

ࠂࠀ

← -

I=

G - - -

- - -

-

VALUE FUNCTION

Value function:

VΠ(s) = EΠ,s߿=s
∑

t≥߿
γtrt

Claim: Let Π∗
s = argmax VΠ(s). If we are in state s, at any point,

we should always take action Π∗
s(s).

Proof: Suppose we has already taken j− ࠀ steps and seen
trajectory [s߿,a߿, r߿], . . . , [sj,aj, rj]. Then our expected reward is:

r߿ + γrࠀ + . . .+ γj−ࠀrj−ࠀ + EΠ

∑

t≥j

γtrj

= r߿ + γrࠀ + . . .+ γj−ࠀrj−ࠀ + γjEΠ

∑

t≥߿
γtrt+j

= r߿ + γrࠀ + . . .+ γjrj + γjVΠ(sj)

ࠃࠀ

i o f
d - i - i

→→§ ,yttir t+ j- - -

✓ t / d I Ity
s

- t ' - ⑤ → t o maximize,

choose I T= TICS;)

VALUE FUNCTION

Value function:

VΠ(s) = EΠ,s߿=s
∑

t≥߿
γtrt

Claim: Let Π∗
s = argmax VΠ(s). If we are in state s, at any point,

we should always take action Π∗
s(s).

So, there is a single optimal policy Π∗ which simultaneously
maximizes VΠ(s) for all s. I.e. Π∗

ࠀ = Π∗
ࠁ = . . . = Π∗

|S| = Π∗. We do
not need to change the policy over time to maximize expected
reward.

Goal in RL is to find this optimal policy Π∗.

ࠄࠀ

I T

5 -
- -

-

TWO SETTINGS

Full information: We know S , A, the transition function P and
reward function R. The optimal policy can Π∗ can be found via
dynamic programming. Sometimes called “planning” problem.

Reinforcement Learning setting: We do not know P or R, but we
can repeatedly play the MDP, running whatever policy we like.

ࠅࠀ

€ 0

VALUE ITERATION

Let V∗(s) = VΠ∗
(s). This function is equal to the expected

future reward if we play optimally start in state s.

ࠆࠀ

✓Tls)
- 0 -

- -

. . D o

f o .
.

.

I
← O

VALUE ITERATION

In the full information setting, if we knew V∗ we can easily find
the optimal policy Π:

Π∗(s) = argmax
a

∑

s′,r
·Pr(s′, r | s,a)[r+ γV∗(s′)]

ࠇࠀ

- *

Y ~ ③ t ①(7,+ 1)()sqprlsirls.ae)
• (rtyvcs)),

" 3 .+ D.c g . ←
It:-,.

' 'III''Etta)

tp(3,-i).(
"

"⇒÷÷.÷÷
io.

VALUE ITERATION

V∗(s) satisfies what is called a Bellman equation:

V∗(s) = max
a

∑

s′,r
·Pr(s′, r | s,a)[r+ γV∗(s′)]

Run a fixed point iteration to find V∗:

• Start with initial guess V߿.
• For i = ,ࠀ . . . , z :

• For s ∈ S :

• Vi(s) = maxa
∑

s′,r ·Pr(s
′, r | s, a)[r+ γVi−ࠀ(s′)]

Can be shown to converge in roughly z = ࠀ
γ−ࠀ iterations. What

is the computational cost of each iteration?

ࠈࠀ

✓(s) I § E . . . forty0673

s e e l
.

s)

VI.' ' I

⇒ ¥"""=

-

v i s

f. . .9 I g = 1 0
. 95999 ,#gag→ '9000

TWO SETTINGS

Full information: We know S , A, the transition function P and
reward function R.

Reinforcement Learning setting: We do not know P or R, but we
can repeatedly play the MDP, running whatever policy we like.

• Model-based RL methods essentially try to learn P and R
very accurately and then find Π∗ via dynamic
programming. Require a lot of samples of the MDP.

How many parameters do we need to learn if we hope to learn
P and R?

• Model-free RL methods try to learn Π∗ without necessarily
obtaining an accurate model of the world – i.e. without
learning P and R.

߿ࠁ

- -

l -Ei÷÷÷.

= Pls,a)→ s ' (151.151.111-1.1131)
f -

Q FUNCTION

Another important function:

• Q-function: QΠ(s,a) = EΠ,s߿=s,a߿=a
∑

t≥߿ γ
trt. Measures

the expected return if we start in state s, play action a,
and then follow policy Π.

Q∗(s,a) = max
Π

QΠ(s,a) = QΠ∗
(s,a).

ࠀࠁ

=,@

VHS)

-

C - 7 . -

I z § ,
f f

6 7

8 q c o 1 1

=

-

Q FUNCTION

Q∗(s,a) = max
Π

EΠ,s߿=s,a߿=a
∑

t≥߿
γtrt.

If we knew the function Q∗, we would immediately know an
optimal policy. Whenever we’re in state s, we should always
play action a∗ = argmaxa Q∗(s,a).

Q has more parameters than V, but you can use it to determine
an optimal policy without knowing transition probabilities. ࠁࠁ

÷⇒ 'Finn

BELLMAN EQUATION

Q∗ also satisfies a Bellman equation:

Q∗(s,a) = E[R(s,a)] + γEs′∼P(s,a)max
a′

Q∗(s′,a′).

ࠂࠁ

- 0 - a n . i o

Q LEARNING

Bellman equation:

Q∗(s,a) = E[R(s,a)] + γEs′∼P(s,a)max
a′

Q∗(s′,a′).

Again use fixed point iteration to find Q∗. Let Qi−ࠀ be our
current guess for Q∗ and suppose we are at some state s,a.

Qi(s,a) = E[R(s,a)] + γEs′∼P(s,a)max
a′

Qi−ࠀ(s′,a′)

In reality, drop expectations and use a learning rate α

Qi(s,a) = −ࠀ) α)Qi(s,a) + α

(
R(s,a) + γmax

a′
Qi−ࠀ(s′,a′)

)

ࠃࠁ

Ef r3 = I EfBb.A D
a

⇐

i...÷±*⇐E"s...
.....

d . . .0 1

Em

ai-I.ir#axaiIay

Q LEARNING

How do we choose states s and a to make the update for? In
principal you can do anything you want! E.g. choose some
policy Π and run:

• Initialize Q߿ (e.g. all zeros)
• Start at s, play action a = Π(s), observe reward R(s,a).
• For i = ,ࠀ . . . , z

• Qi(s,a) = −ࠀ) α)Qi(s,a) + α
(
R(s,a) + γmaxa′ Qi−ࠀ(s′,a′)

)

• s← P(s,a)
• a← Π(s)

(restart if we reach a terminating state)

Q-learning is considered an off-policy RL method because it
runs a policy Π that is not necessarily related to its current
guess for an optimal policy, which in this case would be
Π(s) = maxa Qi(s,a) at time i. ࠄࠁ

•

=
=

r n

o k

• r ~ Bcs,a)

-

on-policy

-

EXPLORATION VS. EXPLOITATION

For small enough α, Q-learning converges to Q∗ as long as we follow
a policy Π that visits every start (s,a) with non-zero probability.

Mild condition, but exact choice of Π matters for convergence rate.

• Random: At state s, choose a random action a.

• Greedy: At state s, choose argmaxa Qi(s,a). I.e. the current
guess for the best action.

Random can be wasteful. Spend time improving parts of Q that
aren’t relevant to optimal play. Greedy can cause you to zero in on a
locally optimal policy without learning new strategies. ࠅࠁ

'0¥'

EXPLORATION VS. EXPLOITATION

Possible choices for Π:

• Random: At state s, choose a random action a.
• Greedy: At state s, choose argmaxa Qi(s,a). I.e. the current
guess for the best action.

• ε-Greedy: At state s, choose argmaxa Qi(s,a) with
probability −ࠀ ε and a random action with probability ε.

Exploration-exploitation tradeoff. Increasing ε = more
exploration. ࠆࠁ

O -
=

E. ±......

CENTRAL ISSUE IN MODERN REINFORCEMENT LEARNING

Another issue: Even writing down Q∗ is intractable... This is a
function over |S||A| possible inputs. Even for relatively simple
games, |S| is gigantic...

Back of the envelope calculations:

• Tic-tac-toe: (ࠂ×ࠂ)ࠂ ≈ ,߿ࠁ ߿߿߿
• Chess: ≈ ࠂࠃ߿ࠀ < ࠃࠅࠇࠁ (due to Claude Shannon).
• Go: (ࠈࠀ×ࠈࠀ)ࠂ ≈ .ࠀࠆࠀ߿ࠀ
• Atari: (߿ࠅࠀ×߿ࠀࠁ)ࠇࠁࠀ ≈ .߿߿߿,ࠀࠆ߿ࠀ

Number of atoms in the universe: ≈ .ࠁࠇ߿ࠀ

ࠇࠁ

•
-

Y I
0 ¥ ' -

- -

-

MACHINE LEARNING APPROACH

Learn a simpler function Q(s,a, θ) ≈ Q∗(s,a) parameterized by
a small number of parameters θ.

Example: Suppose our state can be represented by a vector in
Rd and our action a by an integer in ,ࠀ . . . , |A|. We could use a
linear function where θ is a small matrix:

ࠈࠁ

I -

o
1
1

→ go
151 -

MACHINE LEARNING APPROACH

Learn a simpler function Q(s,a, θ) ≈ Q∗(s,a) parameterized by
a small number of parameters θ.

Example: Could also use a (deep) neural network.

DeepMind: “Human-level control through deep reinforcement
learning”, Nature .ࠄࠀ߿ࠁ ߿ࠂ

i i i .

MACHINE LEARNING APPROACH

If Q(s,a, θ) is a good approximation to Q∗(s,a) then we have
an approximately optimal policy: Π̃∗(s) = argmaxa Q(s,a, θ).

• Start in state s߿.
• For t = ,ࠀ ,ࠁ . . .

• a∗ = argmaxa Q(s,a, θ)
• st ∼ P(st−ࠀ,a∗)

How do we find an optimal θ? If we knew Q∗(s,a) could use
supervised learning, but the true Q function is infeasible to

compute.

ࠀࠂ

=

J-
- -

-

Q-LEARNING W/ FUNCTION APPROXIMATION

Find θ which satisfies the Bellman equation:

Q∗(s,a) = Es′∼P(s,a)

[
R(s,a) + γmax

a′
Q∗(s′,a′)

]

Q(s,a, θ) ≈ Es′∼P(s,a)

[
R(s,a) + γmax

a′
Q(s,a, θ)

]
.

Should be true for all a, s. Should also be true for a, s ∼ D for
any distribution D:

Es,a∼DQ(s,a, θ) ≈ Es,a∼DEs′∼P(s,a)

[
R(s,a) + γmax

a′
Q(s,a, θ)

]
.

Loss function:

L(θ) = Es,a∼D (y− Q(s,a, θ))ࠁ

where y = Es′∼P(s,a) [R(s,a) + γmaxa′ Q(s′,a′, θ)].

ࠁࠂ

t . - ' I I

→ I T

Q-LEARNING W/ FUNCTION APPROXIMATION

Minimize loss with gradient descent:

∇L(θ) = Es,a∼D ,Q(s,a∇ࠁ−] θ) · [y− Q(s,a, θ)]]

In practice use stochastic gradient:

∇L(θ, s,a) = ࠁ− ·∇Q(s,a, θ) ·
[
R(s,a) + γmax

a′
Q(s′,a′, θ)− Q(s,a, θ)

]

• Initialize θ߿

• For i = ,߿ ,ࠀ ,ࠁ . . .

• Run policy Π to obtain s,a and s′ ∼ P(s,a)
• Set θi+ࠀ = θi − η ·∇L(θi, s,a)

η is a learning rate parameter.

ࠂࠂ

• - - -

G o
=

-

Q-LEARNING W/ FUNCTION APPROXIMATION

Again, the choice of Π matters a lot. Random play can be
wastefully, putting effort into approximating Q∗ well in parts of
the state-action space that don’t actually matter for optimal
play. ε-greedy approach is much more common:

• Initialize s߿.
• For t = ,߿ ,ࠀ ,ࠁ . . . ,

• ai =

{
argmaxa Q(st,a, θcurr) with probabilty −ࠀ) ε)

random action with probabilty ε

ࠃࠂ

REFERENCES

Lots of other details we don’t have time for! References:

• Original DeepMind Atari paper:
https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf,
which is very readable.

• Stanford lecture video:
https://www.youtube.com/watch?v=lvoHnicueoE and
slides: http://cs231n.stanford.edu/slides/2017/
cs231n_2017_lecture14.pdf

Important concept we did not cover: experience replay.

ࠄࠂ

| -
2015

I

https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
https://www.youtube.com/watch?v=lvoHnicueoE
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture14.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture14.pdf

ATARI DEMO

https://www.youtube.com/watch?v=V1eYniJ0Rnk

ࠅࠂ

https://www.youtube.com/watch?v=V1eYniJ0Rnk

THANKS!

• Don’t forget about the last problem set!
• I will release a study document for the exam and also
schedule and extra office hours for next week.

ࠆࠂ

