CS-UY 6923: Lecture 14
Reinforcement Learning

NYU Tandon School of Engineering, Prof. Christopher Musco

REINFORCEMENT LEARNING

Today: Give flavor of the area and insight into one algorithm
(Q-learning) which has been successful in recent years.

Basic setup:
- Agent interacts with environment over time 1,...,t.
- Takes repeated sequence of actions, ay, ..., ar which
effect the environment.
- State of the environment over time denoted s, ..., st
- Earn rewards ry, ..., r: depending on actions taken and

states reached.

- Goal is to maximize reward over time.

REINFORCEMENT LEARNING EXAMPLES

Classic inverted pendulum problem:

- Agent: Cart/software - Actions: Move cart left or
controlling cart. move right.

- Reward: 1 for every time
step that |0] < 90°
- State: Position of the car, (pendulum is upright). 0
pendulum head, etc. when |6] = 90°

REINFORCEMENT LEARNING EXAMPLES

This problem has a long history in Control Theory. Other
applications of classical control:
- Semi-autonomous vehicles (airplanes, helicopters, rockets, etc.)
- Industrial processes (e.g. controlling large chemical reactions)

- Robotics

control theory : reinforcement learning :: stats : machine learning

REINFORCEMENT LEARNING EXAMPLES

Strategy games, like Go:

- State: Position of all pieces - Reward: 1if in winning
on board. position at time t. 0

- Actions: Place new piece. otherwise.

This is a sparse reward problem. Payoff only comes after many times
steps, which makes the problem very challenging.

REINFORCEMENT LEARNING EXAMPLES

Video games, like classic Atari games:

- State: Raw pixels on the
screen (sometimes there is
also hidden state which
can't be observed by the
player).

- Actions: Actuate controller

(up,down, left,right,click).

- Reward: 1if point scored at

time t.

MATHEMATICAL FRAMEWORK FOR RL

Model problem as a Markov Decision Process (MDP):

- §:Setof all possible states. |S|.
- A Set of all possible actions. |A|.
- R : Set of possible rewards. Could have R = R.

- Reward function
R(s,a): S x A — probability distribution over R. ri ~ R(St, Gt).

- State transition function
P(s,a) : S x A — probability distribution over S. Sy ~ P(St, G;).

Why is this called a Markov decision process? What does the term
Markov refer to?

MATHEMATICAL FRAMEWORK FOR RL

Goal: Find a policy M : S — A from states to actions which maximize
expected cumulative reward.

- Start is state sg.
- Fort=0...,T
° rt ~ R(St, H(St))
* Sty P(St, I'I(St))

The time horizon T could be short (game with fixed number of steps),
very long (stock investing), or infinite. Goal is to maximize:

;
reward(M) = EZ re
t=0

[S0, ao, ro], [51, a1, 1], - - -, [St, at, 7] is called a trajectory of the MDP
under policy N

"It is not a priori clear that a fixed policy makes sense. Maybe we could get
better reward by changing the policy over time. We will discuss this shortly.

FLEXIBILITY OF MDPs

- Can be used to model time-varying environments. Just
add time t to the state vector.

- Can be used to model games where actions have different
effect if play in sequence (e.g. combo in a video game).
Just add list of previous few actions to state.

- Can be used to model two-player games. Model adversary
as part of the transition function.

SIMPLE EXAMPLE: GRIDWORLD

—

staj*
T

actions:]
u

- r = —.01if not at an end position. £1 if at end position.
- P(st,a) : 70% of the time move in the direction indicated
by a. 30% of the time move in a random direction.

What is the optimal policy M? 0

SIMPLE EXAMPLE: GRIDWORLD

end

+1
end

-1

start T

actions:] — l =

u " od !

- r = —.5if not at an end position. £1 if at end position.

- P(st,a) : 70% of the time move in the direction indicated
by a. 30% of the time move in a random direction.

What is the optimal policy M? »

DISCOUNT FACTOR

For infinite or very long times horizon games (large T), we often
introduce a discount factor v and seek instead to take actions
which minimize:

T
E Z ’)/trt
t=0

where ri ~ R(st,M(st)) and S¢q ~ P(st, MN(s¢)) as before.
~v — 1: No discount. Standard MDP expected reward.

~ — 0: Care about short term reward more.

12

VALUE FUNCTION

From now on assume T = oo. We can do this without loss of
generality by adding a time parameter to state and moving into
an “end state” with no additional rewards once the time hits T.

Value function: Measures the expected return if we start in
state s and follow policy IM.

Vn(s) = En sy=s Z’Ytrt
t>0

Let M = argmax V'(s). If we are in state s, at any point, we
should always take action M%(s).

13

VALUE FUNCTION

Value function:

Vn(s) = En sy=s Z’Ytrt
t>0

Claim: Let M} = arg max V™'(s). If we are in state s, at any point,
we should always take action I%(s).

Proof: Suppose we has already taken j — 1 steps and seen

trajectory [So, o, ro], - - -, [S}, @j, 1j]. Then our expected reward is:
ro+~yn+... —{-’yj_1t’j_1 + En Z’ytrj
t>j
=r+y1+...+ 7’”@-_1 + ’YjEI‘I Z’Ytrtﬂ
t>0

:r0+fyr1+...+fyjrj+fijn(sj)

14

VALUE FUNCTION

Value function:

Vn(s) = Ensy=s E’Ytrt
>0

Claim: Let M} = arg max V'(s). If we are in state s, at any point,
we should always take action Mz(s).

So, there is a single optimal policy M* which simultaneously

maximizes VI1(s) for alls. l.e. My =M; = ... = M, = M*. We do
not need to change the policy over time to maximize expected
reward.

Goal in RL is to find this optimal policy M*.

15

TWO SETTINGS

Full information: We know S, A, the transition function P and
reward function R. The optimal policy can M* can be found via
dynamic programming. Sometimes called “planning” problem.

Reinforcement Learning setting: We do not know P or R, but we
can repeatedly play the MDP, running whatever policy we like.

VALUE ITERATION

Let V*(s) = V' (s). In the full information setting, if we knew V*
we can easily find the optimal policy I:

M*(s) = arg max Pr(s’,r|s,a)V*(s’
(s) gr SZ;(| s, a)V*(s’)

VALUE ITERATION

Let V*(s) = V" (s). In the full information setting, if we knew V*
we can easily find the optimal policy I:

.=+1 |:|=-1

end

start

n*(s) = arg max > Pr(s,r|s,a)[r+ V(s

s'r

VALUE ITERATION

V*(s) satisfies what is called a Bellman equation:

Vi(s) = mé)xz “Pr(s’,r|s,a)[r+~V*(s)]

s'r

Run a fixed point iteration to find V*:

- Start with initial guess V°.
- Fori=1,...,z:
- Forses§:
- V(s) =maxe Y, - Pr(s’,r | s,a)[r +4V'(s)]

Can be shown to converge in roughly z = ﬁ iterations. What
is the computational cost of each iteration?

19

TWO SETTINGS

Full information: We know S, A, the transition function P and
reward function R.

Reinforcement Learning setting: We do not know P or R, but we
can repeatedly play the MDP, running whatever policy we like.

- Model-based RL methods essentially try to learn P and R
very accurately and then find IM* via dynamic
programming. Require a lot of samples of the MDP.

How many parameters do we need to learn if we hope to learn
P and R?

- Model-free RL methods try to learn IM* without necessarily
obtaining an accurate model of the world - i.e. without
learning P and R.

20

Q FUNCTION

Another important function:

- Q-function: Q"(s, a) = En sy=s,ay—a d_¢=0 7'rt- Measures
the expected return if we start in state s, play action a,
and then follow policy M.

Q*(s,a) = max Q"(s,a) = Q" (s, a).

end Q*(s a)
+1 states '
end 7 u
-1 -
Re)
2 d
S [

21

Q FUNCTION

Q*(Sa a) = ml_?x EH,S():S,GOIO Z 'Ytrt-
t>0

If we knew the function Q*, we would immediately know an
optimal policy. Whenever we're in state s, we should always
play action a* = arg max, Q*(s, a).

Q'(s,a

states (s,2)

" u

g r

-2 .

(1] l
B~ DER

Q has more parameters than V, but you can use it to determine
an optimal policy without knowing transition probabilities. ”

BELLMAN EQUATION

Q* also satisfies a Bellman equation:

Q*(s,a) = E[R(s, a)] + YEs/~p(s,a) max Q*(s',a").

23

Q LEARNING

Bellman equation:
Q*(s,a) = E[R(s, a)] + YEs/.p(s,a) max Q*(s',ad).

Again use fixed point iteration to find Q*. Let Q"~" be our
current guess for Q* and suppose we are at some state s, a.

Q'(s,a) = E[R(s,)] + VEs~p(s.a) max Q-'(s',a)
In reality, drop expectations and use a learning rate «

Q'(s,a) = (1— a)Q'(s,a) + (R(s, @) + 7 max Q(s, a’))

2%

Q LEARNING

How do we choose states s and a to make the update for? In
principal you can do anything you want! E.g. choose some
policy M and run:

- Initialize Q° (e.g. all zeros)
- Start at s, play action a = T1(s), observe reward R(s, a).
- Fori=1,...,z
- Q(s,a) = (1— a)Q/(s,a) + a (R(s,a) + ymaxa Q~Y(s',a’))
- S+ P(s,a)
- a+T(s)
(restart if we reach a terminating state)

Q-learning is considered an off-policy RL method because it
runs a policy N that is not necessarily related to its current
guess for an optimal policy, which in this case would be

MN(s) = maxq Q'(s,a) at time 1. o

EXPLORATION VS. EXPLOITATION

Q-learning always converge to Q* as long as we follow a policy I that
visits every start (s, a) with non-zero probability. Very mild condition,
but exact choice of N matters a lot for convergence speed.

- Random: At state s, choose a random action a.

- Greedy: At state s, choose arg max, Q'(s, a). l.e. the current
guess for the best action.

end
+1

7
end
-1

)

start

Random can be wasteful. Spend time improving parts of Q that
aren't relevant to optimal play. Greedy can cause you to zero in on a
locally optimal policy without learning new strategies. 26

EXPLORATION VS. EXPLOITATION

Possible choices for I:

- Random: At state s, choose a random action a.

- Greedy: At state s, choose arg max, Q'(s, a). l.e. the current
guess for the best action.

- e-Greedy: At state s, choose arg max, Q'(s, a) with
probability 1 — e and a random action with probability e.

Exploration-exploitation tradeoff. Increasing e = more

exploration. 7

CENTRAL ISSUE IN MODERN REINFORCEMENT LEARNING

Another issue: Even writing down Q* is intractable... This is a
function over |S||A| possible inputs. Even for relatively simple
games, |S| is gigantic...

Back of the envelope calculations:
- Tic-tac-toe: 3G*3) ~ 20,000
- Chess: ~ 10*® < 28%* (due to Claude Shannon).
. Go: 3(19><19) ~ 10171'

. Atari: 128(210X160) ~ 1071,000.

Number of atoms in the universe: ~ 1082,

28

MACHINE LEARNING APPROACH

Learn a simpler function Q(s, a,#) ~ Q*(s, a) parameterized by
a small number of parameters 6.

Example: Suppose our state can be represented by a vector in
R? and our action a by an integer in 1,...,|.A|. We could use a
linear function where # is a small matrix:

d

|
|r/z|{ 6

Q(s,a,0) = z[al

v |
|
[

29

MACHINE LEARNING APPROACH

Learn a simpler function Q(s, a,#) ~ Q*(s, a) parameterized by
a small number of parameters 6.

Example: Could also use a (deep) neural network.

&

Convolution Convolution Fully connected Fully connectex

o] R

=
B

of Ef\=

ook] B O

&

Arcjejeviy]>
TEEEEER NEEANNE
CEELEEEPERE[

DeepMind: “Human-level control through deep reinforcement
learning”, Nature 2015. 30

MACHINE LEARNING APPROACH

If Q(s, a,0) is a good approximation to Q*(s,a) then we have
an approximately optimal policy: ﬁ*(s) = argmax, Q(s, a, 6).

- Start in state so.

- Fort=1,2,...
- a* = argmax, Q(s,a,0)
-+ S¢ ~ P(st_1,0%)

How do we find an optimal 6? If we knew Q*(s, a) could use
supervised learning, but the true Q function is infeasible to
compute.

31

Q-LEARNING W/ FUNCTION APPROXIMATION

Find 6 which satisfies the Bellman equation:

Q*(s,a) = Es/p(s,a) [R(s, a)+-~ max Q*(s, a’)]
Q(s, a,0) = Egp(s,a) [R(S, a) + v max Q(s,a, 9)} .

Should be true for all a,s. Should also be true for a,s ~ D for
any distribution D:

Es,a~pQ(S, a,0) = Es g~DEsp(s,a) [R(s, a)+ -~ max Q(s, a, 9)} .
Loss function:
L(0) = Esaup (v — Q(S, @, 0))
where y = Eg.p(s q) [R(S, a) + v maxq Q(s', d’, 0)].

32

Q-LEARNING W/ FUNCTION APPROXIMATION

Minimize loss with gradient descent:
VL(Q) = E&U’VD [_2VQ(Sa a, 9) ’ [y - O(57 a, 9)]]

In practice use stochastic gradient:

VL(9,s,a) = —-2-VQ(s,a,0) - |R(s,a) +ymaxQ(s',d’,0) — Q(s,a,)
a/

- Initialize 6,
- Fori=0,1,2,...
- Run policy N to obtain s,a and s’ ~ P(s, a)
- Set 9f+1 = 9/ - n- VL(9i7S7 a)
7 1S a learning rate parameter.

33

Q-LEARNING W/ FUNCTION APPROXIMATION

Again, the choice of N matters a lot. Random play can be
wastefully, putting effort into approximating Q* well in parts of
the state-action space that don't actually matter for optimal
play. e-greedy approach is much more common:

- Initialize so.
- Fort=0,1,2,...,
o — {arg max, Q(St, a,curr) With probabilty (1—e)
random action with probabilty e

34

REFERENCES

Lots of other details we don’t have time for! References:

- Original DeepMind Atari paper:
https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf,
which is very readable.

- Stanford lecture video:
https://www.youtube.com/watch?v=1voHnicueoE and
slides: http://cs231n.stanford.edu/slides/2017/
€s231n_2017_lecturels4.pdf

Important concept we did not cover: experience replay.

35

https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
https://www.youtube.com/watch?v=lvoHnicueoE
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture14.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture14.pdf

ATARI DEMO

https://www.youtube.com/watch?v=V1leYniJORnk

36

https://www.youtube.com/watch?v=V1eYniJ0Rnk

THANKS!

- Don't forget about the last problem set!

- | will release a study document for the exam and also
schedule and extra office hours for next week.

37

