
CS-GY 6923: Lecture 13
Semantic Embeddings, Beyond Autoencoders

NYU Tandon School of Engineering, Prof. Christopher Musco

1

AUTOENCODER

• Let fθ : Rd → Rd be our model.
• Let Lθ be a loss function. E.g. squared loss:
Lθ(x) = ∥x− fθ(x)∥22.

• Train model: θ∗ = minθ
∑n

i=1 Lθ(x).

2

AUTOENCODER

Important property of autoencoders: no matter what architecture is
use, there must always be a bottleneck with fewer parameters than
the input. The bottleneck ensures information is “distilled” from
low-level features to high-level features.

3

AUTOENCODER

Separately name mapping from input to bottleneck, and from
bottleneck to output.

Encoder: e : Rd → Rk

Decoder: d : Rd → Rk

f(x) = d(e(x))

4

AUTOENCODER RECONSTRUCTION

Example image reconstructions from autoencoder:

https://www.biorxiv.org/content/10.1101/214247v1.full.pdf

Input parameters: d = 49152.
Bottleneck “latent” parameters: k = 1024. 5

https://www.biorxiv.org/content/10.1101/214247v1.full.pdf

AUTOENCODERS FOR FEATURE EXTRACTION

Lots of applications:

• Data compression.
• Data denoising and repair.
• Data synthesis.
• Feature learning.

6

PRINCIPAL COMPONENT ANALYSIS

Simple linear autoencoder:

f(x)T = xTW1W2

7

PRINCIPAL COMPONENT ANALYSIS

Given training data set x1, . . . , xn, let X denote our data matrix.
Let X̃ = XW1W2 denote the autoencoded data. Want to
minimize ∥X− X̃∥2F.

X̃ is a low-rank (rank k) matrix. The optimal choice of W1 and
W2 can be found using algorithms for optimal low-rank

approximation.
8

SINGULAR VALUE DECOMPOSITION

Any matrix X can be written using its singular value decomposition:

Where UTU = I, VTV = I, and σ1 ≥ σ2 ≥ . . . σd ≥ 0. I.e. U and V are
orthogonal matrices.

Can be computed in O(nd2) time (faster with approximation algos).

9

SINGULAR VALUE DECOMPOSITION

We obtain an optimal autoencoder by setting W1 = Vk, W2 = VTk.
f(x) = xVkVTk.

For many natural data sets, get a good approximation even
when k is chosen to be relatively small compared to d. 10

PRINCIPAL COMPONENTS

What do principal components and loading vectors look like?

11

PRINCIPAL COMPONENTS

MNIST principal components:

Often principal components are difficult to interpret. 12

LOADING VECTORS

What do the loading vectors looks like?

The loading vector z for an example x contains coefficients which
recombine the top k principal components v1, . . . , vk to

approximately reconstruct x.

Provide a short “finger print” for any image x which can be used to
reconstruct that image.

13

LOADING VECTORS: SIMILARITY VIEW

For any x with loading vector z, zi is the inner product similarity
between x and the ith principal component vi.

14

LOADING VECTORS: PROJECTION VIEW

So we approximate x ≈ x̃ = ⟨x, v1⟩ · v1 + . . .+ ⟨x, vk⟩ · vk.

Since v1, . . . , vk are orthonormal, this operation is a projection
onto first k principal components.

I.e. we are projecting x onto the k-dimensional subspace
spanned by v1, . . . , vk.

15

LOADING VECTORS: PROJECTION VIEW

For an example xi, the loading vector zi contains the
coordinates in the projection space:

Visual way of seeing what we argued last time: inner products
and distances between loading vectors should approximate
inner products and distances in the original space.

16

TERM DOCUMENT MATRIX

Word-document matrices tend to be low rank.

Documents tend to fall into a relatively small number of
different categories, which use similar sets of words:

• Financial news: markets, analysts, dow, rates, stocks
• US Politics: president, senate, pass, slams, twitter, media
• StackOverflow posts: python, help, convert, javascript

17

LATENT SEMANTIC ANALYSIS

Latent semantic analysis = PCA applied to a word-document
matrix (usually from a large corpus). One of the most
fundamental techniques in natural language processing (NLP).

Each column of z corresponds to a latent “category” or “topic”.
Corresponding row in Y corresponds to the “frequency” with
which different words appear in documents on that topic.

18

LATENT SEMANTIC ANALYSIS

Similar documents have similar LSA document vectors. I.e.
⟨zi, zj⟩ is large.

• zi provides a more compact “finger print” for documents
than the long bag-of-words vectors. Useful for e.g search
engines.

• Comparing document vectors is often more effective than
comparing raw BOW features. Two documents can have
⟨zi, zj⟩ large even if they have no overlap in words. E.g.
because both share a lot of words with words with
another document k, or with a bunch of other documents.

19

EIGENFACES

Same fingerprinting idea was also important in early facial
recognition systems based on “eigenfaces”:

Each image above is one of the principal components of a
dataset containing images of faces.

20

WORD EMBEDDINGS

• ⟨yi, za⟩ ≈ 1 when doca contains wordi.
• If wordi and wordj both appear in doca, then
⟨yi, za⟩ ≈ ⟨yj, za⟩ ≈ 1, so we expect ⟨yj, yj⟩ to be large.

If two words appear in the same document their, word vectors
tend to point more in the same direction.

21

SEMANTIC EMBEDDINGS

Result: Map words to numerical vectors in a semantically
meaningful way. Similar words map to similar vectors.
Dissimilar words to dissimilar vectors.

Extremely useful “side-effect” of LSA.

Capture e.g. the fact that “great” and “excellent” are near
synonyms. Or that “difficult” and “easy” are antonyms. 22

WORD EMBEDDINGS

Word embeddings are considered a type of semantic
embedding.

They can be obtain by training on a very large corpus of text
(e.g. Wikipedia, Twitter, news data sets) and then used for
many different tasks in the future as an initial way to convert
text data to numerical data.

23

WORD EMBEDDINGS: MOTIVATING PROBLEM

Review 1: Very small and handy for traveling or camping.
Excellent quality, operation, and appearance.

Review 2: So far this thing is great. Well designed, compact,
and easy to use. I’ll never use another can opener.

Review 3: Not entirely sure this was worth $20. Mom couldn’t
figure out how to use it and it’s fairly difficult to turn for
someone with arthritis.

Goal is to classify reviews as “positive” or “negative”.

24

WORD EMBEDDINGS

Another view on word embeddings from LSA:

We chose Z to equal XVk = UkΣk and Y = VTk.

Could have juse as easily set Z = Uk and Y = ΣkVTk, so Z has
orthonormal columns.

25

WORD EMBEDDINGS

Another view on word embeddings from LSA:

• X ≈ ZY
• XTX ≈ YTZTZY = YTY
• So for wordi and wordj, ⟨yi, yj⟩ ≈ [XTX]i,j.

What does the i, j entry of XTX reprent?

26

WORD EMBEDDINGS

What does the i, j entry of XTX reprent?

27

WORD EMBEDDINGS

⟨yi, yj⟩ is larger if wordi and wordj appear in more documents
together (high value in word-word co-occurrence matrix, XTX).
Similarity of word embeddings mirrors similarity of word context.

General word embedding recipe:

1. Choose similarity metric k(wordi,wordj) which can be computed
for any pair of words.

2. Construct similarity matrix M ∈ Rn×n with Mi,j = k(wordi,wordj).

3. Find low rank approximation M ≈ YTY where Y ∈ Rk×n.

4. Columns of Y are word embedding vectors.

28

WORD EMBEDDINGS

How do current state-of-the-art methods differ from LSA?

• Similarity based on co-occurrence in smaller chunks of words.
E.g. in sentences or in any consecutive sequences of 3, 4, or 10
words.

• Usually transformed in non-linear way. E.g.
k(wordi,wordj) = p(i,j)

p(i)p(j) where p(i, j) is the frequency both i, j
appeared together, and p(i), p(j) is the frequency either one
appeared.

29

MODERN WORD EMBEDDINGS

Computing word similarities for “window size” 4:

30

MODERN WORD EMBEDDINGS

Current state of the art models: GloVE, word2vec.

• word2vec was originally presented as a shallow neural
network model, but it is equivalent to matrix factorization
method (Levy, Goldberg 2014).

• For word2vec, similarity metric is the “point-wise mutual
information”: log p(i,j)

p(i)p(j) .

31

CAVEAT ABOUT FACTORIZATION

SVD will not return a symmetric factorization in general. In fact,
if M is not positive semidefinite1 then the optimal low-rank
approximation does not have this form.

1I.e., κ is not a positive semidefinite kernel.

32

CAVEAT ABOUT FACTORIZATION

• For each word i we get a left and right embedding vector
wi and yi. It’s reasonable to just use one or the other.

• If ⟨yi, yi⟩ is large and positive, we expect that yi, yi have
similar similarity scores with other words, so they typically
are still related words.

• Another option is to use as your features for a word the
concatenation [wi, yi]

33

EASIEST WAY TO USE WORD EMBEDDINGS

If you want to use word embeddings for your project, the
easiest approach is to download pre-trained word vectors:

• Original gloVe website:
https://nlp.stanford.edu/projects/glove/.

• Compilation of many sources:
https://github.com/3Top/word2vec-api

34

https://nlp.stanford.edu/projects/glove/
https://github.com/3Top/word2vec-api

WORD EMBEDDINGS MATH

Lots of cool demos online for what can be done with these
embeddings. E.g. “vector math” to solve analogies.

35

USING WORD EMBEDDINGS

How to go from word embeddings to features for a whole
sentence or chunk of text?

36

USING WORD EMBEDDINGS

A few simple options:
Feature vector x = 1

q
∑q

i=1 yq.

Feature vector x = [y1, y2, . . . , yq].

37

USING WORD EMBEDDINGS

To avoid issues with inconsistent sentence length, word
ordering, etc., can concatenate a fixed number of top principal
components of the matrix of word vectors:

There are much more complicated approaches that account for
word position in a sentence. Lots of pretrained libraries
available (e.g. Facebook’s InferSent). 38

SEMANTIC EMBEDDINGS

The same approach used for word embeddings can be used to
obtain meaningful numerical features for any other data where
there is a natural notion of similarity.

For example, the items could be nodes in a social network
graph. Maybe be want to predict an individuals age, level of
interest in a particular topic, political leaning, etc.

39

NODE EMBEDDINGS

Generate random walks (e.g. “sentences” of nodes) and
measure similarity by node co-occurence frequency.

40

NODE EMBEDDINGS

Again typically normalized and apply a non-linearity (e.g. log)
as in word embeddings.

Popular implementations: DeepWalk, Node2Vec. Again
initially derived as simple neural network models, but are
equivalent to matrix-factorization (Qiu et al. 2018).

41

BEYOND AUTOENCODERS

While they have many applications, one of the original goals of
autoencoders was to learn “high level” features when we did
not have substantial training data.

Typical supervised approach to transfer learning.
42

BEYOND AUTOENCODERS

Growing realization: The types of features needed to precisely
reconstruct an image (e.g. with small ℓ2 error) don’t exactly
match up with the features required to understand an image.

43

SELF-SUPERVISED LEARNING

Automatically create a supervised learning problem with a
“simpler” task than image reconstruction.

Example: Rotation Learning.

4 class learning problem. Train a supervised neural network
model and extract features from last layers.

44

SELF-SUPERVISED LEARNING

Example: AlphaCode (released this year by Google/Deepmind).
Can process a description of a task and output correct code to
complete the task.

There is not a whole lot of training data for this sort of
problem! 45

SELF-SUPERVISED LEARNING

Key Component in AlphaCode: Semi-supervised learning using
code on Github.

46

SELF-SUPERVISED LEARNING

There are a lot of different possibilities!

47

SELF-SUPERVISED LEARNING

• Advantage: Self-supervised learning tends to outperform
autoencoders for feature learning (e.g. better performance
in transfer learning tasks).

• Disadvantage: There is no “decoder” function, so no
natural way to use these techniques for e.g. data
compression, super resolution, or synthetic data
generation.

48

GENERATIVE ADVERSARIAL NETWORKS

Autoencoder approach to generative ML: Pretrain
auto-encoder. Feed random inputs into decode to produce
random realistic outputs.

Pretty cool, but tends to produce images with immediately
recognizable flaws (e.g. soft edges, high-frequency artifacts). 49

GENERATIVE ADVERSARIAL NETWORKS (GANS)

Lots of efforts to hand-design regularizers that penalize
images that don’t look realisitic to the human eye.

Main idea behind GANs: Use machine learning to
automatically encourage realistic looking images.

50

GENERATIVE ADVERSARIAL NETWORKS (GANS)

Let x1, . . . , xn be real images and let z1, . . . , zm be random code
vectors. The goal of the discriminator is to output a number between
[0, 1] which is close to 0 if the image is fake, close to 1 if it’s real.

Train weights of discriminator Dθ to minimize:

min
θ

n∑
i=1

− log (Dθ(xi)) +
m∑
i=1

− log (1− Dθ(Gθ′(zi)) 51

GENERATIVE ADVERSARIAL NETWORKS (GANS)

Goal of the generator Gθ′ is the opposite. We want to maximize:

max
θ′

n∑
i=1

− log (Dθ(xi)) +
m∑
i=1

− log (1− Dθ(Gθ′(zi))

This is called an “adversarial loss function”. D is playing the role of
the adversary.

52

GENERATIVE ADVERSARIAL NETWORKS (GANS)

θ∗,θ′∗ solve min
θ

max
θ′

n∑
i=1

− log (Dθ(xi)) +
m∑
i=1

− log (1− Dθ(Gθ′(zi))

This is called a minimax optimization problem. Really tricky to
solve in practice.

• Repeatedly play: Fix one of θ∗ or θ′∗, train the other to
convergence, repeat.

• Simultaneous gradient descent: Run a single gradient
descent step for each of θ∗,θ′∗ and update D and G
accordingly. Difficult to balance learning rates.

• Lots of tricks (e.g. slight different loss functions) can help.

53

GENERATIVE ADVERSARIAL NETWORKS (GANS)

54

GENERATIVE ADVERSARIAL NETWORKS (GANS)

55

GENERATIVE ADVERSARIAL NETWORKS (GANS)

56

