
CS-GY 6923: Lecture 12
Autoencoders, Principal Component Analysis

NYU Tandon School of Engineering, Prof. Christopher Musco

1

FINAL PROJECT

Optional. Can be completed in place of last assignment, which
will contain a mix of written problems and coding problems.

1. Concept Based Project
2. Data set Based Project

Please email me if you want to complete a project and who
your team will be (1-3 students allowed). We can also discuss
topic ideas.

2

TRANSFER LEARNING

State-of-the-art supervised learning models like neural
networks learn very good features.

Often these features are useful for tasks other than what the
model was trained on. They can be used for other problems
where we do not have a lot of training data.

3

TRANSFER LEARNING

Example: Classify images of different Quidditch balls.

4

TRANSFER LEARNING

Based on features learned for muggle objects:

5

FEATURE LEARNING

If these features are highly informative (i.e. lead to highly
separable data) few training examples are needed to learn.

6

TRANSFER LEARNING

Common technique:

1. Download network trained e.g. on a large image classification
dataset (e.g. Imagenet).

2. Extract features z for any new image x by running it through the
network up until layer before last.

3. Use these features in a simpler machine learning algorithm that
requires less data (nearest neighbor, logistic regression, etc.).

7

TRANSFER LEARNING

8

TRANSFER LEARNING

9

UNSUPERVISED FEATURE LEARNING

Transfer learning: Lots of labeled data for one problem makes
up for little labeled data for another.

But what if we don’t even have labeled data for a sufficiently
related problem?

How to extract features in a data-driven way from unlabeled
data is one of the central problems in unsupervised learning.

10

AUTOENCODER

Simple but clever idea: If we have inputs x1, . . . , xn ∈ Rd but
few or no targets y1, . . . , yn, just make the inputs the targets.

• Let fθ : Rd → Rd be our model.
• Let Lθ be a loss function. E.g. squared loss:
Lθ(x) = ∥x− fθ(x)∥22.

• Train model: θ∗ = minθ
∑n

i=1 Lθ(x).

If fθ is a model that incorporates feature learning, then these
features can be used for supervised tasks.

fθ is called an autoencoder. It maps input space to input
space (e.g. images to images, french to french, PDE solutions to

PDE solutions).

11

AUTOENCODER

Two examples of autoencoder architectures:

Which would lead to better feature learning?

12

AUTOENCODER

Important property of autoencoders: no matter what architecture is
use, there must always be a bottleneck with fewer parameters than
the input. The bottleneck ensures information is “distilled” from
low-level features to high-level features.

13

AUTOENCODER

Architecture typically split into two parts:

Encoder: e : Rd → Rk

Decoder: d : Rd → Rk

f(x) =

Often symmetric, but does not have to be. 14

AUTOENCODER RECONSTRUCTION

Example image reconstructions from autoencoder:

https://www.biorxiv.org/content/10.1101/214247v1.full.pdf

Input parameters: d = 49152.
Bottleneck “latent” parameters: k = 1024. 15

https://www.biorxiv.org/content/10.1101/214247v1.full.pdf

AUTOENCODERS FOR FEATURE EXTRACTION

The best autoencoders do not work as well as supervised
methods for feature extraction, but they require less labeled
data. Recent progress on self-supervised learning gets closer
to supervised feature learning. Might discuss a bit later.

There are a lot of cool applications of autoencoders beyond
feature learning!

• Learned data compression.
• Denoising and in-painting.
• Data/image synthesis.

16

AUTOENCODERS FOR IMAGE COMPRESSION

Due to their bottleneck design, autoencoders perform
dimensionality reduction and thus data compression.

Given input x, we can completely recover f(x) from z = e(x). z
typically has many fewer dimensions than x and for a typical
image f(x) will closely approximate x. 17

AUTOENCODERS FOR IMAGE COMPRESSION

The best lossy compression algorithms are tailor made for specific
types of data:

• JPEG 2000 for images

• MP3 for digital audio.

• MPEG-4 for video.

All of these algorithms take advantage of specific structure in these
data sets. E.g. JPEG assumes images are locally “smooth”.

18

AUTOENCODERS FOR IMAGE COMPRESSION

With enough input data, autoencoders can be trained to find this
structure on their own.

“End-to-end optimized image compression”, Ballé, Laparra, Simoncelli

Need to be careful about how you choose loss function, design the
network, etc. but can lead to much better image compression than
“hand-tuned” algorithms like JPEG.

19

AUTOENCODERS FOR IMAGE RESTORATION

Train autoencoder on uncorrupted images (unsupervised). Pass
corrupted image x through autoencoder and return f(x) as repaired
result.

20

AUTOENCODERS LEARN COMPRESSED REPRESENTATIONS

Why does this work?

Consider 128× 128× 3 images with pixels values in 0, 1 . . . , 255.
How many possible images are there?

If z holds k values between in 0, .1, .2, . . . , 1, how many unique
images w can be output by the autoencoder function f?

21

AUTOENCODERS LEARN COMPRESSED REPRESENTATIONS

For a good (accurate, small bottleneck) autoencoder, S will
closely approximate I . Both will be much smaller than A.

22

AUTOENCODERS LEARN COMPRESSED REPRESENTATIONS

f(x) = d(e(x)) projects an image x closer to the space of
natural images.

23

AUTOENCODERS FOR DATA GENERATION

Suppose we want to generate a random natural image. How
might we do that?

• Option 1: Draw each pixel value in x uniformly at random.
Draws a random image from A.

• Option 2: Draw x randomly from S , the space of images
representable by the autoencoder.

How do we randomly select an image from S?

24

AUTOENCODERS FOR DATA GENERATION

How do we randomly select an image x from S?

Randomly select code z, then set x = d(z).1

1Lots of details to think about here. In reality, people use “variational
autoencoders” (VAEs), which are a natural modification of AEs.

25

AUTOENCODERS FOR DATA GENERATION

Generative models are a growing area of machine learning, drive by
a lot of interesting new ideas. Generative Adversarial Networks in
particular are now a major competitor with variational autoencoders.

26

SIDE NOTE ON AUTOENCODER ARCHITECTURES

An autoencoder is a model f : Rd → Rd. In other words, the
output is the same dimension as the input:

• Image → Image
• Video → Video
• Audio clip → Audio clip

This structure is also useful for some supervised machine
learning problems.

27

IMAGE SEGMENTATION

Goal: Learn mask which separates image pixels by what object
(foreground or background) that they belong to.

First step in multi-objects classification and scene
understanding. Harder than classifying single objects. 28

END-TO-END IMAGE SEGMENTATION

Model: Input is image x, output is image m that has the same
size as x, but each pixel value is a label for a segmented region.

Now our training process is actually supervised, but uses the
same structure as an autoencoder.

29

END-TO-END IMAGE COLORATION

Model: Input is black and white image x, output is colorized
image m.

30

END-TO-END SUPER RESOLUTION

Model: Input is pixelated or blurred image x, output is
full-resolution image m.

31

PRINCIPAL COMPONENT ANALYSIS

31

PRINCIPAL COMPONENT ANALYSIS

Rest of lecture: Deeper dive into understanding a simple, but
powerful autoencoder architecture. Specifically we will view
principal component analysis (PCA) as a type of autoencoder.

PCA is the “linear regression” of unsupervised learning: often
the go-to baseline method for feature extraction and
dimensionality reduction.

Very important outside machine learning as well.

32

PRINCIPAL COMPONENT ANALYSIS

Consider the simplest possible autoencoder:

• One hidden layer. No non-linearity. No biases.

• Latent space of dimension k.

• Weight matrices are W1 ∈ Rd×k and W2 ∈ Rk×d.

33

PRINCIPAL COMPONENT ANALYSIS

Given input x ∈ Rd, what is f(x) expressed in linear algebraic
terms?

f(x)T = xTW1W2

34

PRINCIPAL COMPONENT ANALYSIS

Encoder: e(x) = xTW1. Decoder: d(z) = zW2

35

PRINCIPAL COMPONENT ANALYSIS

Given training data set x1, . . . , xn, let X denote our data matrix.
Let X̃ = XW1W2.

36

FROBENIUS NORM

Natural squared autoencoder loss: Minimize L(X, X̃) where:

L(X, X̃) =
n∑
i=1

∥xi − f(xi)∥22

=
n∑
i=1

d∑
j=1

(xi[j]− f(xi)[j])2

= ∥X− X̃∥2F

Goal: Find W1,W2 to minimize the Frobenius norm loss
∥X− X̃∥2F = ∥X− XW1W2∥2F (sum of squared entries).

37

LOW-RANK APPROXIMATION

Rank in linear algebra:

• The columns of a matrix with column rank k can all be written
as linear combinations of just k columns.

• The rows of a matrix with row rank k can all be written as linear
combinations of k rows.

• Column rank = row rank = rank.

X̃ is a low-rank matrix. It only has rank k for k ≪ d.
38

LOW-RANK APPROXIMATION

Principal component analysis is the task of finding W1, W2,
which amounts to finding a rank k matrix X̃ which
approximates the data matrix X as closely as possible.

Finding the best W1 and W2 is a non-convex problem. We could
try running an iterative method like gradient descent anyway.
But there is also a direct algorithm!

39

SINGULAR VALUE DECOMPOSITION

Any matrix X can be written:

Where UTU = I, VTV = I, and σ1 ≥ σ2 ≥ . . . σd ≥ 0. I.e. U and V are
orthogonal matrices.

This is called the singular value decomposition.

Can be computed in O(nd2) time (faster with approximation algos). 40

ORTHOGONAL MATRICES

Let u1, . . . ,un ∈ Rn denote the columns of U. I.e. the left
singular vectors of X.

∥ui∥22 = uTi uj =

41

SINGULAR VALUE DECOMPOSITION

Can read off optimal low-rank approximations from the SVD:

Eckart–Young–Mirsky Theorem: For any k ≤ d, Xk = UkΣkVTk is
the optimal k rank approximation to X:

Xk = argmin
X̃ with rank ≤ k

∥X− X̃∥2F.

42

SINGULAR VALUE DECOMPOSITION

Claim: Xk = UkΣkVTk = XVkVTk.

So for a model with k hidden variables, we obtain an optimal
autoencoder by setting W1 = Vk, W2 = VTk. f(x) = xVkVTk. 43

PRINCIPAL COMPONENT ANALYSIS

Usually x’s columns (features) are mean centered and
normalized to variance 1 before computing principal
components. 44

SINGULAR VALUE DECOMPOSITION

Computing the SVD.

• Full SVD:
U,S,V = scipy.linalg.svd(X).

Runs in O(nd2) time.
• Just the top k components:
U,S,V = scipy.sparse.linalg.svds(X, k).

Runs in roughly O(ndk) time.

45

CONNECTION TO EIGENDECOMPOSITION

Recall that for a matrix M ∈ Rp×p, q is an eigenvector of M if
λq = Mq for any scalar λ.

• U’s columns (the left singular vectors) are the
orthonormal eigenvectors of XXT.

• V’s columns (the right singular vectors) are the
orthonormal eigenvectors of XTX.

• σ2
i = λi(XXT) = λi(XTX)

Exercise: Verify this directly. This means you can use any
(symmetric) eigensolver for computing the SVD.

46

PCA APPLICATIONS

Like any autoencoder, PCA can be used for:

• Feature extraction
• Denoising and rectification
• Data generation
• Compression
• Visualization

47

LOW-RANK APPROXIMATION

The larger we set k, the better approximation we get.

48

LOW RANK APPROXIMATION

Error vs. k is dictated by X’s singular values. The singular
values are often called the spectrum of X.

∥X− Xk∥2F =
d∑

i=k
σ2
i .

49

LOW RANK INTUITION

Which of these data sets would you expect to have a good
low-rank approximation? Why?

1. House data:

x = [# bedrooms, # bathrooms, list price, sale price, property tax]

2. Student data:

x = [gender, year, age, GPA, engineering major]

50

COLUMN REDUNDANCY

Colinearity of data features leads to an approximately
low-rank data matrix.

sale price ≈ 1.05 · list price.
property tax ≈ .01 · list price.

51

COLUMN REDUNDANCY

Sometimes these relationships are simple, other times more
complex. But as long as there exists linear relationships
between features, we will have a lower rank matrix.

yard size ≈ lot size− 1
2 · square footage.

cumulative GPA ≈ 1
4 · year 1 GPA+

1
4 · year 2 GPA

+
1
4 · year 3 GPA+

1
4 · year 4 GPA.

52

LOW-RANK INTUITION

Two other examples of data with good low-rank
approximations:

1. Genetic data:

2. “Term-document” matrix with bag-of-words data:

53

EXAMPLES OF LOW-RANK STRUCTURE

SNPs matrices tend to be very low-rank.

Most of the information in x is explained by just a few latent
variable.

54

EXAMPLES OF LOW-RANK STRUCTURE

“Genes Mirror Geography Within Europe” – Nature, 2008.

In data collected from European populations, latent variables
capture information about geography.

z[1] ≈ relative north-south position of birth place
z[2] ≈ relative east-west position of birth place

Individuals born in similar places tend to have similar genes.

55

PCA FOR DATA VISUALIZATION

“Genes Mirror Geography Within Europe” – Nature, 2008.

Genetic data can be nicely visualized using PCA! Plot each data
example x using two loading variables in z. 56

SIMILARITY PRESERVATION

Important note for data visualization and more: Latent
feature vectors preserve similarity and distance information in
the original data.

Let x1 . . . , xn ∈ Rd be our original data vectors, z1 . . . , zn ∈ Rk

be our loading vectors (encoding), and x̃1 . . . , x̃n ∈ Rd be our
low-rank approximated data.

Recall that x̃i = Vkzi. Because Vk is orthogonal, we have:

∥x̃i∥22 = ∥zi∥22
⟨x̃i, x̃j⟩ = ⟨zi, zj⟩

∥x̃i − x̃j∥22 = ∥zi − zj∥22

57

SIMILARITY PRESERVATION

Conclusion: If our data had a good low rank approximation, we
expect that:

∥xi∥22 ≈ ∥zi∥22
⟨xi, xj⟩ ≈ ⟨zi, zj⟩

∥xi − xj∥22 ≈ ∥zi − zj∥22

58

TERM DOCUMENT MATRIX

Word-document matrices tend to be low rank.

Documents tend to fall into a relatively small number of
different categories, which use similar sets of words:

• Financial news: markets, analysts, dow, rates, stocks
• US Politics: president, senate, pass, slams, twitter, media
• StackOverflow posts: python, help, convert, javascript
• Etc.

Intuition that this data should have co-linear rows.
59

LATENT SEMANTIC ANALYSIS

Latent semantic analysis = PCA applied to a word-document
matrix (usually from a large corpus). One of the most
fundamental techniques in natural language processing (NLP).

Each column of z corresponds to a latent “category” or “topic”.

Similar documents have similar LSA document vectors. I.e.
⟨zi, zj⟩ is large. Provide a more compact “finger print” for
documents than the long bag-of-words vectors. Useful for e.g
search engines. 60

LATENT SEMANTIC ANALYSIS

LSA vectors often provide a more meaningful similarity metric
than bag-of-words vectors. Capture high-level categorical
information and eliminate document specific quirks.

Spectrum of data matrix X.

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

i

σ
i

“Signal”

“Noise”

λ

2

61

WORD EMBEDDINGS

• ⟨yi, za⟩ ≈ 1 when doci contains worda.
• If doci and doci both contain worda, ⟨yi, za⟩ ≈ ⟨yj, za⟩ ≈ 1.

If two words appear in the same document their, word vectors
tend to point more in the same direction. 62

SEMANTIC EMBEDDINGS

Result: Map words to numerical vectors in a semantically
meaningful way. Similar words map to similar vectors.
Dissimilar words to dissimilar vectors.

Extremely useful “side-effect” of LSA.

63

WORD EMBEDDINGS: MOTIVATING PROBLEM

Review 1: Very small and handy for traveling or camping.
Excellent quality, operation, and appearance.

Review 2: So far this thing is great. Well designed, compact,
and easy to use. I’ll never use another can opener.

Review 3: Not entirely sure this was worth $20. Mom couldn’t
figure out how to use it and it’s fairly difficult to turn for
someone with arthritis.

Goal is to classify reviews as “positive” or “negative”.

64

BAG-OF-WORDS FEATURES

Vocabulary: Small, handy, excellent, great, quality, compact, easy,
difficult.

Review 1: Very small and handy for traveling or camping. Excellent
quality, operation, and appearance.

[, , , , , , ,]

Review 2: So far this thing is great. Well designed, compact, and easy
to use. I’ll never use another can opener.

[, , , , , , ,]

Review 3: Not entirely sure this was worth $20. Mom couldn’t figure
out how to use it and it’s fairly difficult to turn for someone with
arthritis.

[, , , , , , ,] 65

SEMANTIC EMBEDDINGS

Bag-of-words approach typically only works for large data sets.

The features do not capture the fact that “great” and “excellent” are
near synonyms. Or that “difficult” and “easy” are antonyms.

This can be addressed by first mapping words to semantically
meaningful vectors. That mapping can be trained using a much large
corpus of text than the data set you are working with (e.g. Wikipedia,
Twitter, news data sets).

66

WORD EMBEDDINGS

Another view on word embeddings from LSA:

Choose Z to have orthogonal columns. E.g. Z = Uk and Y = ΣkVTk.

• X ≈ ZY
• XTX ≈ YTZTZY = YTY
• So for wordi and wordj, ⟨yi, yj⟩ ≈ [XTX]i,j.

What does the i, j entry of XTX reprent?
67

WORD EMBEDDINGS

What does the i, j entry of XTX reprent?

68

WORD EMBEDDINGS

⟨yi, yj⟩ is larger if wordi and wordj appear in more documents
together (high value in word-word co-occurrence matrix, XTX).
Similarity of word embeddings mirrors similarity of word context.

General word embedding recipe:

1. Choose similarity metric k(wordi,wordj) which can be computed
for any pair of words.

2. Construct symmetric similarity matrix M ∈ Rn×n with
Mi,j = k(wordi,wordj).

3. Find symmetric low rank factorization M ≈ YTY where Y ∈ Rk×n.

4. Columns of Y are word embedding vectors.

69

WORD EMBEDDINGS

How do current state-of-the-art methods differ from LSA?

• Similarity based on co-occurrence in smaller chunks of words.
E.g. in sentences or in any consecutive sequences of 10 words.

• Usually transformed in non-linear way. E.g.
k(wordi,wordj) =

p(i,j)
p(i)p(j) where p(i, j) is the frequency both i, j

appeared together, and p(i), p(j) is the frequency either one
appeared.

70

MDOERN WORD EMBEDDINGS

Current state of the art models: GloVE, word2vec.

• Based on same principal as LSA.
• word2vec was originally presented as a shallow neural
network model, but it can be viewed as a matrix
factorization method (Levy, Goldberg 2014).

• For word2vec, similarity metric is the “point-wise mutual
information”: log p(i,j)

p(i)p(j) .

71

EASIEST WAY TO USE WORD EMBEDDINGS

If you want to use word embeddings for your project, the
easiest approach is to download pre-trained word vectors:

• Original gloVe website:
https://nlp.stanford.edu/projects/glove/.

• Compilation of many sources:
https://github.com/3Top/word2vec-api

72

https://nlp.stanford.edu/projects/glove/
https://github.com/3Top/word2vec-api

USING WORD EMBEDDINGS

How to go from word embeddings to features for a whole
sentence or chunk of text?

73

USING WORD EMBEDDINGS

A few simple options:
Feature vector x = 1

q
∑q

i=1 yq.

Feature vector x = [y1, y2, . . . , yq].

74

USING WORD EMBEDDINGS

Better option than concatenation: To avoid issues with
inconsistent sentence length, word ordering, etc., can
concatenate a fixed number of top principal components of
the matrix of word vectors:

75

