
CS-GY 6923: Lecture 11
Convolutional Neural Networks, Intro to
Autoencoders

NYU Tandon School of Engineering, Prof. Christopher Musco

1

FEATURE EXTRACTION

Why do neural networks work so well?

Treat feature transformation/extraction as part of the learning
process instead of making this the users job.

Fully connected neural networks learn general linear features.
Other architectures are specialized to more application
specific features.

For audio/visual applications convolutional features are of
primary importance.

2

1D CONVOLUTION

w is often called the convolutional “filter” or “kernel”, not to be
confused with the other “kernels” we’ve seen.

3

2D CONVOLUTION

w =

0 1 2
2 2 0
0 1 2



4

3D CONVOLUTION

Recall that color images actually have three color channels for
red, green, blues. Each pixel is represented by 3 values (e.g. in
0, . . . , 255) giving the intensity in each channel.

[0, 0, 0] = black, [0, 0, 0] = white, [1, 0, 0] = pure red, etc.

View image as 3D tensor:

5

3D CONVOLUTION

Definition (Discrete 2D convolution)
Given tensors x ∈ Rd1×d2×d3 and w ∈ Rk1×k2×k3 the discrete
convolution x⊛ w is a
(d1 − k1 + 1)× (d2 − k2 + 1)× (d3 − k3 + 1) tensor with:

[x⊛ w]i,j,g =

k1∑
ℓ=1

k2∑
m=1

k3∑
n=1

x(i+ℓ−1),(j+m−1),(g+n−1) · wℓ,m,n

6

APPLICATION 1: SMOOTHING

A uniform or Gaussian filter can be used to smooth input data:

7

APPLICATION 2: PATTERN MATCHING

Convolution can be used to find local patterns in images:

8

APPLICATIONS OF CONVOLUTION

Application 3: Edge detection.

These are 2D edge detection filter:

W1 =
[
1 −1

]
W2 =

[
1
−1

]

9

APPLICATIONS OF CONVOLUTION

Sobel filter is more commonly used:

W1 =

1 0 −1
2 0 −2
1 0 −1

 W2 =

 1 2 1
0 0 0
−1 −2 −1



10

DIRECTIONAL EDGE DETECTION

Can define edge detection filters for any orientation.

11

EDGE DETECTION

How would edge detection as a feature extractor help you
classify images of city-scapes vs. images of landscapes?

12

EDGE DETECTION

mean(IC) = .108 vs. mean(IL) = .123

The image with highest vertical edge response isn’t the city-scape.
13

EDGE DETECTION + PATTERN MATCHING

Feed edge detection result into pattern matcher that looks for
long vertical lines.

14

HIERARCHICAL CONVOLUTIONAL FEATURES

mean(VC) = .062 vs. mean(VL) = .054

The image with highest average response to (edge detector) +
(vertical pattern) is the city scape.

mean(V) = VTβ where β = [1/n, . . . , 1/n]. So the new features in V
could be combined with a simple linear classifier to separate
cityscapes from landscapes

15

HIERARCHICAL CONVOLUTIONAL FEATURES

Hierarchical combinations of simple convolution filters are
very powerful for understanding images.

Edge detection seems like a critical first step.

Lots of evidence from biology.

16

VISUAL SYSTEM

Light comes into the eye through the lens and is detected by an
array of photosensitive cells in the retina.

Rod cells are sensitive to all light, larger cone cells are sensitive to
specific colors. We have three types of cones:

17

VISUAL SYSTEM

Signal passes from the retina to the primary (V1) visual cortex, which
has neurons that connect to higher level parts of the brain.

What sort of processing happens in the primary cortex?

Lots of edge detection!
18

EDGE DETECTORS IN CATS

Huber + Wiesel, 1959: “Receptive fields of single neurones in the cat’s
striate cortex.” Won Nobel prize in 1981.

Different neurons fire when the cat is presented with stimuli at
different angles. Cool video at
https://www.youtube.com/watch?v=OGxVfKJqX5E.
”What the Frog’s Eye Tells the Frog’s Brain”, Lettvin et al. 1959. Found
explicit edge detection circuits in a frogs visual cortex.

19

https://www.youtube.com/watch?v=OGxVfKJqX5E

EXPLICIT FEATURE ENGINEERING

State of the art until ∼ 10 years ago:

• Convolve image with edge detection filters at many
different angles.

• Hand engineer features based on the responses.
• SIFT and HOG features were especially popular.

20

CONVOLUTIONAL NEURAL NETWORKS

Neural network approach: Learn the parameters of the convolution
filters based on training data.

First convolutional layer involves n convolution filters W1, . . . ,Wn.
Each is small, e.g. 5× 5. Every entry in Wi is a free parameter: ∼ 25 · n
parameters to learn.

Produces n matrices of hidden variables: i.e. a tensor with depth n.

21

WEIGHT SHARING

Convolutional layers can be viewed as fully connected layers
with added constraints. Many of the weights ar forced to 0 and
we have weight sharing constraints.

Weight sharing needs to be accounted for when running
backprop/gradient descent.

22

CONVOLUTIONAL NEURAL NETWORKS

A fully connected layer that extracts the same feature would require
(28 · 28 · 24 · 24) · n = 451, 584 · n parameters. Difference of over
200, 000x.

By “baking in” knowledge about what type of features matter, we
greatly simply the network.

Each of the n ouputs is typically processed with a non-linearity.
Most commonly a Rectified Linear Unity (ReLU): x = max(x̄, 0).

23

POOLING AND DOWNSAMPLING

Convolution + non-linearity are typically followed by a layer
which performs pooling + down-sampling.

Most common approach is max-pooling.

24

POOLING AND DOWNSAMPLING

• Reduces number of variables.

• Helps “smooth” result of
convolutional filters.

• Improves shift-invariance.

25

POOLING AND DOWNSAMPLING

Many possible variations on standard 2x2 max-pooling.

26

OVERALL NETWORK ARCHITECTURE

Each layer contains a 3D tensor of variables. Last few layers
are standard fully connected layers.

27

UNDERSTANDING LAYERS

What type of convolutional filters do we learn from gradient descent?
Lots of edge detectors in the first layer!

Other layers are harder to understand... but roughly hidden variables
later in the network encode for “higher level features”:

28

UNDERSTANDING LAYERS

How can we know?

Go through dataset and find the inputs that most “excite” a
given neural. I.e. for which |h(x)| is largest.

29

UNDERSTANDING LAYERS

How can we know?

Alternative approach: Solve the optimization problem
maxx |h(x)| e.g. using gradient descent.

30

UNDERSTANDING LAYERS

Early work had some interesting results.

“Understanding Neural Networks Through Deep Visualization”, Yosinski et al.

31

UNDERSTANDING LAYERS

There has been a lot of work on improving these methods by
regularization. I.e. solve maxx |h(x)|+ g(x) where g constrains x to
look more like a “natural image”.

If you are interested in learning more on these techniques, there is a
great Distill article at:
https://distill.pub/2017/feature-visualization/.

32

https://distill.pub/2017/feature-visualization/

UNDERSTANDING LAYERS

Nodes at different layers have different layers capture increasingly
more abstract concepts.

33

UNDERSTANDING LAYERS

Nodes at different layers have different layers capture increasingly
more abstract concepts.

General obervation: Depth more important than width. Alexnet 2012
had 8 layers, modern convolutional nets can have 100s.

34

TRICKS OF THE TRADE

Beyond techinques discussed for general neural nets (back-prop,
batch gradient descent, adaptive learning rates) training deep
networks requires a lot of “tricks”.

• Batch normalization (accelerate training).

• Dropout (prevent over-fitting)

• Residual connections (accelerate training, allow for more depth
– 100s of layers).

• Data augmentation.

And deep networks require lots of training data and lots of time.

35

BATCH NORMALIZATION

Start with any neural network architecture:

For input x,

z̄ = wTx+ b
z = s(z̄)

where w, b, and s are weights, bias, and non-linearity. 36

BATCH NORMALIZATION

z̄ is a function of the input x. We can write it as z̄(x). Consider
the mean and standard deviation of the hidden variable over
our entire dataset x1 . . . , xn:

µ =
1
n

n∑
j=1

z̄(xj)

σ2 =
1
n

n∑
j=1

(z̄(xj)− µ)2

Just as normalization (mean centering, scaling to unit variance)
is sometimes used for input features, batch-norm applies
normalization to learned features.

37

BATCH NORMALIZATION

Can add a batch normalization layer after any layer:

ū =
z̄− µ

σ

u = s(γ · ū+ c).

Where γ and c are learned parameters. Has the effect of
mean-centering/normalizing z̄, and then mapping back to have a
new mean and new standard deviation.

38

BATCH NORMALIZATION

Proposed in 2015: “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift”, Ioffe, Szegedy.

Doesn’t change the expressive power of the network, but allows for
significant convergence acceleration. It is not yet well understood
why batch normalizition speeds up training.

39

DROPOUT

Proposed in 2012: “Dropout: A Simple Way to Prevent Neural
Networks from Overfitting”, Srivastava et al.

During training, ignore a random subset of neurons during each
gradient step. Select each neuron to be included independently with
probability p (typically p ≈ .5). During testing, no dropout is used.

40

DROPOUT

• Only used on fully connected layers.

• Simultaneously performs model regularization (model
simplification) and model averaging.

• Has become less important in modern CNNs (convolutional
neural nets) as the final fully connected layers become less
important. But still a very helpful technique to know about!

41

DATA AUGMENTATION

Great general tool to know about. Main idea:

• More training data typically leads to a more accurate model.

• Artificially enlarge training data with simple transformations.

Take training images and randomly shift, flip, rotate, skew, darken,
lighten, shift colors, etc. to create new training images. Final
classifier will be more robust to these transformations.

42

DEEP LEARNING TRICKS

Need to take a full course on neural networks/deep learning to
learn more! State-of-the-art techniques are constant evolving.

43

BEYOND CONVOLUTIONAL NETWORKS

Convolution networks make sense for computer vision
applications, but not for many other applications. E.g. they
aren’t useful for machine translation, document
summarization, etc.

Typically design alternative neural networks for these
applications. Like convolutional networks, these can usually be
viewed as appropriately constrained versions of
fully-connected neural networks.

44

RECURRENT NEURAL NETWORKS

Example: Recurrent neural networks for sequential data (e.g.
speech, written sentences).

Weight matrices are shared between time steps. This is a very
oversimplified view of recurrent networks. 45

GENERALIZATION FOR NEURAL NETWORKS

Even with weight sharing, convolution, etc. modern neural
networks often have millions of parameters. And we don’t run
them with explicity regularization. Intuitively we might expect
them to overfit to training data.

46

GENERALIZATION FOR NEURAL NETWORKS

In fact, we now know that modern neural nets can easily
overfit to training data. This work showed that we can fit large
vision data sets with random class labels to essentially perfect
accuracy.

But we don’t always see a large gap between training and test
error. Don’t take this to mean overfitting isn’t a problem when
using neural nets! It’s just not always a problem.

47

GENERALIZATION FOR NEURAL NETWORKS

We even see this lack of overfitting in the simple MNIST demo
keras_demo_mnist.ipynb I posted on the website:

48

GENERALIZATION FOR NEURAL NETWORKS

One growing realization is that this phenomena doesn’t only apply to
neural networks – it can also be true for fitting
highly-overparameterized polynomials.

The choice of training algo (e.g. gradient descent) seems important. 49

DOUBLE DESCENT

We sometimes see a “double descent curve” for these models. Test
error is worst for “just barely” overparameterized models, but get
better with lots of overparameterization.

We don’t always see this curve for neural networks.
50

TRANSFER LEARNING

50

ONE-SHOT LEARNING

What if you want to apply deep convolutional networks to a problem
where you do not have a lot of labeled data in the first place?

Example: Classify images of different Quidditch balls.

51

ONE-SHOT LEARNING

A human could probably achieve near perfect classification
accuracy even given access to a single labeled example from
each class:

Major question in ML: How? Can we design ML algorithms
which can do the same?

52

TRANSFER LEARNING

Transfer knowledge from one task we already know how to
solve to another.

For example, we have learned from past experience that balls
used in sports have consistent shapes, colors, and sizes. These
features can be used to distinguish balls of different type.

53

FEATURE LEARNING

Examples of possible high-level features a human would learn:

54

FEATURE LEARNING

If these features are highly informative (i.e. lead to highly
separable data) few training examples are needed to learn.

Might suffice to classify ball using nearest training example in
feature space, even if just a handful of training examples.

55

TRANSFER LEARNING

Empirical observation: Features learned when training models
like deep neural nets seem to capture exactly these sorts of
high-level properties.

Even if we can’t put into words what each feature in z means... 56

TRANSFER LEARNING

This is now a common technique in computer vision:

1. Download network trained on large image classification dataset
(e.g. Imagenet).

2. Extract features z for amy new image x by running it through the
network up until layer before last.

3. Use these features in a simpler machine learning algorithm that
requires less data (nearest neighbor, logistic regression, etc.).

This approach has even been used on the quidditch problem:
github.com/thatbrguy/Object-Detection-Quidditch

57

github.com/thatbrguy/Object-Detection-Quidditch

UNSUPERVISED FEATURE LEARNING

Transfer learning: Lots of labeled data for one problem makes
up for little labeled data for another.

What if we don’t even have much labeled data for irrelevant
classes?

How to extract features in a data-driven way from unlabeled
data is one of the central problems in unsupervised learning.

58

SUPERVISED VS. UNSUPERVISED LEARNING

• Supervised learning: All input data examples come with
targets/labels. What machines are good at now.

• Unsupervised learning: No input data examples come
with targets/labels. Interesting problems to solve include
clustering, anomaly detection, semantic embedding, etc.

• Semi-supervised learning: Some (typically very few) input
data examples come with targets/labels. What human
babies are really good at, and we are just starting to make
machines better at.

59

TRANSFER LEARNING

Back to the problem at hand: Want to extract meaningful
features from an already trained neural network.

60

AUTOENCODER

Simple but clever idea: If we have inputs x1, . . . , xn ∈ Rd but
no targets y1, . . . , yn to learn, just make the inputs the targets.

• Let fθ : Rd → Rd be our model.
• Let L be a loss function. E.g. squared loss:
Lθ(x) = ∥x− fθ(x)∥22.

• Train model: θ∗ = minθ
∑n

i=1 Lθ(x).

If fθ is a model that incorporates feature learning, hopefully
these features will capture high-level meaning.

fθ is called an autoencoder. It maps inputs space to inputs
space.

61

AUTOENCODER

Two examples of autoencoder architectures:

Which would lead to better feature learning?

62

AUTOENCODER

Important property of autoencoders: no matter what architecture is
use, there must always be a bottleneck with fewer parameters than
the input. The bottleneck ensures information is “distilled” from
low-level features to high-level features.

63

AUTOENCODER

Architecture typically split into two parts:

Encoder: e : Rd → Rk

Decoder: d : Rd → Rk

f(x) =

Often symmetric, but does not have to be. 64

AUTOENCODER RECONSTRUCTION

Example image reconstructions from autoencoder:

https://www.biorxiv.org/content/10.1101/214247v1.full.pdf

Input parameters: d = 49152.
Bottleneck “latent” parameters: k = 1024. 65

https://www.biorxiv.org/content/10.1101/214247v1.full.pdf

AUTOENCODERS FOR FEATURE EXTRACTION

The best autoencoders do not work as well as for feature
extraction as supervised methods. But, they have many other
applications.

• Image segmentation.
• Learned image compression.
• Denoising and in-painting.
• Image synthesis.

66

AUTOENCODERS FOR IMAGE SEGMENTATION

Goal: Learn mask which separates image pixels by what object
(foreground or background) that they belong to.

First step in multi-objects classification and scene
understanding. Harder than classifying single objects. 67

AUTOENCODERS FOR IMAGE SEGMENTATION

Change in design: Input is image x, output is image m that has
the same size as x, but each pixel value is a label for a
segmented region.

Now our training process is actually supervised, but uses the
same structure as an autoencoder.

68

AUTOENCODERS FOR IMAGE COMPRESSION

Due to their bottleneck design, autoencoders perform
dimensionality reduction and thus data compression.

Given input x, we can completely recover f(x) from z = e(x). z
typically has many fewer dimensions than x and for a typical
image f(x) will closely approximate x. 69

AUTOENCODERS FOR IMAGE COMPRESSION

The best lossy compression algorithms are tailor made for specific
types of data:

• JPEG 2000 for images

• MP3 for digital audio.

• MPEG-4 for video.

All of these algorithms take advantage of specific structure in these
data sets. E.g. JPEG assumes images are locally “smooth”.

70

AUTOENCODERS FOR IMAGE COMPRESSION

With enough input data, autoencoders can be trained to find this
structure on their own.

“End-to-end optimized image compression”, Ballé, Laparra, Simoncelli

Need to be careful about how you choose loss function, design the
network, etc. but can lead to much better image compression than
“hand-tuned” algorithms like JPEG.

71

AUTOENCODERS FOR IMAGE RESTORATION

Train autoencoder on uncorrupted images (unsupervised). Pass
corrupted image x through autoencoder and return f(x) as repaired
result.

72

AUTOENCODERS LEARN COMPRESSED REPRESENTATIONS

Why does this work?

Consider 128× 128× 3 images with pixels values in 0, 1 . . . , 255.
How many possible images are there?

If z holds k values between in 0, .1, .2, . . . , 1, how many unique
images w can be output by the autoencoder function f?

73

AUTOENCODERS LEARN COMPRESSED REPRESENTATIONS

For a good (accurate, small bottlened) autoencoder, S will
closely approximate I . Both will be much smaller than A.

74

AUTOENCODERS LEARN COMPRESSED REPRESENTATIONS

f(x) projects an image x closer to the space of natural images.

75

AUTOENCODERS LEARN COMPRESSED REPRESENTATIONS

f(x) projects an image x closer to the space of natural images.

76

AUTOENCODERS FOR DATA GENERATION

Suppose we want to generate a random natural image. How
might we do that?

• Option 1: Draw each pixel in x value uniformly at random.
Draws a random image from A.

• Option 2: Draws x randomly image from S , the space of
images representable by the autoencoder.

How do we randomly select an image from S?

77

AUTOENCODERS FOR DATA GENERATION

How do we randomly select an image x from S?

Randomly select code z, then set x = e(z).1

1Lots of details to think about here. In reality, people use “variational
autoencoders” (VAEs), which are a natural modification of AEs.

78

AUTOENCODERS FOR DATA GENERATION

Generative models are a growing area of machine learning, drive by
a lot of interesting new ideas. Generative Adversarial Networks in
particular are now a major competitor with variational autoencoders.

79

PRINCIPAL COMPONENT ANALYSIS

Next lecture: Deeper dive into understanding a simple, but
powerful autoencoder architecture. Specifically we will learn
about principal component analysis (PCA) as a type of
autoencoder.

PCA is the “linear regression” of unsupervised learning: often
the go-to baseline method for feature extraction and
dimensionality reduction.

Very important outside machine learning as well.

80

PCA APPLICATIONS

Like any autoencoder, PCA can be used for:

• Feature extraction
• Denoising and rectification
• Data generation
• Compression
• Visualization

81

PRINCIPAL COMPONENT ANALYSIS

Consider the simplest possible autoencoder:

• One hidden layer. No non-linearity. No biases.

• Latent space of dimension k.

• Weight matrices are W1 ∈ Rd×k and W2 ∈ Rk×d.

82

PRINCIPAL COMPONENT ANALYSIS

Given input x ∈ Rd, what is f(x) expressed in linear algebraic
terms?

f(x)T = xTW1W2

83

PRINCIPAL COMPONENT ANALYSIS

Encoder: e(x) = xTW1. Decoder: d(z) = zW2

84

