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EARLY NEURAL NETWORK EXPLOSION

Around ࠄࠇࠈࠀ several groups (re)-discovered the
backpropagation algorithm which allows for efficient training
of neural nets via (stochastic) gradient descent. Along with
increased computational power this lead to a resurgence of
interest in neural network models.

Very good performance on problems like digit recognition. ࠁ



NEURAL NETWORK DECLINE

From s߿ࠈࠈࠀ - ,߿ࠀ߿ࠁ kernel methods, SVMs, and probabilistic
methods began to dominate the literature in machine learning:

• Work well “out of the box”.
• Relatively easy to understand theoretically.
• Not too computationally expensive for moderately sized
datasets.

Fun blog post to check out from :5߿߿ࠁ
http://yaroslavvb.blogspot.com/2005/12/
trends-in-machine-learning-according.html
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NEURAL NETWORK DECLINE

Finding trends in machine learning by search papers in Google Scholar that
match a certain keyword:
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MODERN NEURAL NETWORK RESURGENCE

In recent years this trend completely turned around:

Recent state-of-the-art results in game playing, image
recognition, content generation, natural language processing,
machine translation, many other areas.
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MODERN NEURAL NETWORKS

All changed with the introduction of AlexNet and the ࠁࠀ߿ࠁ
ImageNet Challenge...

Very general image classification task.
ࠅ
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MODERN NEURAL NETWORKS

All changed with AlexNet and the ࠁࠀ߿ࠁ ImageNet Challenge...

߿ࠀ߿ࠁ Results

ࠁࠀ߿ࠁ Results ࠆ
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MODERN NEURAL NETWORKS

Why ?ࠁࠀ߿ࠁ

• Clever ideas in changing neural network architectures. E.g.
convolutional units baked into the neural net.

• Wide-spread access to GPU computing power).

ࠇ



GRAPHICS PROCESSING UNIT

Hardware innovation: Widely available, inexpensive GPUs
allowing for cheap, highly parallel linear algebra operations.

• :ࠆ߿߿ࠁ Nvidia released CUDA platform, which allows GPUs to
be easily programmed for general purposed computation.

AlexNet architecture used ߿ࠅ million parameters. Could not
have been trained using CPUs alone (except maybe on a
government super computer).

ࠈ



TRAINING NEURAL NETWORKS

Two main algorithmic tools for training neural network
models:

.ࠀ Stochastic gradient descent.
.ࠁ Backpropogation.

߿ࠀ
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CHAIN RULE REVIEW

For a function f(x) we write the derivative with respect to x as:

f′(x) = df
dx

= lim
t→∞

f(x+ t)− f(x)
t

.

For a function f(x, y, z) we write the partial derivative with
respect to x as:

∂f
∂x

= lim
t→∞

f(x+ t, y, z)− f(x, y, z)
t

.
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CHAIN RULE REVIEW

Let y(x) be a function of x and let f(y) be a function of y. The
chain rule says that:

∂f
∂x

=
∂f
∂y

· ∂y
∂x

∂f
∂x

= lim
t→∞

f(y(x+ t))− f(y(x))
t

= lim
t→∞

f(y(x+ t))− f(y(x))
y(x+ t)− y(x)

· y(x+ t)− y(x)
t

.

As long at limt→∞ y(x+ t)− y(x) = ߿ then the first term equals
∂f
∂y and the second equals ∂x

∂t .
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MULTIVARIABLE CHAIN RULE

Let y(x), z(x),w(x) be functions of x and let f(y, z,w) be a
function of y,z,w.

∂f
∂x

=
∂f
∂y

· ∂y
∂x

+
∂f
∂z

· ∂z
∂x

+
∂f
∂w

· ∂w
∂x

Example: Let y(x) = xࠂ and z(x) = xࠁ. Let f(y, z) = y · z. Then:

∂f
∂x

=
∂f
∂y

· ∂y
∂x

+
∂f
∂z

· ∂z
∂x

= z · (ࠁxࠂ) + y · xࠁ
= xࠁ · (ࠁxࠂ) + xࠂ · xࠁ
= .ࠃxࠄ

ࠂࠀ
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TRAINING NEURAL NETWORKS

Let f(θ, x) be our neural network. A typical "-layer feed forward
model has the form:

g" (W" (. . .Wࠂ · gࠁ (Wࠁ · gࠀ (Wࠀx+ βࠀ) + βࠁ) + βࠂ . . .) + β") .

Wi and bi are the weight matrix and bias vector for layer i and
gi is the non-linearity (e.g. sigmoid). θ = [W߿,β߿, . . . ,W",β"] is
a vector of all entries in these matrices.

Goal: Given training data (xࠀ, yࠀ), . . . , (xn, yn) minimize the loss

L(θ) =
n∑

i=ࠀ

L (yi, f(θ, xi))

Example: We might use the binary cross-entropy loss for
binary classification. f is the output class probability.

L (yi, f(θ, xi)) = yi log(f(θ, xi)) + −ࠀ) yi) log(ࠀ− f(θ, xi))
ࠃࠀ
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GRADIENT OF THE LOSS

Most common approach: minimize the loss by using gradient
descent. Which requires us to compute the gradient of the loss
function, ∇L. Note that this gradient has an entry for every
value in [W߿,β߿, . . . ,W",β"].

As usual, our loss function has finite sum structure, so:

∇L(θ) =
n∑

i=ࠀ

∇L (yi, f(θ, xi))

So we can focus on computing:

∇θL (yi, f(θ, xi))

for a single training example (xi, yi).

ࠄࠀ
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GRADIENT OF THE LOSS

Applying chain rule to loss:

∇θL (y, f(θ, x)) =
∂L

∂f(θ, x) ·∇θf(θ, x)

Binary cross-entropy example:

L (y, f(θ, x)) = y log(f(θ, x)) + −ࠀ) y) log(ࠀ− f(θ, x))

ࠅࠀ
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GRADIENT OF THE LOSS

We have reduced our goal to computing ∇θf(θ, x), where the
gradient is with respect to the parameters θ.

Back-propagation is a natural and efficient way to compute
∇θf(θ, x). It derives its name because we compute gradient
from back to front: starting with the parameters closest to the
output of the neural net.

ࠆࠀ
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BACKPROP EXAMPLE

Notation for next few slides:
• a,b, . . . , z are the node names, and used to denote values at
nodes after applying non-linearity.

• ā, b̄, . . . , z̄ denote value before applying non-linearity.

• Wi,j is the weight of edge from node i to node j.

• s(·) : R → R is the non-linear activation function.

• βj is the bias for node j.

Example: h = s(h̄) = s(c ·Wc,h + d ·Wd,h + e ·We,h + βh) ࠇࠀ
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BACKPROP EXAMPLE

Goal: Compute the gradient ∇f(θ, x), which contains the partial
derivatives with respect to every parameter:

• ∂z/∂βz
• ∂z/∂Wf,z, ∂z/∂Wg,z, ∂z/∂Wh,z

• ∂z/∂Wc,f, ∂z/∂Wc,g, ∂z/∂Wc,h

• ∂z/∂Wd,f, ∂z/∂Wd,g, ∂z/∂Wd,h

•
...

• ∂z/∂Wa,c, ∂z/∂Wa,d, ∂z/∂Wa,e

Two steps: Forward pass to compute function value.
Backwards pass to compute gradients.

ࠈࠀ



BACKPROP EXAMPLE

Step :ࠀ Forward pass.

• Using current parameters, compute the output z by
moving from left to right.

• Store all intermediate results:

c̄, d̄, ē, c,d, e, f̄, ḡ, h̄, f,g,h, z̄, z.

߿ࠁ
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BACKPROP EXAMPLE

Step :ࠀ Forward pass.

c̄ = Wa,c · a+Wb,c · b+ βc c = s(c̄)
d̄ = Wa,d · a+Wb,d · b+ βd d = s(d̄)
ē = Wa,e · a+Wb,e · b+ βe e = s(ē)
f̄ = Wc,f · c+Wd,f · d+We,f · e+ βf f = s(̄f)
...

...
z̄ = Wf,z · f+Wg,z · g+Wh,z · h+ βz z = s(z̄)

ࠀࠁ
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BACKPROP EXAMPLE

Step :ࠁ Backward pass.

• Using current parameters and computed node values,
compute the partial derivatives of all parameters by
moving from right to left.

ࠁࠁ



BACKPROP EXAMPLE

Step :ࠁ Backward pass. Deepest layer.

∂z
∂bz

=
∂z̄
∂bz

· ∂z
∂z̄

= ࠀ · s′(z̄)

∂z
∂Wf,z

=
∂z̄

∂Wf,z
· ∂z
∂z̄

= f · s′(z̄)

∂z
∂Wg,z

=
∂z̄

∂Wg,z
· ∂z
∂z̄

= g · s′(z̄)

∂z
∂Wh,z

=
∂z̄

∂Wh,z
· ∂z
∂z̄

= h · s′(z̄)

ࠂࠁ
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BACKPROP EXAMPLE

Step :ࠁ Backward pass.

∂z
∂f

=
∂z̄
∂f

· ∂z
∂z̄

= Wf,z · s′(z̄)

∂z
∂g

=
∂z̄
∂g

· ∂z
∂z̄

= Wg,z · s′(z̄)

∂z
∂h

=
∂z̄
∂h

· ∂z
∂z̄

= Wh,z · s′(z̄)

Compute partials with respect to nodes, even though not needed
for gradient. ࠃࠁ
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BACKPROP EXAMPLE

Step :ࠁ Backward pass.

∂z
∂ f̄

=
∂z
∂f

· ∂f
∂ f̄

=
∂z
∂f

· s′(̄f)

∂z
∂ḡ

=
∂z
∂g

· ∂g
∂ḡ

=
∂z
∂g

· s′(ḡ)

∂z
∂h̄

=
∂z
∂h

· ∂h
∂h̄

=
∂z
∂h

· s′(h̄)

And for nodes pre-nonlinearity
ࠄࠁ
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BACKPROP EXAMPLE

Step :ࠁ Backward pass. Next layer.

∂z
∂bf

=
∂z
∂ f̄

· ∂ f̄
∂bf

=
∂z
∂ f̄

· ࠀ

∂z
∂Wc,f

=
∂z
∂ f̄

· ∂ f̄
∂Wc,f

=
∂z
∂ f̄

· c

∂z
∂Wd,f

=
∂z
∂ f̄

· ∂ f̄
∂Wd,f

=
∂z
∂ f̄

· d

∂z
∂We,f

=
∂z
∂ f̄

· ∂ f̄
∂We,f

=
∂z
∂ f̄

· e

...

ࠅࠁ
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BACKPROP EXAMPLE

Step :ࠁ Backward pass. Next set of nodes.

∂z
∂c

=
∂z
∂ f̄

· ∂ f̄
∂c

+
∂z
∂ḡ

· ∂ḡ
∂c

+
∂z
∂h̄

· ∂h̄
∂c

=
∂z
∂ f̄

·Wc,f +
∂z
∂ḡ

·Wc,g +
∂z
∂h̄

·Wc,h

∂z
∂d

=
∂z
∂ f̄

·Wd,f +
∂z
∂ḡ

·Wd,g +
∂z
∂h̄

·Wd,h

∂z
∂e

=
∂z
∂ f̄

·We,f +
∂z
∂ḡ

·We,g +
∂z
∂h̄

·We,h

ࠆࠁ
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BACKPROP LINEAR ALGEBRA

Linear algebraic view.

Let vi be a vector containing the value of all nodes j in layer i.

vࠂ =
[
z
]

vࠁ =




f
g
h



 vࠀ =




c
d
e





Let v̄i be a vector containing j̄ for all nodes j in layer i.

v̄ࠂ =
[
z̄
]

v̄ࠁ =




f̄
ḡ
h̄



 v̄ࠀ =




c̄
d̄
ē





Note: vi = s(v̄i) where s is applied entrywise.

ࠇࠁ
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BACKPROP LINEAR ALGEBRA

Linear algebraic view.

Let δi be a vector containing ∂z/∂j for all nodes j in layer i.

δࠂ =
[
ࠀ
]

δࠁ =




∂z/∂f
∂z/∂g
∂z/∂h



 δࠀ =




∂z/∂c
∂z/∂d
∂z/∂e





Let δ̄i be a vector containing ∂z/∂ j̄ for all nodes j in layer i.

δ̄ࠂ =
[
∂z/∂z̄

]
δ̄ࠁ =




∂z/∂ f̄
∂z/∂ḡ
∂z/∂h̄



 δ̄ࠀ =




∂z/∂c̄
∂z/∂d̄
∂z/∂ē





Note: δ̄i = s′(v̄i)× δi where s′ is the derivative of s and this function,
as well as the × are applied entrywise.

ࠈࠁ
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BACKPROP LINEAR ALGEBRA

Let Wi be a matrix containing all the weights for edges between layer
i and layer i+ .ࠀ

Wࠁ =
[
Wf,z Wg,z Wh,z

]
Wࠀ =




Wc,f Wd,f We,f

Wc,g Wd,g We,g

Wc,h Wd,h We,h



 W߿ =




Wa,c Wb,c

Wa,d Wb,d

Wa,e Wb,e





߿ࠂ

3
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BACKPROP LINEAR ALGEBRA

Claim :ࠀ Node derivative computation is matrix multiplication.

δi = WT
i δ̄i+ࠀ

ࠀࠂ

i : L
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BACKPROP LINEAR ALGEBRA

Let ∆i be a matrix contain the derivatives for all weights for edges
between layer i and layer i+ .ࠀ

ࠁ∆ =
[
∂z/∂Wf,z ∂z/∂Wg,z ∂z/∂Wh,z

]

ࠀ∆ =




∂z/∂Wc,f ∂z/∂Wd,f ∂z/∂We,f

∂z/∂Wc,g ∂z/∂Wd,g ∂z/∂We,g

∂z/∂Wc,h ∂z/∂Wd,h ∂z/∂We,h





߿∆ = . . .

ࠁࠂ
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BACKPROP LINEAR ALGEBRA

Claim :ࠁ Weight derivative computation is an outer-product.

∆i = viδ̄
T
i+ࠀ.

ࠂࠂ

00
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BACKPROP

Takeaways:

• Backpropagation can be used to compute derivatives for
all weights and biases for any feedforward neural network.

• Final computation boils down to linear algebra operations
(matrix multiplication and vector operations) which can
be parallelized and performed quickly on a GPU.

ࠃࠂ



BACKPROP

Backpropagation allows us to compute ∇L (yi, f(θ, xi)) for a
single training example (xi, yi). Computing entire gradient
requires computing:

∇L(θ) =
n∑

i=ࠀ

∇L (yi, f(θ, xi))

Computing the entire sum would be very expensive.
O ((time for backprop) · n) time.

ࠄࠂ
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STOCHASTIC GRADIENT DESCENT

Recall: Stochastic Gradient Descent (SGD).

Let Lj(θ) denote L
(
yj, f(θ, xj)

)
.

Claim: If j ∈ ,ࠀ . . . ,n is chosen uniformly at random. Then:

n · E
[
∇Lj(θ)

]
= ∇L(θ).

∇Lj(θ) is called a stochastic gradient and just requires
running backprop once.

ࠅࠂ
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STOCHASTIC GRADIENT DESCENT

SGD iteration:

• Initialize θ߿ (typically randomly).
• For t = ,ࠀ . . . , T:

• Choose j uniformly at random.
• Compute stochastic gradient g = ∇Lj(θt).

• For neural networks this is done using backprop with
training example (xj, yj).

• Update θt+ࠀ = θt − ηg

Move in direction of steepest descent in expectation.

ࠆࠂ



STOCHASTIC GRADIENT DESCENT

Gradient descent: Fewer iterations to converge, higher cost per
iteration.

Stochastic Gradient descent: More iterations to converge,
lower cost per iteration.

ࠇࠂ



CONVERGENCE

Least squares regression, logistic regression, SVMs, even all of
these with kernels lead to convex losses.

Neural networks very much do not...

ࠈࠂ
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CONVERGENCE

But SGD still performs remarkably well in practice. Understanding
this phenomenon is a major open research question in machine
learning and optimization.

• Initialization seems important (random uniform vs. random
Gaussian vs. Xavier initialization vs. He initialization vs. etc.)

• SGD finds “good” local minima?

߿ࠃ
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STOCHASTIC GRADIENT DESCENT IN PRACTICE

We already discussed a few practical modifications of SGD:

• Using “mini-batch” gradients.
∑B

i=ࠀ∇Lji(θ).
• Shuffling then cycling through training data instead of
picking a training data point at random each time.

ࠀࠃ
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STOCHASTIC GRADIENT DESCENT IN PRACTICE

Practical Modification: Per-parameter adaptive learning rate.

Let g =




gࠀ
...
gp



 be a stochastic or batch stochastic gradient. Our

typical parameter update looks like:

θt+ࠀ = θt − ηg.

We’ve already seen a simple method for adaptively choosing
the learning rate/step size η. Worked well for convex functions.

ࠁࠃ
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STOCHASTIC GRADIENT DESCENT IN PRACTICE

Practical Modification: Per-parameter adaptive learning rate.

In practice, neural networks can often be optimized much
faster by using “adaptive gradient methods” like Adagrad,
Adadelta, RMSProp, and ADAM. These methods make updates
of the form:

θt+ࠀ = θt −




ηࠀ · gࠀ

...
ηp · gp





So we have a separate learning rate for each entry in the
gradient (e.g. parameter in the model). And each ηࠀ, . . . , ηp is
chosen adaptively.

ࠂࠃ
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NEURAL NETWORK DEMOS

Two demos on neural networks:

• keras_demo_synthetic.ipynb
• keras_demo_mnist.ipynb

Please spend some time working through these!

ࠃࠃ



NEURAL NETWORK SOFTWARE

Low-level libraries have built in optimizers (SGD and improvements)
and can automatically perform backpropagation for arbitrary
network structures. Also ptimize code for any available GPUs.

Keras has high level functions for defining and training a neural
network architecture.

ࠄࠃ
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NEURAL NETWORK SOFTWARE

Low-level libraries have built in optimizers (SGD and improvements)
and can automatically perform backpropagation for arbitrary
network structures. Also ptimize code for any available GPUs.

Keras has high level functions for defining and training a neural
network architecture. ࠅࠃ



NEURAL NETWORK SOFTWARE

Define model:

Compile model:

Train model:

ࠆࠃ
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CONVOLUTIONAL NEURAL NETWORKS (CNNS)

ࠆࠃ



FEATURE EXTRACTION

Why do neural networks work so well?

Treat feature transformation/extraction as part of the learning
process instead of making this the users job.

But sometimes they still need a nudge in the right direction...

ࠇࠃ



BASIC FEATURE EXTRACTION

ࠈࠃ



BASIC FEATURE EXTRACTION

Final output or class label y is a linear function of the final
layer variables uࠀ, . . . ,uk. You could just as well have taken
these variables and used them to predict y via linear
regression, logistic regression, SVM, any other linear method.

߿ࠄ



BASIC FEATURE EXTRACTION

Sigmoid activation: Each hidden variable zi equal to ࠀ
e−z̄i+ࠀ

where zi = wTx+ b for input x.

Other non-linearities yield similarly simple feature extractions.

ࠀࠄ



BASIC FEATURE EXTRACTION

If you combine more hidden variables, you can start building
more complicated classifiers.

How about for even more complex datasets?

ࠁࠄ
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BASIC FEATURE EXTRACTION

With more layers, complexity starts ramping up...

But there’s a limit...

ࠂࠄ
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BASIC FEATURE EXTRACTION

Modern machine learning algorithms can differentiate
between images of African and Asian elephants...

The features needed for a task like this are far more complex
then we could expect a network to learn completely on its own
using simple combinations of linear layers + non-linearities.

ࠃࠄ
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CONVOLUTIONAL FEATURE EXTRACTION

Today’s topic: Understand why convolution is a powerful way
of extracting features from:

• Image data.
• Audio data.
• Time series data.

Ultimately, can build convolutional networks that already have
convolutional feature extraction pre-coded in. Just need to
learn weights.

ࠄࠄ
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MOTIVATING EXAMPLE

What features would tell use this image contains a stop sign?

Typically way of vectorizing an image chops up and splits up
any pixels in the stop sign. We need very complex features to
piece these back together again... ࠅࠄ
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CONVOLUTION

Objects or features of an image often involve pixels that are spatially
correlated. Convolution explicitly encodes this.

Definition (Discrete Dࠀ convolutionࠀ)
Given x ∈ Rd and w ∈ Rk the discrete convolution x! w is a
d− k+ ࠀ vector with:

[x! w]i =
k∑

j=ࠀ

x(j+i−ࠀ)wj

Think of x ∈ Rd as long data vector (e.g. d = (ࠁࠀࠄ and w ∈ Rk as short
filter vector (e.g. k = .(ࠇ u = [x! w] is a feature transformation.
Thisࠀ is slightly different from the definition of convolution you might have
seen in a Digital Signal Processing class because w does not get “flipped”. In
signal processing our operation would be called correlation.

ࠆࠄ
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Dࠀ CONVOLUTION

ࠇࠄ
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MATCH THE CONVOLUTION

ࠈࠄ
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Dࠁ CONVOLUTION

Definition (Discrete Dࠁ convolution)
Given matrices x ∈ Rdࠀ×dࠁ and w ∈ Rkࠀ×kࠁ the discrete convolution
x! w is a (dࠀ − kࠀ + ×(ࠀ (dࠁ − kࠁ + (ࠀ matrix with:

[x! w]i,j =
kࠀ∑

ࠀ=!

kࠁ∑

h=ࠀ

x(i+!−ࠀ),(j+h−ࠀ) · w!,h

Again technically this is “correlation” not “convolution”. Should be
performed in Python using scipy.signal.correlate2d instead
of scipy.signal.convolve2d.

w is called the filter or convolution kernel and again is typically
much smaller than x.
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Dࠁ CONVOLUTION

s w =
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ZERO PADDING

Sometimes “zero-padding” is introduced so x! w is dࠀ × dࠁ if x
is dࠀ × dࠁ.

Need to pad on left and right by (kࠀ − ࠁ/(ࠀ and on top and
bottom by (kࠁ − .ࠁ/(ࠀ
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APPLICATIONS OF CONVOLUTION

Examples code will be available in
demo1_convolutions.ipynb.

Application :ࠀ Blurring/smooth.

In one dimension:

• Uniform (moving average) filter: wi =
ࠀ
k for i = ,ࠀ . . . , k.

• Gaussian filter: wi ∼ e−(i−k/ࠁ)ࠁ/σࠁ for i = ,ࠀ . . . , k.

ࠂࠅ



SMOOTHING FILTERS
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SMOOTHING FILTERS

Useful for smoothing time-series data, or removing
noise/static from audio data.

Replaces every data point with a local average.

ࠄࠅ



SMOOTHING IN TWO DIMENSIONS

In two dimensions:

• Uniform filter: wi,j =
ࠀ

kࠀkࠁ for i = ,ࠀ . . . , kࠀ, j = ,ࠀ . . . , kࠁ.

• Gaussian filter: wi ∼ e−
(i−kࠁ/ࠀ)

(ࠁ/ࠁj−k)+ࠁ
ࠁ

σࠁ for i = ,ࠀ . . . , kࠀ,
j = ,ࠀ . . . , kࠁ.

Larger filter equates to more smoothing.

ࠅࠅ
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SMOOTHING IN TWO DIMENSIONS

For Gaussian filter, you typically choose k " σࠁ to capture the
fall-off of the Gaussian.

Both approaches effectively denoise and smooth images.
ࠆࠅ
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SMOOTHING FOR FEATURE EXTRACTION

When combined with other feature extractors, smoothing at
various levels allows the algorithm to focus on high-level
features over low-level features.

ࠇࠅ
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APPLICATIONS OF CONVOLUTION

Application :ࠁ Pattern matching.

Slide a pattern over an image. Output of convolution will be
higher when pattern correlates well with underlying image.

ࠈࠅ
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LOCAL PATTERN MATCHING

Applications of local pattern matching:

• Check if an image contains text.
• Look for specific sound in audio recording.
• Check for other well-structured objects

߿ࠆ



Dࠂ CONVOLUTION

Recall that color images actually have three color channels for
red, green, blue. Each pixel is represented by ࠂ values (e.g. in
,߿ . . . , (ࠄࠄࠁ giving the intensity in each channel.

,߿] ,߿ [߿ = black, ,߿] ,߿ [߿ = white, ,ࠀ] ,߿ [߿ = pure red, etc.

View image as Dࠂ tensor:

ࠀࠆ
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Dࠂ CONVOLUTION

Can be convolved with Dࠂ filter:
Definition (Discrete Dࠁ convolution)
Given tensors x ∈ Rdࠀ×dࠁ×dࠂ and w ∈ Rkࠀ×kࠁ×kࠂ the discrete
convolution x! w is a (dࠀ − kࠀ + ×(ࠀ (dࠁ − kࠁ + ×(ࠀ (dࠂ − kࠂ + (ࠀ
tensor with:

[x! w]i,j,g =
kࠀ∑

ࠀ=!

kࠁ∑

m=ࠀ

kࠂ∑

n=ࠀ
x(i+!−ࠀ),(j+m−ࠀ),(g+n−ࠀ) · w!,m,n
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Dࠂ CONVOLUTION
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Dࠂ CONVOLUTION

Relatively robust to imperfections, damage, occlusion, etc.
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FREQUENCY DETECTION

Less obvious example of pattern matching: Frequency
detection in audio.

Any Dࠀ signal (including a sound wave) can be decomposed
into component frequencies:

x(t) = sin(fࠀt+ sࠀ) + sin(fࠁt+ sࠁ) + sin(fࠂt+ sࠂ) + . . . ࠄࠆ
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FREQUENCY DETECTION

Convolve audio signal with snippet of pure frequency to determine
where difference frequencies are prevalent. Detect things like:

• Common notes in a song.

• Different instruments.

• Human voices vs. other noise.

Main idea behind short-time Fourier transforms/spectrograms.

ࠅࠆ

O - x * o ¥ *
÷



APPLICATIONS OF CONVOLUTION

Application :ࠂ Edge detection.

Consider a Dࠁ edge detection filter:

Wࠀ =
[
ࠀ ࠀ−

]
Wࠁ =

[
ࠀ
ࠀ−

]
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APPLICATIONS OF CONVOLUTION

Sobel filter is more commonly used:

Wࠀ =




ࠀ ߿ ࠀ−
ࠁ ߿ ࠁ−
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DIRECTIONAL EDGE DETECTION

Can define edge detection filters for any orientation.
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EDGE DETECTION

How would edge detection as a feature extractor help you
classify images of city-scapes vs. images of landscapes?

߿ࠇ



EDGE DETECTION

mean(IC) = ࠇ߿ࠀ. vs. mean(IL) = ࠂࠁࠀ.

The image with highest vertical edge response isn’t the city-scape.
ࠀࠇ



EDGE DETECTION + PATTERN MATCHING

Feed edge detection result into pattern matcher that looks for
long vertical lines.

ࠁࠇ



HIERARCHICAL CONVOLUTIONAL FEATURES

mean(VࠁC) = ࠁࠃ߿. vs. mean(VࠁL) = ࠇࠀ߿.

The image with highest average response to (edge detector) +
(vertical pattern) is the city scape.

mean(V) is an extracted scalar feature which could be used for
classifying cityscapes from landscapes using a linear classifier.

ࠂࠇ



HIERARCHICAL CONVOLUTIONAL FEATURES

Hierarchical combinations of simple convolution filters are
very powerful for understanding images.

In particular, edge detection seems like a critical first step.

Lots of evidence from biology.
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VISUAL SYSTEM

Light comes into the eye through the lens and is detected by an
array of photosensitive cells in the retina.

Rod cells are sensitive to all light, larger cone cells are sensitive to
specific colors. We have three types of cones:

ࠄࠇ



VISUAL SYSTEM

Signal passes from the retina to the primary (Vࠀ) visual cortex, which
has neurons that connect to higher level parts of the brain.

What sort of processing happens in the primary cortex?

Lots of edge detection!
ࠅࠇ



EDGE DETECTORS IN CATS

Huber + Wiesel, :ࠈࠄࠈࠀ “Receptive fields of single neurones in the cat’s
striate cortex.” Won Nobel prize in .ࠀࠇࠈࠀ

Different neurons fire when the cat is presented with stimuli at
different angles. Cool video at
https://www.youtube.com/watch?v=OGxVfKJqX5E.

”What the Frog’s Eye Tells the Frog’s Brain”, Lettvin et al. .ࠈࠄࠈࠀ Found
explicit edge detection circuits in a frogs visual cortex.

ࠆࠇ
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EXPLICIT FEATURE ENGINEERING

State of the art until ∼ ߿ࠀ years ago:

• Convolve image with edge detection filters at many
different angles.

• Hand engineer features based on the responses.
• SIFT and HOG features were especially popular.
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CONVOLUTIONAL NEURAL NETWORKS

Neural network approach: Learn the parameters of the convolution
filters based on training data.

First convolutional layer involves nࠀ convolution filters Wࠀ, . . . ,Wnࠀ.
Each is small, e.g. ×ࠄ .ࠄ Every entry in Wi is a free parameter:
∼ ࠄࠁ · nࠀ parameters to learn.

Produces nࠀ matrices of hidden variables: i.e. a tensor with depth nࠀ.

ࠈࠇ



CONVOLUTIONAL NEURAL NETWORKS

A fully connected layer that extracts the same feature would require
ࠇࠁ) · ࠇࠁ · ࠃࠁ · (ࠃࠁ · nࠀ = ,ࠀࠄࠃ ࠃࠇࠄ · nࠀ parameters.

By “baking in” knowledge about what type of features matter, we
greatly simply the network.

Each of the nࠀ ouputs is typically processed with a non-linearity.
Most commonly a Rectified Linear Unity (ReLU): x = max(x̄, .(߿

߿ࠈ



POOLING AND DOWNSAMPLING

Convolution + non-linearity are typically followed by a layer
which performs pooling + down-sampling.

Most common approach is max-pooling.
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POOLING AND DOWNSAMPLING

Convolution + non-linearity are typically followed by a layer
which performs pooling + down-sampling.

Most common approach is max-pooling.
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POOLING AND DOWNSAMPLING

• Reduces number of variables,
helps prevent over-fitting
and speed up training.

• Helps “smooth” result of
convolutional filters.

• Improves shift-invariance.
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POOLING AND DOWNSAMPLING

Many possible variations on standard ࠁxࠁ max-pooling.
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OVERALL NETWORK ARCHITECTURE

Each layer contains a Dࠂ tensor of variables. Last few layers
are standard fully connected layers.
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UNDERSTANDING LAYERS

What type of convolutional filters do we learn from gradient descent?
Lots of edge detectors in the first layer!

Other layers are harder to understand... but the hypothesis is that
hidden variables later in the network encode for “higher level
features”:
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UNDERSTANDING LAYERS

Technique to probe later neurons: Use optimization to find images
that most strongly “activate” a given neuron deep in the network.

“Understanding Neural Networks Through Deep Visualization”, Yosinski et al.
ࠆࠈ



TRICKS OF THE TRADE

Beyond techinques discussed for general neural nets (back-prop,
batch gradient descent, adaptive learning rates) training
convolutional networks requires a lot of “tricks”.

• Batch normalization (accelerate training).

• Dropout (prevent over-fitting)

• Residual connections (accelerate training, allow for more depth
– s߿߿ࠀ of layers).

And convolutional networks require lots of training data.
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TRANSFER LEARNING

What if you want to apply deep convolutional networks to a problem
where you don’t have a lot of data?

Idea behind transfer learning: features transformations learned
when training a classifier on e.g. Imagenet are often useful in other
problems, even with different inputs, classes, etc.

ࠈࠈ



TRANSFER LEARNING

• Download state of the art pre-trained network (Alexnet,
VGG, Inception, etc.)

• Chop off classification layer.
• Use first part of network as feature extractor.
• Solve classification problem using more scalable methods:
kernel SVM, logistic regression, shallow fully connected
net, etc.

Very easy to do in Tensorflow/Keras. Many pre-trained
networks are made available.
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DEMOS

Two demos to be released shortly:

• Classification of CIFAR-߿ࠀ dataset using ࠁ layer neural nets
in Keras. You will likely want to use Google Collab to
access a GPU.

• Transfer learning in Keras.
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