CS-GY 6923: Lecture 10

Back-propagation, Convolution + Feature
Extraction

NYU Tandon School of Engineering, Prof. Christopher Musco

EARLY NEURAL NETWORK EXPLOSION

Around 1985 several groups (re)-discovered the
backpropagation algorithm which allows for efficient training
of neural nets via (stochastic) gradient descent. Along with
increased computational power this lead to a resurgence of
interest in neural network models.

Backpropagation Applied to Handwritten Zip Code
Recognition

Y. LeCun

B. Boser

J. S. Denker

D. Henderson

R. E. Howard

W. Hubbard

L. D. Jackel

AT&T Bell Laboratortes Holmdel, NJ 07733 USA

The ability of learning lize can be greatly

by providing constraints from the ‘task domain. This paper demon-
strates how such i can be i into a back

network through the architecture of the network. This approach has
been successfully applied to the recognition of handwritten zip code
digits provided by the U.S. Postal Service. A single network learns the
entire recognition operation, going from the normalized image of the
character to the final classification.

Very good performance on problems like digit recognition. 2

NEURAL NETWORK DECLINE

From 1990s - 2010, kernel methods, SVMs, and probabilistic
methods began to dominate the literature in machine learning:

- Work well “out of the box".

- Relatively easy to understand theoretically.

- Not too computationally expensive for moderately sized
datasets.

Fun blog post to check out from 2005:
http://yaroslavvb.blogspot.com/2005/12/
trends-in-machine-1learning-according.html

http://yaroslavvb.blogspot.com/2005/12/trends-in-machine-learning-according.html
http://yaroslavvb.blogspot.com/2005/12/trends-in-machine-learning-according.html

NEURAL NETWORK DECLINE

Finding trends in machine learning by search papers in Google Scholar that

match a certain keyword:
77 \1\

You can see a major upward trend starting around 1985 (that's when Yann LeCun and several others
king in 1992, and caigg then.

On ther han, search for‘supportvecr machina” shows no s o slowing down o Naive Bayes seghs o bo rowing withoutbound
J— Loind
2 y
\«L) 1)
2.5 V
& 19
2
o
1
of
19
o
o .
i L O T e Lo T et oo

(1995 is when Vapnik and Cortez proposed the algorithm) I were to trust this, | would say that Naive Bayes research the hottest machine learning area right now

MODERN NEURAL NETWORK RESURGENCE

In recent years this trend completely turned around:

Un sourire coiite moins cher que Un sourire coiite moins cher que
Télectricité, mais donne autant Iélectricité, mais donne autant
de lumiére de lumiére

Asmile costs less expensive than ™ | A smile costs less than electricity, ™
electriciy, but gives as many ight | but gives as much light

(-] ® 0 @ 0 :

Recent state-of-the-art results in game playing, image
recognition, content generation, natural language processing,
machine translation, many other areas.

NETWORKS

All changed with the introduction of AlexNet and the 2012
ImageNet Challenge...

IM .’ G E A J rT 14.497,122 images, 21841 synsets indexed
\ | H
] L

Explore Download Challenges Publications Updates About
ILSVRC 2017
ILSVRC 2016
ILSVRC 2015
ILSVRC 2014
ILSVRC 2013
ILSVRC 2012
ILSVRC 2011
ILSVRC 2010

Not logged in. Login | Signup

ImageNet is an image database organized according to
in which each node of the hierarchy is depicted by hundr}

hierarchy (currently only the nouns),
isands of images. Currently we have

an average of over five hundred images per node. We hd
researchers, educators, students and all of you who sha
Click here to learn more about ImageNet, Click here to jo

Bt will become a useful resource for
bn for pictures.
B:Net mailing list.

What do these images have in common? Find out!

Very general image classification task.

MODERN NEURAL NETWORKS

All changed with AlexNet and the 2012 ImageNet Challenge...

{team name |team members filename flat cost El‘)est description
INEC: Yuanqing Lin, using sift and
Fengjun Lv, Shenghuo Zhu, Ibp feature with
IMing Yang, Timothee Cour, two non-linear

. Kai Yu UIUC: LiangLiang icoding

NEC-UIUC ICao, Zhen Li, Min-Hsuan flat_opt.ixt 0.28193}2.1144 representations
[Tsai, Xi Zhou, Thomas chastic
Huang Rutgers: Tong (SVM ptimized
Zhang p-5 hit rate

2010 Results

Team name Filename Error (5 D

Using extra training data
test-preds-141-146.2009-131-
SuperVision from ImageNet Fall 2011
—_— 137-145-146.2011-145f. reloase

test-preds-131-137-145-135-

Using only supplied

SuperVision 0.16422 __
145f.txt training data
Weighted sum of scores
from each classifier with
ISl pred_FVs_wLACs_weighted.txt 0.26172 SIFT+FV, LBP+FV,
—

GIST+FV, and
CSIFT+FV, respectively.

2012 Results 7

MODERN NEURAL NETWORKS

Why 20127

- Clever ideas in changing neural network architectures. E.g.
convolutional units baked into the neural net.

- Wide-spread access to GPU computing power).

GRAPHICS PROCESSING UNIT

Hardware innovation: Widely available, inexpensive GPUs
allowing for cheap, highly parallel linear algebra operations.

- 2007: Nvidia released CUDA platform, which allows GPUs to
be easily programmed for general purposed computation.

AlexNet architecture used 60 million parameters. Could not
have been trained using CPUs alone (except maybe on a
government super computer).

TRAINING NEURAL NETWORKS

Two main algorithmic tools for training neural network
models:

6. Stochastic gradient descent.

2. Backpropogation.

CHAIN RULE REVIEW

For a function f(x) we write the derivative with respect to x as:

o

For a function f(x, y,z) we write the partial derivative with
respect to x as:

[af — lim f(XitaX,Z) _f(Xv.Lz)

OX to#ey t
0

I

CHAIN RULE REVIEW

Let y(x) be a function of x and let f(y) be a function of y. The
chain rule says that:

QL
of _ . fy(x+1) - fvx)

Gy A
X t=e sytic
i [D) — fx)) IR 0]
=@\ yx+1) —y(x)
<
As long at lim¢_,g y(x +t) — y(x) = 0 then the first term equals
E/; and the second equals % 3_

12

MULTIVARIABLE CHAIN RULE

Let y(x), z(x), w(x) be functions of x and letj(y,g,w) be a
function of y,zw. .

of of oy of 0z Of ow

ox Oy 6x+az 3X+3W 0Xx

Example: Let y(x) = x*> and z(x) = Letf(Lz _(22 . Then:
8f_8f/ §(x) =x>x*
ox ?y aZ 8 T xS

=27-(3¢) +y-2x g
X
= x> (3x%) + - 2x d«

I
ul
x
R

13

TRAINING NEURAL NETWORKS

Le @- our neural network. A typical ¢-layer feed forward
model has the form:

ge (We (... Ws- 92(W2 g1 (Wix+81)+8)+85..) +By).

W; and B; are the weight matrix and bias vector for layer j and
g; is the non-linearity (e.g. sigmoid). @ = [Wo, Ao, ..., Ws.B/] is
r— —

a vector of all entries in these matrices.

Goal: Given training data (x1, 1), - ., (X0, ¥n) minimize the loss

£9) = > L (. f(0:x))
=1

Example: We might use the binary cross-entropy loss for
binary classification. fis the output class probability.

L(yi, f(@IOgQ (6 XI;> + (1 —y;)log(1—f(8,X))

14

GRADIENT OF THE LOSS

Most common approach: minimize the loss by using gradient
descent. Which requires us to compute the gradient of the loss
function, V£. Note that this gradient has an entry for every

M in MO?ﬁOv coo 7W€aﬁf]'

As usual, our loss function has finite sum structure, so:
n
VLO) = > VL(yi.f(6,x))
i=1
So we can focus on computing:

(VGL (vi, (6, Xi))>

for a single training example w

15

GRADIENT OF THE LOSS

Applying chain rule to loss: V. P

\Jb"'

oo o o

Binary cross-entropy example:

L(v,f(0,x)) = ylog(f(6,x)) + (1 — v) log(1 = (6, X))

L7 Me, x
sk 5 = ‘}..L‘ o5 /x> /)
e, 850,
oL et ¥4

S0, Ly 8D, "

GRADIENT OF THE LOSS

We have reduced our goal to computing Vef(0, x), where the
gradient is with respect to the parameters 6.

Back-propagation is a natural and efficient way to compute
Vof(6,x). It derives its name because we compute gradient
from back to front: starting with the parameters closest to the
output of the neural net.

17

BACKPROP EXAMPLE

layer 0 layer 1 layer 2 layer 3
Notation for next few slides: C :4\’3"«/0 ” \/3\,} + 60)
- a,b,...,zarethe node names, and used to denote values at
nodes after applying non-linearity.

- @,b,...,Z denote value before applying non-linearity.
. Mis the weight of edge from node i to node j.
- 5(-) : R — R is the non-linear activation function.

- B is the bias for node j.

Example: h =s(h) = s(c-Wep +d-Wyp + e Wep + Bn) 18

BACKPROP EXAMPLE

Goal: Compute the gradient Vf(8, x), which contains the partial
derivatives with respect to every parameter:

© 0205

© 02/OWs,, 02/OWg 7, 02/ OWy, ,

© 0z/OW, 5, 02/OWe g, 02/OW,

© 0z2/OWy 5, 02/OWy g, 02/OWqy 1y

° aZ/aWChc, aZ/aWa7d, aZ/aWa’e

Two steps: Forward pass to compute function value.
Backwards pass to compute gradients.

19

BACKPROP EXAMPLE

Step 1: Forward pass.

- Using current parameters, compute the output z by
moving from left to right.

- Store all intermediate results:

7a7é7c7d787f7g7ﬁ7fﬂgﬂh7zﬂz'

=

gl

20

BACKPROP EXAMPLE

Step 1: Forward pass. N VLDC{L S

(_j:W G+W b ﬂd
é:WG,e'a+Wb7e'b+/Be
]_C: Wcﬁf~C+Wd’f-d+We_f-€+ﬂf

z:Wf,z'f+Wg,z‘g+Wh7z'h+5z

— N

21

BACKPROP EXAMPLE

Step 2: Backward pass.

- Using current parameters and computed node values,
compute the partial derivatives of all parameters by

moving from right to left.

22

BACKPROP EXAMPLE

2 5}
Step 2: Backward pass. Deepest layer. 2= 5 (7x> B
A *
25 (U’h 190
=2 FQu, Wt \07_>
=5 (2)
oz 07 0z . .
b, = obaoz
0z _ 07 B L
oW, 0z */ﬁ @)
0z 07 % _g.5@)
oW oWy, 07 9
) -
oz 0z 8z:h 5(2)

23

BACKPROP EXAMPLE

Step 2: Backward pass.

0z\ 0z
ofl of
0z 0z
dg ~ g
0z 0z
oh — 8h’

0z _
5= W50
0z _
55 = Woz s'(2)
0z _
75 = Whe S'@)

Compute partials with respect to nodes, even though not needed
for gradient.

24

BACKPROP EXAMPLE

Step 2: Backward pass.

And for nodes pre-nonlinearity
25

BACKPROP EXAMPLE

Step 2: Backward pass. Next layer.

26

BACKPROP EXAMPLE

Linear algebraic view.

Let \}be a vector containing the value of all nodes j in layer I.

=[] =

Let V; be a vector containing j for all n

\&
I
N
1
Il

Vi =
odes j in layer i.

V) =
p—

Note: v; = s(V;) where s is applied entrywise.

Ml QI 0l

BACKPROP LINEAR ALGEBRA

28

BACKPROP LINEAR ALGEBRA

Linear algebraic view.

Let §; be a vector containing 9z/9j for all nodes j in layer i.

0z)0f dz/dc
8 = M 8, = |9z/9g & = |0z/0d
0z/0h 0z/0e

Let §; be a vector containing dz/dj for all nodes j in layer i.

dz/0f dz/dC
3 = {82/62} 5, = |0z/05 5 = |9z/00
9z/0h 0z/0@

Note: §; = s'(v;) x 8; where s’ is the derivative of s and this function,
as well as the x aze applied entrywise.

E=1 »

BACKPROP LINEAR ALGEBRA

Let W; be a matrix containing all the weights for edges between layer
iand layer i+ 1.

o} 2~
. K o | Wes Was Wer % |Wae W,
W, = [Wf,z Wy, Wh,z} Wi= |Weg Wyig Weg| Wo= |Waq Wpyg
Wen Wan Wep Wae Wpe

)

30

BACKPROP LINEAR ALGEBRA

31

BACKPROP LINEAR ALGEBRA

Let A; be a matrix contain the derivatives for all weights for edges
between layer i and layer | + 1.

A, = [oz/oW;, 02/0Ws . 02/0W,,|
(92/8WC_f 82/8Wd1f 82/8We,f

7
D= |0z/OWc g 0z/OW4q 0z/OWeq
= |0z/OWep 0z/OWgp 0Z/OWep,
Do=...

32

BACKPROP LINEAR ALGEBRA

b d QV |
Claim 2: Weight derivative computation is an outer-product.
=T

(%KD ,,(\,(’}:D = (% %%)

33

BACKPROP

Takeaways:

- Backpropagation can be used to compute derivatives for
all weights and biases for any feedforward neural network.

- Final computation boils down to linear algebra operations
(matrix multiplication and vector operations) which can
be parallelized and performed quickly on a GPU.

34

BACKPROP

Backpropagation allows us to compute VL (y;, f(0,X;)) for a
single training example (x;, y;). Computing entire gradient
requires computing:

n

VL) =) (VL(v;,f(0,x))

=

Computing the entire sum would be very expensive.
O ((time for backprop) - n) time.

L
»,

35

STOCHASTIC GRADIENT DESCENT

Recall: Stochastic Gradient Descent (SGD).
Let L;(@) denote L (y;, f(6, ;).

Claim: If j €1,...,nis chosen uniformly at random. Then:

n-E[VLi(8)] = VL().

—_—

VL;(0) is called a stochastic gradient and just requires
running backprop once.

36

STOCHASTIC GRADIENT DESCENT

SGD iteration:

- Initialize 8¢ (typically randomly).
s Fort=1,...,T
- Choose j uniformly at random.
- Compute stochastic gradient g = VL;(6:).
- For neural networks this is done using backprop with
training example (x;, y;).

- Update 01 = 0t — ng

Move in direction of steepest descent in expectation.

37

STOCHASTIC GRADIENT DESCENT

Gradient descent: Fewer iterations to converge, higher cost per
iteration.

Stochastic Gradient descent: More iterations to converge,
lower cost per iteration.

7—%\\\ / T~
RN TN
{ \\ \\ \ VR \\
NN NN
)\11/) N/
Gradient Descent Stochastic Gradient Descent

38

CONVERGENCE

Least squares regression, logistic regression, SVMs, even all of
these with kernels lead to convex losses.

@ cross-entropy lossTo
neural net

Neural networks very much do not...

39

CONVERGENCE

But SGD still performs remarkably well in practice. Understanding
this phenomenon is a major open research question in machine
learning and optimization.

- Initialization seems important (random uniform vs. random
Gaussian vs. Xavier initialization vs. He initialization vs. etc.)

_—

- SGD finds “good” local minima?

40

STOCHASTIC GRADIENT DESCENT IN PRACTICE

We already discussed a few practical modifications of SGD:

- Using “mini-batch” gradients. Z@; VL (0).
- Shuffling then cycling through training data instead of
picking a training data point at random each time.

41

STOCHASTIC GRADIENT DESCENT IN PRACTICE

Practical Modification: Per-parameter adaptive learning rate.

g1
Letg= | : | be astochastic or batch stochastic gradient. Our
. gp .
typical parameter update looks like: sleg BT

Ori1 =9 - 18

We've already seen a simple method for adaptively choosing
the learning rate/step size . Worked well for convex functions.

42

STOCHASTIC GRADIENT DESCENT IN PRACTICE

Practical Modification: Per-parameter adaptive learning rate.

In practice, neural networks can often be optimized much

faster by using “adaptive gradient methods” like(Adagrad
Adadelta, RMSProp, andhese methods make updates

of the form:
\\
£ (x) -
Ot 1=0;— :
bigx) d
p \9p4
So we have a separate learning rate for each entry in the
gradient (e.g. parameter in the model). And each m, ..., is

chosen adaptively.

43

NEURAL NETWORK DEMOS

Two demos on neural networks:

- keras_demo_synthetic.ipynb

- keras_demo_mnist.ipynb

Please spend some time working through these!

4

NEURAL NETWORK SOFTWARE

TensorFlow

45

NEURAL NETWORK SOFTWARE

1 B2 Microsoft
TensorFlow theano O PyTorch CNTK

Keras

Low-level libraries have built in optimizers (SGD and improvements)
and can automatically perform backpropagation for arbitrary
network structures. Also ptimize code for any available GPUs.

Keras has high level functions for defining and training a neural

network architecture. i

AL NETWORK SOFTWARE

Define model:

model = Se_&ntﬁl()

model.add(Dgn/se(units=nh, input_shape=(nin,), activation='sigmoid', name='hidden'))
model.add(Dense(units=nout, activation='softmax', name='output'))

Compile model:

(Dooo
opt, = optimizers. |

e 9
model.compile(optimizer=opt,] 5 oo
loss='sparse_categorical_crossentropy' ,)
metrics=['accuracy'])

Train model:

hist = model.fit(Xtr, ytr, e&s:}O, batch_size=100, validation_data=(Xts,yts))

47

CONVOLUTIONAL NEURAL NETWORKS (CN NS)

FEATURE EXTRACTION

Why do neural networks work so well?

Treat feature transformation/extraction as part of the learning
process instead of making this the users job.

But sometimes they still need a nudge in the right direction...

48

BASIC FEATURE EXTRACTION

linear map

sigmoid
non-linearity
— 0 — — O) iemoid
TE T TN tearnap
—0 — [—O— NN —0— —O0
—0 — — O/ Woliy+ b Z, g(z) Yo

(standard linear classifier)

(feature extraction)

49

BASIC FEATURE EXTRACTION

Final output or class label y is a linear function of the final
layer variables uq,..., U You could just as well have taken
these variables and used them to predict y via linear
regression, logistic regression, SVM, any other linear method.

50

BASIC FEATURE EXTRACTION

1 —
14e~ 4

Sigmoid activation: Each hidden variable z; equal to
where z; = w'x + b for input x.

Other non-linearities yield similarly simple feature extractions.

51

BASIC FEATURE EXTRACTION

If you combine more hidden variables, you can start building
more complicated classifiers.

How about for even more complex datasets?

52

BASIC FEATURE EXTRACTION

With more layers, complexity starts ramping up...

FEATURES 3 HIDDEN LAYERS OUTPUT

But there's a limit...

53

BASIC FEATURE EXTRACTION

Modern machine learning algorithms can differentiate
between images of African and Asian elephants...

AFRICAN | ASIAN
lPHANT ELEPHANT

What are the differences?

EARS: Small, rounded ear
TRUNK TIP: One “finger” or grasping
HEAD: Twin dome

HEIGHT (tallest at back): 6.5 - 9'
WEIGHT: 6,600 - 13,200 bs.

EARS: Large, *Afica-shaped ear
TRUNK TIP: Two *ingers' fo grasping
HEAD: Single dome

HEIGHT (tallst at shoulder): 9 - 13'
WEIGHT: 8,800 - 15,400 Ibs.

The features needed for a task like this are far more complex
then we could expect a network to learn completely on its own
using simple combinations of linear layers + non-linearities.

CONVOLUTIONAL FEATURE EXTRACTION

Today’s topic: Understand why{ convolution\is a powerful way
of extracting features from:

- Image data.
- Audio data.

« Time series data.

Ultimately, can build(convolutional network%\that already have

convolutional feature extraction pre-coded in. Just need to
learn weights.

55

MOTIVATING EXAMPLE

What features would tell use this image contains a stop sign?

red channel

s [sToPE

flatten

green channel

Typically way of vectorizing an image chops up and splits up
any pixels in the stop sign. We need very complex features to

piece these back together again... 2

CONVOLUTION

Objects or features of an image often involve pixels that are spatially
correlated. Convolution explicitly encodes this. S e—

Definition (Discrete 1D convolution') =

Given RY and w € R* the discrete convolution x ® w is a
g Pctor with:

R
xewlF > X(ji-1)W;j
=

Think of x € RY as long data vector (e.g. d = 512) and w € RF as short
filter vector (e.g. k = 8). u =[x ® w] is a feature transformation.

This is slightly different from the definition of convolution you might have
seen in a(Digital Signal Processing}class because w does not get “flipped”. In
signal processing our operation would be called[correlationj

57

1D CONVOLUTION

x[3felafa]a[4]afo]2]1]
W—’I-I P Moz s =1
X[1]a]s]a]2|4]1]e]2]
wii[2]s] — .6 -1 -9
X‘1‘4‘3‘—1‘2‘—4‘1‘e|2‘-1‘
wii[2[1]— 2 _; a0
X’1‘4‘3|-1‘2‘-4‘1‘e|2‘-1‘

wilale] — - oo -

yeo <u 1] Y2 |-] [~

58

MATCH THE CONVOLUTION

G) Coop vt |
t @

| (/5 143

_[/

2D CONVOLUTION

Given matriceg’x € Rx¢And e discrete convolution
X®Wisa (dy— Rk +1) x (dy — fez 4+ 1) matrix with:

Ry
[X®W]/1—ZZX/+5 1),(+h=1) - We,h

=1 h=1

Again technically this is “correlation” not “convolution”. Should be

performed in Python using scipy.signal.correlate2d instead
of scipy.signal.convolve2d.

w is called the filter or convolution kernel and again is typically
much smaller than x.

60

2D CONVOLUTION

61

ZERO PADDING

Sometimes “zero-padding” is introduced soiifx

is d1 X dz.

Need to pad on left and right by (k; — 1)/2 and on top and
bottom by (k, —1)/2.
2 s

62

APPLICATIONS OF CONVOLUTION

Examples code will be available in
demol_convolutions.ipynb.

Application 1: Blurring/smooth.

In one dimension:

- Uniform (moving average) filter: w; = 1 fori=1,..., k.

- Gaussian filter: w; ~ e=(=R/2?%/7" for j =1, ... k.

63

SMOOTHING FILTERS

Useful for smoothing time-series data, or removing
noise/static from audio data.

10
1/2/87 2/13/87 3/30/87 5/M12/87 6/24/87 8/6/87 9/18/87 10/30/87 12/14/87

Replaces every data point with a local average.

65

SMOOTHING IN TWO DIMENSIONS

(&) [}
|
b=4 >

. . [
In two dimensions: \‘\

Nl
- Uniform filter: wij = g-fori=1,...,k,j=1,... k.

. _ (i=k/2)? 4=k /2)? .
- Gaussian filter: w; ~ e o2 fori=1,..., Ry,
—_—

i=1,.... k.

Original Uniform kernel, 9x! Uniform kernel, 15x

Larger filter equates to more smoothing.

66

SMOOTHING IN TWO DIMENSIONS

For Gaussian filter, you typically choose k 2 2g.to capture the
fall-off of the Gaussian.

n Iil

Uniform kernel Gaussian kernel

Both approaches effectively denoise and smooth images.
67

SMOOTHING FOR FEATURE EXTRACTION

When combined with other feature extractors, smoothing at
various levels allows the algorithm to focus on high-level
features over low-level features.

68

APPLICATIONS OF CONVOLUTION

Application 2: Pattern matching.

Slide a pattern over an image. Output of convolution will be
higher when pattern correlates well with underlying image.

69

LOCAL PATTERN MATCHING

Applications of local pattern matching:

- Check if an image contains text.
- Look for specific sound in audio recording.

- Check for other well-structured objects

70

3D CONVOLUTION

Recall that color images actually have three color channels for
red, green, blue. Each pixel is represented by 3 values (e.g. in
0,...,255) giving the intensity in each channel.

[0,0,0] = black, [0, 0, 0] = white, [1,0,0] = pure red, etc.

View image as 3D tensor:
w channels

c=1 c=2 c=3
=" = ==
\W/
3D —j
tensor H

T"_"3

71

3D CONVOLUTION

Can be convolved with 3D filter:

Definition (Discrete 3D convolution)

Given tensors x € R4 xdxd gnd w e Rfixkxks the discrete
convolution x®@wisa (dy — Ry +1) x (dy — Ry +1) X (d3 — k3 + 1)

tensor with:
Ry Ry Rs
x®w]g = Z Z Z X(i+-£—1),(+m—1),(g+n—1) - We,m,n
£=1 m=1 n=1

Ingy e
N
D M’

Yarmnale

72

3D CONVOLUTION

RG B

RG B RG B

OUTPUT OUTPUT OUTPUT

INPUT INPUT INPUT

73

3D CONVOLUTION

74

FREQUENCY DETECTION

Less obvious example of pattern matching: Frequency
detection in audio.

Any 1D signal (including a sound wave) can be decomposed
into component frequencies:

VAN

/ frequency

~
= @ Sio Fbs)0w 4 -)

—sm f1t—|—51 —|—sm f2t+52)+SIn(f3t+S3)+... 75

FREQUENCY DETECTION

Convolve audio signal with snippet of pure frequency to determine
where difference frequencies are prevalent. Detect things like:

- Common notes in a song.

- Different instruments.

- Human voices vs. other noise.

Amplitude

Main idea behind short-time Fourier transforms/spectrograms.

76

APPLICATIONS OF CONVOLUTION

Application 3: Edge detection.

Consider a 2D edge detection filter:

77

APPLICATIONS OF CONVOLUTION

Sobel filter is more commonly used:

]
Wy =12
1

x*?

78

DIRECTIONAL EDGE DETECTION

Can define edge detection filters for any orientation.

u1 u2 U3 (1Y)

X NAVAVAY

79

EDGE DETECTION

How would edge detection as a feature extractor help you
classify images of city-scapes vs. images of landscapes?

-

80

EDGE DETECTION

E

mean(lc) =.108 vs. mean(l))=.123

The image with highest vertical edge response isn't the city-scape.
81

EDGE DETECTION + PATTERN MATCHING

Feed edge detection result into pattern matcher that looks for
long vertical lines.

82

HIERARCHICAL CONVOLUTIONAL FEATURES

- - - mean(VC)
- - mean(VL)

mean(VZ) = .042 vs. mean(V}) =.018

The image with highest average response to (edge detector) +
(vertical pattern) is the city scape.

mean(V) is an extracted scalar feature which could be used for
classifying cityscapes from landscapes using a linear classifier.

83

HIERARCHICAL CONVOLUTIONAL FEATURES

Hierarchical combinations of simple convolution filters are
very powerful for understanding images.

In particular, edge detection seems like a critical first step.

Lots of evidence from biology.

84

VISUAL SYSTEM

Light comes into the eye through the lens and is detected by an
array of photosensitive cells in the retina.

S 0 il
ﬁ%.&?""

7L n 7
i

7 74 i “ Il/ ot
S
SR

Fig. 13. Tangential section through the human fovea.
fr e ek ey A o bt

Rod cells are sensitive to all light, larger cone cells are sensitive to
specific colors. We have three types of cones:

J 85

TTa00 450 500 600 650 700
‘Wavelength (nm)

VISUAL SYSTEM

Signal passes from the retina to the primary (V1) visual cortex, which
has neurons that connect to higher level parts of the brain.

What sort of processing happens in the primary cortex?

Lots of edge detection!
86

EDGE DETECTORS IN CATS

Huber + Wiesel, 1959: “Receptive fields of single neurones in the cat's
striate cortex.” Won Nobel prize in 1987.

Electrical signal
from brain

Recording electrode ——»

Visual area
of brain

Different neurons fire when the cat is presented with stimuli at
different angles. Cool video at
https://www.youtube.com/watch?v=0GxVfKIgX5E.

"What the Frog’s Eye Tells the Frog's Brain”, Lettvin et al. 1959. Found

explicit edge detection circuits in a frogs visual cortex. .

https://www.youtube.com/watch?v=OGxVfKJqX5E

EXPLICIT FEATURE ENGINEERING

State of the art until ~ 10 years ago:

- Convolve image with edge detection filters at many
different angles.
- Hand engineer features based on the responses.

- SIFT and HOG features were especially popular.

88

CONVOLUTIONAL NEURAL NETWORKS

Neural network approach: Learn the parameters of the convolution
filters based on training data.

Convolutional Layer

INPUT nl channels nl channels
(28x28x1) (24 x24xn1) (12x12xnl)
First convolutional layer involves n1 convolution filters Wy, ..., Wp;.

Each is small, e.g. 5 x 5. Every entry in W; is a free parameter:
~ 25-n1 parameters to learn.

Produces n1 matrices of hidden variables: i.e. a tensor with depth n1.

89

CONVOLUTIONAL NEURAL NETWORKS

A fully connected layer that extracts the same feature would require
(28 -28 - 24 -24) - n1 = 451,584 - n1 parameters.

By “baking in” knowledge about what type of features matter, we
greatly simply the network.

Convolutional Layer

INPUT n1 channels nl channels
(28x28x1) (24 x24xn1) (12x12xnl)

Each of the n1 ouputs is typically processed with a non-linearity.
Most commonly a Rectified Linear Unity (ReLU): x = max(X, 0).

90

POOLING AND DOWNSAMPLING

Convolution + non-linearity are typically followed by a layer
which performs pooling + down-sampling.

INPUT
(28x28x1)

Pooling/

(24 x24 xn1)

Most common approach is

Subsampling

nl channels
(12x12xnl)

91

POOLING AND DOWNSAMPLING

Convolution + non-linearity are typically followed by a layer
which performs pooling + down-sampling.

INPUT
(28x28x1)

Pooling/

(24 x24 xn1)

Subsampling

nl channels
(12x12xnl)

Most common approach is

92

POOLING AND DOWNSAMPLING

Max Pooling Average Pooling
29 | 15 | 28 | 184 31 | 15 | 28 | 184
0 |100| 70 | 38 0 (100 70 | 38
425|812 7 2 (29112 i 2
12 |12 | 45 | 6 12|12 | 45 | 6
2x2 2x2
pool size pool size
100 | 184 36 | 80
12 | 45 12 | 15

Reduces number of variables,
helps prevent over-fitting
and speed up training.

Helps “smooth” result of
convolutional filters.

Improves shift-invariance.

93

POOLING AND DOWNSAMPLING

Many possible variations on standard 2x2 max-pooling.

=2
Stice Max Operation
A —
r . I
| 2R3l | AliNon '
)
Max Pool g g | -
2x2fiters ~ ! \ 5 4 I3
An example Image Portion ' GIRIES 8| % o%
for Max Pooling B) 28
" ; { ol (2 | 3" | 1S 3
|
Stride = 2 L]
)
,,,,,,,,,,,, Gy (e | 1!
!
2 3 4 1]
Max Operation
1 5 3 2 Stride = 2
s Values dependant
- on extended parts
== of input image
0 4 2 3 2 |9 ([4 |70
Max Pool g . = :
3 x 3 fiters ~ ! <
1| s [l 2 s Y
L L g3
1 0 6 | 1 ‘ " PES
lo| & (|23 | ! 3
Stride =2 T
1|0 | 6|1

Max Operation

94

OVERALL NETWORK ARCHITECTURE

fc_3 fc_a4

Fully-Co_nnected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelU activation
Convolution Convolution A /—M
(5x5) kernel Max-Pooling (5x5) kernel Max-Pooling (with

valid padding 2x2) valid padding (2x2)

INPUT nl channels n2 cl
(28x28x1) (24 x24 x n1) (12x12xn1) (8x

;'9

ouTPUT

h Is

anne
8xn2)

Each layer contains a 3D tensor of variables. Last few layers
are standard fully connected layers.

95

UNDERSTANDING LAYERS

What type of convolutional filters do we learn from gradient descent?
Lots of edge detectors in the first layer!

EEENINEENEIZEENN

Other layers are harder to understand... but the hypothesis is that
hidden variables later in the network encode for “higher level
features”:

Raw data Low-level features Mid-level features High-level features

ESKNINT T r/".-)~~, o‘-.mm

v'!?! ‘H B

96

UNDERSTANDING LAYERS

Technique to probe later neurons: Use optimization to find images
that most strongly “activate” a given neuron deep in the network.

Flamingo Pelican Hartebeest Billiard Table

Ground Beetle Indian Cobra Station Wagon Black Swan

“Understanding Neural Networks Through Deep Visualization”, Yosinski et al.
97

TRICKS OF THE TRADE

Beyond techinques discussed for general neural nets (back-prop,
batch gradient descent, adaptive learning rates) training
convolutional networks requires a lot of “tricks”.

- Batch normalization (accelerate training).

- Dropout (prevent over-fitting)

- Residual connections (accelerate training, allow for more depth
-100s of layers).

And convolutional networks require lots of training data.

98

TRANSFER LEARNING

What if you want to apply deep convolutional networks to a problem
where you don’t have a lot of data?

Idea behind transfer learning: features transformations learned
when training a classifier on e.g. Imagenet are often useful in other
problems, even with different inputs, classes, etc.

224 x224x3 224 x224 x64

112x112x 128

56|x 56 x 256
7x7x512
28 x 28 x 512

14 x 14 x 512 1x1x4096 1x1x1000

(= convolution+ReLU
max pooling
fully nected +RelU
softmax

99

TRANSFER LEARNING

- Download state of the art pre-trained network (Alexnet,
VGG, Inception, etc.)

- Chop off classification layer.
- Use first part of network as feature extractor.

- Solve classification problem using more scalable methods:
kernel SVM, logistic regression, shallow fully connected
net, etc.

Very easy to do in Tensorflow/Keras. Many pre-trained
networks are made available.

100

DEMOS

Two demos to be released shortly:

- Classification of CIFAR-10 dataset using 2 layer neural nets
in Keras. You will likely want to use Google Collab to
access a GPU.

airplane 27 » .:":
automobile EE;H“‘
we Sl WES ¥ EEE
« HETHEEEEs P
e GMETES VRS
w EESESBIAE DR
- EEENEDSENE
norse [l W 138 3) PR R R TS T
oo EECEMEND .

wee o W A I P S N L R R

- Transfer learning in Keras.

101

