Gradients

To understand loss minimization problem (and later to implement the gradient descent algorithm) we will often need to compute gradients of functions with **multiple** inputs and **single** outputs. Specifically, given a function $f: \mathbb{R}^d \to \mathbb{R}$, the gradient $\nabla f: \mathbb{R}^d \to \mathbb{R}^d$ is **a function** defined:

$$abla f(ec x) = egin{bmatrix} \partial f/\partial x_1 \ \partial f/\partial x_2 \ dots \ \partial f/\partial x_d \end{bmatrix}.$$

So, the gradient takes in a vector \vec{x} and returns a column vector of all partial derivatives of f at \vec{x} .

When f is differentiable, we must have that $\nabla f(\vec{x}) = \vec{0}$ whenever \vec{x} is an extreme point (e.g. minimizer or maximizer) of f.

Some Properties of Gradients

When calculating gradients for different loss functions, here are some basic properties to keep in mind:

- Linearity:
 - If $h(\vec{x}) = f(\vec{x}) + g(\vec{x})$, then $\nabla h(\vec{x}) = \nabla f(\vec{x}) + \nabla g(\vec{x})$.
 - If $h(\vec{x}) = f(c\vec{x})$ for some scalar c, then $abla h(\vec{x}) = c
 abla f(\vec{x})$.
- Multi-dimensional chain rule:
- Suppose $h: \mathbb{R}^d o \mathbb{R}$, $f: \mathbb{R}^n o \mathbb{R}$, and $g: \mathbb{R}^d o \mathbb{R}^n$.
- Now suppose $h(ec{x}) = f(g(ec{x}))$.
- Let $g_1(\vec{x}), \ldots, g_n(\vec{x})$ denote each component of the function $g(\vec{x})$. So each $g_i(\vec{x})$ is a function from $\mathbb{R}^d \to \mathbb{R}$ and $g(\vec{x}) = [g_1(\vec{x}); \ldots; g_n(\vec{x})]$.
- Let $\partial f/\partial [g(ec x)]_j$ denote the $j^{ ext{th}}$ partial derivative of f, evaluated at g(ec x).
- The chain rule tells us that $\frac{\partial h}{\partial x_i} = \sum_{j=1}^n \frac{\partial f}{\partial [g(\vec{x})]_j} \cdot \frac{\partial g_j}{\partial x_i}$

The multidimensional chain rule can seem a bit complicated when you first use it, but it's really just a generalization of what you already know from single variable calculus. See this <u>article</u> from Khan Academy for a more in depth review.

Roughly, the chain rule just tells us that, if a function h depends on inputs z_1, \ldots, z_n and each z_i depends on other inputs x_1, \ldots, x_d , then $\frac{\partial h}{\partial x_i} = \sum \frac{\partial h}{\partial z_j} \cdot \frac{\partial z_j}{\partial x_i}$.

Gradient Practice

Here are some examples of functions and their gradients:

- Function: $f(\vec{x}) = \vec{a}^T \vec{x} = \langle \vec{a}, \vec{x}
 angle$ for some fixed vector \vec{a} .
 - Gradient: $abla f(ec{x}) = ec{a}.$
 - Proof: write $\vec{a}^T \vec{x} = \sum_{i=1}^d a_i x_i$, from which it's clear that $\frac{\partial}{\partial x_i} (\vec{a}^T \vec{x}) = a_i$.
- Function: $f(ec{x}) = \|ec{x}\|_2^2.$

Gradient: $abla f(ec{x}) = 2ec{x}.$

- Proof: write $\|ec{x}\|_2^2 = \sum_{i=1}^d x_i^2$, from which it's clear that $rac{\partial}{\partial x_i}(\|ec{x}\|_2^2) = 2x_i$.
- Function: $f(\vec{x}) = g(A\vec{x})$ where A is a $n \times d$ matrix and g is some function from $\mathbb{R}^n \to \mathbb{R}$. Gradient: $\nabla f(\vec{x}) = A^T \nabla g(A\vec{x})$.
 - Proof: Let $k(\vec{x}) = Ax$. For j = 1, ..., n the j^{th} entry of $k(\vec{x})$ is $k_j(\vec{x}) = \langle A_j, x \rangle$, where A_j is the j^{th} row of A. From chain rule we have that $\frac{\partial f}{\partial x_i} = \sum_{j=1}^n \frac{\partial g}{\partial [k(\vec{x})]_j} \cdot \frac{\partial k_j}{\partial x_i}$
 - $\circ \ rac{\partial k_j}{\partial x_i} = A_{j,i}$ where $A_{j,i}$ is the entry in A's $j^{ ext{th}}$ row and $i^{ ext{th}}$ column.
 - Substituting we have:
 - $\begin{array}{l} \circ \quad \frac{\partial f}{\partial x_i} = \sum_{j=1}^n A_{j,i} \frac{\partial g}{\partial [k(\vec{x})]_j} \text{ which we can observe is equal to:} \\ \frac{\partial f}{\partial x_i} = \langle A_{:,i}, \nabla g(k(\vec{x})) \rangle = \langle A_{:,i}, \nabla g(A\vec{x}) \rangle \end{array}$

where $A_{:,i}$ denotes the i^{th} column of A.

• So if we stack $\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_d}$ into a column vector to for $\nabla f(\vec{x})$ we get $\nabla f(\vec{x}) = A^T \nabla g(A\vec{x})$.

This last one is a good one to just memorize! It will come up again and again!

Application to Multiple Linear Regression Squared Loss

Now that we have some basic identities, let's try to compute the gradient of the following function from $\mathbb{R}^d \to \mathbb{R}$:

 $L(\ensuremath{u}) = \|\ensuremath{u} - X\ensuremath{u}_2^2$.$

Here \vec{y} is a length n column vector, X is our $n \times d$ data matrix, β is a column vector of d parameters and L is the squared loss.

Question: What the gradient $\nabla L(\vec{\beta})$?

Solution:

First note that

$$L(ec{eta}) = \|ec{y} - Xec{eta}\|_2^2 = \langle ec{y} - Xec{eta}, ec{y} - Xec{eta}
angle = \langle ec{y}, ec{y}
angle + \langle Xec{eta}, Xec{eta}
angle - 2\langle ec{y}, Xec{eta}
angle.$$

So, by linearity,

 $abla L(ec{eta}) =
abla \langle ec{y}, ec{y}
angle +
abla \langle X ec{eta}, X ec{eta}
angle - 2
abla \langle ec{y}, X ec{eta}
angle.$

Let's figure out each term seperately:

- $\nabla \langle \vec{y}, \vec{y} \rangle = \vec{0}$ because $\langle \vec{y}, \vec{y} \rangle$ does not depend oon β at all (which is what we're computing partial derivatives with respect to).
- $\nabla \langle X \vec{\beta}, X \vec{\beta} \rangle = \nabla \|X \vec{\beta}\|_2^2$. We can evaluate this gradient using the first and last example in our gradient practice section: it's equal to $\|X \vec{\beta}\|_2^2 = X^T \nabla \|\vec{z}\|_2^2$ where $\vec{z} = X \vec{\beta}$. So we have $\|X \vec{\beta}\|_2^2 = X^T (2\vec{z}) = 2X^T X \vec{\beta}$.
- Finally, we note that $\langle \vec{y}, X \vec{\beta} \rangle = \vec{y}^T X \beta = \langle X^T \vec{y}, \beta \rangle$ (here I'm using that $(\vec{y}^T X)^T = X^T \vec{y}$).

So $abla \langle ec y, X ec eta
angle =
abla \langle X^T ec y, eta
angle = X^T ec y$ using example 1 from the previous section.

Putting it all together, we get that

 $egin{aligned}
abla L(ec{eta}) &= 0 + 2X^T X ec{eta} - 2X^T ec{y} \
abla L(ec{eta}) &= 2X^T (X ec{eta} - ec{y}) \end{aligned}$

Another Approach via Chain Rule

Let $g(\vec{z}) = \|\vec{y} - \vec{z}\|_2^2$ where \vec{y} is a fixed vector.

 $rac{\partial g}{\partial z_i} = rac{\partial g}{\partial z_k} \sum_{i=1}^n (y_i - z_i)^2 = \sum_{i=1}^n rac{\partial g}{\partial z_k} (y_i - z_i)^2 = rac{\partial g}{\partial z_k} (y_k - z_k)^2.$

The last inequality follows from the fact that $rac{\partial g}{\partial z_k}(y_i-z_i)^2=0$ for all i
eq k.

Continuing, we have that: $rac{\partial g}{\partial z_k}(y_k-z_k)^2=-2(y_k-z_k)$

We conclude that $abla g(ec{z}) = -2(ec{y}-ec{z}) = 2(ec{z}-ec{y}).$

Now we can apply chain rule directly by noting that $L(ec{eta}) = \|ec{y} - Xec{eta}\|_2^2 = g(Xec{eta})$. So we have that:

$$\nabla L(\vec{\beta}) = X^T \nabla g(X\vec{\beta}) = X^T \cdot 2(X\vec{\beta} - y) = 2X^T (X\vec{\beta} - y)$$
(1)