
Gradients  
To understand loss minimization problem (and later to implement the gradient descent algorithm) we will often 
need to compute gradients of functions with multiple inputs and single outputs. Specifically, given a function 

 , the gradient  is a function defined:

 .

So, the gradient takes in a vector  and returns a column vector of all partial derivatives of  at .

 

When  is differentiable, we must have that   whenever  is an extreme point (e.g. minimizer or 
maximizer) of . 

 

Some Properties of Gradients  
When calculating gradients for different loss functions, here are some basic properties to keep in mind:

Linearity: 

If , then . 
If  for some scalar , then . 

Multi-dimensional chain rule:

Suppose , , and .  

Now suppose  . 

Let  denote each component of the function . So each  is a function from 
 and . 

Let  denote the  partial derivative of , evaluated at .

The chain rule tells us that 

The multidimensional chain rule can seem a bit complicated when you first use it, but it's really just a 
generalization of what you already know from single variable calculus. See this article from Khan Academy for a 
more in depth review. 

Roughly, the chain rule just tells us that, if a function  depends on inputs  and each  depends on 

other inputs , then .  

 

Gradient Practice  

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version


Gradient Practice  
Here are some examples of functions and their gradients:

Function:  for some fixed vector . 

Gradient: .

Proof: write , from which it's clear that .

Function: . 

Gradient: .

Proof: write , from which it's clear that .

Function:  where  is a  matrix and  is some function from . 

Gradient: . 

Proof: Let . For   the  entry of  is , where  is the  

row of .  From chain rule we have that 

 where  is the entry in 's  row and  column. 

Substituting we have:

 which we can obeserve is equal to: 

where  denotes the  column of .

 

So if we stack  into a column vector to for  we get . 

This last one is a good one to just memorize! It will come up again and again!

 

Application to Multiple Linear Regression Squared Loss  
Now that we have some basic identities, let's try to compute the gradient of the following function from 

: 

$ L(\vec{\beta}) = \|\vec{y} - X\vec{\beta}\|_2^2$.

Here  is a length  column vector,  is our  data matrix,  is a column vector of  parameters and  is 
the squared loss. 

Question: What the gradient ?

Solution:

First note that

.



.

So, by linearity, 

.

Let's figure out each term seperately:

 because  does not depend oon  at all (which is what we're computing partial 
derivatives with respect to).

. We can evaluate this gradient using the first and last example in our gradient 

practice section: it's equal to  where .  

So we have .

Finally, we note that  (here I'm using that ). 

So  using example 1 from the previous section. 

Putting it all together, we get that 

 

Another Approach via Chain Rule  
Let  where  is a fixed vector. 

. 

The last inequality follows from the fact that  for all . 

Continuing, we have that: 

We conclude that . 

Now we can apply chain rule directly by noting that . So we have that:
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