
New York University Tandon School of Engineering
Computer Science and Engineering

CS-GY 6923: Written Homework 2.
Due Tuesday, March 1st, 2022, 11:59pm.

Discussion with other students is allowed for this problem set, but solutions must be written-up individually.

Problem 1: Thinking About Data Transformations (8pts)

Supposed you are trying to fit a multiple linear regression model for a given data set. You have already
transformed your data by appending a column of all ones, which resulted in a final data matrix:

X =


1 x1,1 x1,2 . . . x1,d
1 x2,1 x2,2 . . . x2,d
...

...
...

1 xn,1 xn,2 . . . xn,d


However, your model does not seem to be working well. It obtains poor loss in both training and test.

(a) A friend suggests that you should try mean centering your data columns. In other words, for each i,
compute the column mean x̄i = 1

n

∑n
j=1 xj,i and subtract x̄i from every entry in column i. Note that we

won’t mean center the first column, as doing so would set the 1s to 0s. You try this, but mean centering
gives no improvement in the model at all.

Use a mathematical argument to explain why this is the case. Hint: It does not depend on the specific
data set – mean centering will never help!

(b) Another friend suggests normalizing your data columns to have unit standard deviation. In other words

for each i, compute the column standard deviation σi =
√

1
n

∑n
j=1(xj,i − x̄i)2 and divide every column

by σi. Again you try it, but normalizing gives no improvement in the model at all.

Use a mathematical argument to explain why this is the case.

(c) Would your answers to either of the two questions above change if you were fitting the model with `2
regularization? In other words, instead of minimizing the squared loss L(β) = ‖y −Xβ‖22 alone, you
were minimizing L(β) + λ‖β‖22.

Problem 2: Impacts of Regularization (8pts)

Consider the ridge regularized least squares regression problem ‖Xβ − y‖22 + λ‖β‖22 with different positive
values of λ. Let β∗

1 = arg min ‖Xβ − y‖22 + λ1‖β‖22 and β∗
2 = arg min ‖Xβ − y‖22 + λ2‖β‖22.

(a) Prove that if λ1 ≥ λ2 then ‖β∗
1‖22 ≤ ‖β

∗
2‖22. In words, increasing the regularization parameter always

decreases the norm of the optimal parameter vector.

(b) Prove that if λ1 ≥ λ2 then ‖Xβ∗
1−y‖22 ≥ ‖Xβ∗

2−y‖22. In words, increasing the regularization parameter
always leads to higher train loss, even if it might improve test loss.

(c) Suppose instead that we used LASSO regularization, so that Let β∗
1 = arg min ‖Xβ−y‖22 +λ1‖β‖1 and

β∗
2 = arg min ‖Xβ − y‖22 + λ2‖β‖1. Do the above conclusions change when λ1 ≥ λ2?



Problem 3: Gaussian Naive Bayes (20pts)

In class it was briefly mentioned that the Naive Bayes Classifier can be extended to predictor variables with
continuous values (instead of just binary variables). We will derive such an approach here

Consider a data set where each example (x, y) contains a data vector x ∈ Rd and a label y ∈ {0, 1}.
As in class, each y is modeled a Bernoulli random variable, which equals 1 with probability p and 0 with
probability 1− p. To model x we have two lists of mean/variances pairs:

(µ0,1, σ
2
0,1), (µ0,2, σ

2
0,2), . . . , (µ0,d, σ

2
0,d) and (µ1,1, σ

2
1,1), (µ1,2, σ

2
1,2), . . . , (µ1,d, σ

2
1,d).

If y equals 0, then the jth entry of x is modeled as an independent Gaussian (normal) random variable with
mean µ0,j and variance σ2

0,j . Alternatively, if y equals 1, then the jth entry of x is modeled as an independent

Gaussian random variable with mean µ1,j and variance σ2
1,j .

(a) Given a training data set (x1, y1), . . . , (xn, yn) write down mathematical expressions for estimating all
model parameters µi,j and σ2

i,j from the data. Hint: You can but don’t have to use the 1[·] indicator
function notation.

(b) Given a new unlabled predictor vector xnew we would like to predict class label ynew using a maximum a
posterior (MAP) estimate. In other words, we want to choose ynew to maximize the posterior probability
p(ynew | xnew). Write down an expression for p(ynew | xnew) using Bayes Rule.

(c) Using your result from part (b), write pseudocode for determining if p(ynew = 0 | xnew) or p(ynew = 1 |
xnew) is larger. Hint: A correct answer should involve the PDF of a Gaussian random variable, and
incorporate all model parameters µi,j and σ2

i,j .

(d) If you didn’t already in Part (c), modify your pseudocode so that it won’t lead to underflow issues
when implemented by working with log likelihoods – i.e., your pseudocode should target the problem of
determining log (p(ynew = 0 | xnew)) or log (p(ynew = 1 | xnew)) is larger.

(e) Implement your method by completing the Python workbook hw2 stub.ipynb linked on the course
webpage. Attach a printed PDF of your completed notebook results to your homework submission.

Problem 4: Bayesian Central Tendency (12pts)

Let’s revisit a question on the first homework from a Bayesian perspective.

(a) Suppose we have a data set of scalar numbers x1, . . . , xn. Assume a Bayesian probabilistic model in which
the numbers are drawn from a Gaussian distribution with unknown mean µ and variance σ2. We have no
prior information on µ and σ2: we assume all parameters are equally likely. Prove that the sample mean
µ̂ = 1

n

∑n
i=1 xi is an MLE estimate for the unknown parameter µ. I.e µ̂ = arg maxµ Pr(x1, . . . , xn | µ).

(b) Now assume a Bayesian probabilistic model in which the numbers are drawn from a Laplace Distribution
with unknown mean µ and variance 2b2. Prove that the sample median is a MLE estimate for the
unknown parameter µ.

(c) Suppose µ ∈ [0, 1] and x1, . . . , xn are drawn i.i.d from a Bernoulli distribution with parameter µ. I.e. xi
is 1 with probability µ and 0 with probability 1− µ. Prove that the sample mean µ̂ = 1

n

∑n
i=1 xi is also

an MLE estimator for µ in this setting.

https://en.wikipedia.org/wiki/Bernoulli_distribution
https://en.wikipedia.org/wiki/Laplace_distribution
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