
New York University Tandon School of Engineering
Computer Science and Engineering

CS-GY 6923: Written Homework 1.
Due Thursday, February 10th, 2022, 11:59pm.

Discussion with other students is allowed for this problem set, but solutions must be written-up individually.

For just this first problem set, 10% extra credit will be given if solutions are typewritten (using LaTeX,
Markdown, or some other mathematical formatting program).

Problem 1: Practice Minimizing a Loss Function (10pts)

Consider a linear model of the form:

fβ(x) = βx,

which is the same as the linear model we saw in class, but with the intercept forced to zero. Such models
are used when we want to force the predicted value fβ(x) = 0 when x = 0. For example, if we are modeling
y = output power of a motor vs. x = the input power, we would expect x = 0⇒ y = 0.

(a) Given data (x1, y1), . . . , (xn, yn), write the equation for a loss function which measures prediction accu-
racy using the sum-of-squared distances between the predicted values and target values.

(b) Derive an expression for the β that minimizes this loss function. Do you get the same expression that
we got for β1 in the full linear model?

Problem 2: Machine Learning Does Averages (15pts)

Suppose we have data y1, . . . , yn ∈ R and we want to choose a single value m ∈ R which is “most repre-
sentative” of our dataset. This is sometimes called the “central tendency” problem in statistics. A machine
learning approach to this problem would measure how representative m is of the data using a loss function.

(a) Consider the loss function L(m) =
∑n
i=1(yi − m)2. Show that L(m) is minimized by setting m = ȳ,

where ȳ = 1
n

∑n
i=1 yi is the mean of our data.

(b) Consider the loss function L(m) = maxi |yi −m|. What value of m minimizes this loss? Hint: Using
derivatives will not help here – try just thinking about the minimization problem directly.

(c) Consider the loss function L(m) =
∑n
i=1 |yi −m|. Prove that L(m) is minimized by setting m to the

median of the data. Hint: This question is harder than the previous two and takes some creativity!
Again derivatives might not be helpful.

(d) In a few short sentences, discuss when you might prefer each of the three losses above. Is the median
typically considered a more “robust” measure of central tendency than the mean? Why?

Problem 3: Practice with Non-linear Transformations. (8 pts)

A medical researcher wants to model, f(t), the concentration of some chemical in the blood over time. She
believes the concentration should decay exponentially in that

f(t) = z0e
−αt, (1)

for some parameters z0 and α. To confirm this model, and to estimate the parameters z0, α, she collects a
large number of time-stamped samples (ti, ci), i = 1, . . . , n, where ci is the measured concentration at time
ti. Unfortunately, the model (1) is non-linear, so she can’t directly apply the linear regression formula to
estimate z0 and α.

(a) Taking logarithms, show that we can transform our training data so that the conjectured relationship
between predictor and target variables is in fact linear.

(b) Write pseudocode (or actual Python) for how you might estimate z0 and α using this transformation.



Problem 4: Practice With Gradients (8pts)

For X ∈ Rn×d and target vector y ∈ Rn, consider fitting a linear model of the form:

fβ(x) = Xβ

under the so-called `p loss: Lp(β) = ‖y − fβ(x)‖pp. Here ‖ · ‖pp denotes the `p norm raised to the p power.
I.e. for any even integer p = 2, 4, 6, . . .

‖z‖pp =

n∑
i=1

zpi

(a) Derive an expression for ∇g(z) where g(z) = ‖z‖pp.

(b) Derive an expression for ∇Lp(β).

Problem 5: Piecewise Linear Regression via Feature Transformations (15pts)

Your goal is to fit a piecewise linear model to a single variate dataset of the form (x1, y1), . . . , (xn, yn) where
all values are scalars. We will only use two pieces. In other words, for some known value λ,

f(xi) =

{
a1 + s1xi for xi < λ

a2 + s2xi for xi ≥ λ

with the additional constraint that a1 +s1λ = a2 +s2λ. This constraint ensures that our two linear models
actually “meet” at x = λ, which means we get a continuous prediction function.

For example, when λ = 100, a piecewise linear fit for our MPG data might look like:

(a) Show that this model is equivalent to the following unconstrained model:

f(xi) =

{
a1 + s1xi for xi < λ

a1 + s1λ− s2λ+ s2xi for xi ≥ λ

(b) Show how to fit an optimal f under the squared loss using an algorithm for multiple linear regression.
In particular, your approach should:

• Transform the input data to form a data matrix X with multiple columns.

• Use a multiple regression algorithm to find the β which minimizes ‖y −Xβ‖22.
• Extract from the optimal β optimal values for a1, s1, s2.

You need to describe 1) a correct data transformation and 2) a correct mapping from β to a1, s1, s2. Note
that in our model λ is known. It is not a model parameter which needs to be optimized.

(c) Implement your algorithm in Python and apply it to the dataset from demo auto mpg.ipynb. Produce
a piecewise linear fit for MPG as a function of Horsepower using the value λ = 100. Plot the result. You
can attach a Jupyter notebook to your submission, or simply include the printed code and plot.



(d) (3pts bonus) Modify your approach to handle the case when λ is unknown. Again obtain a fit for MPG
vs. horsepower. What value of λ gives the optimal fit? Include any modified code and a plot of your
result.
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