
CS-UY 4563: Lecture 9
Linear Classifiers, Logistic Regression

NYU Tandon School of Engineering, Prof. Christopher Musco
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quick comment on python

Two ways to multiply every entry in a matrix by 2.

Second one is way faster...
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quick comment on python

• Try to use matrix operations as much as possible!
• Slice indexing instead of loops. Broadcasting instead of
entrywise multiplication.

• Review demo2_more_numpy.ipynb.
• This will make a huge difference in labs, and in your
projects. Knowing how to work with matrices in an
efficient way is one of the most important coding skills for
machine learning and data science.
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classificiation
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motivating problem

Breast Cancer Biopsy: Determine if a breast lump in a patient
is malignant (cancerous) or benign (safe).

• Collect cells from lump using fine needle biopsy.
• Stain and examine cells under microscope.
• Based on certain characteristics (shape, size, cohesion)
determine if likely malignant or not).
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motivating problem

Demo: demo_breast_cancer.ipynb
Data: UCI machine learning repository

https://archive.ics.uci.edu/ml/datasets/breast+cancer+
wisconsin+(original)

Features: 10 numerical scores about cell characteristics
(Clump Thickness, Uniformity, Marginal Adhesion, etc.) 5

https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)


motivating problem

Data: (⃗x1, y1), . . . , (⃗xn, yn).

x⃗i = [1, 5, 4 . . . , 2] contains score values.

Label yi ∈ {0, 1} is 0 if benign cells, 1 if malignant cells.

Goal: Based on scores (which would be collected manually, or
even learned on their own using an ML algorithm) predict if a
sample of cells is malignant or benign.

6



linear classifier

Given vector of predictors x⃗i ∈ Rd (here d = 2) find a
parameter vector β⃗ ∈ Rd and threshold λ.

• Predict yi = 0 if ⟨⃗xi, β⃗⟩ ≤ λ.
• Predict yi = 1 if ⟨⃗xi, β⃗⟩ > λ

Line has equation ⟨⃗x, β⃗⟩ = λ.

Hyperplane Half-space 7



0− 1 loss

Question: How do we find a good linear classifier
automatically?

Loss minimization approach (first attempt):

• Model1:

f
β⃗
(⃗x) = 1

[
⟨⃗x, β⃗⟩ > 0

]
• Loss function: “0− 1 Loss”

L(β⃗) =
n∑
i=1

|f
β⃗
(⃗xi)− yi|

1
1[event] is the indicator function: it evaluates to 1 if the argument inside is

true, 0 if false.
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0− 1 loss

Problem with 0− 1 loss:

• The loss function L(β⃗) is not differentiable because f
β⃗
(⃗x)

is discontinuous.
• Impossible to take the gradient, very hard to minimize
loss to find optimal β⃗.
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linear classifier via square loss

Question: How do we find a good linear classifier
automatically?

Loss minimization approach (second attempt):

• Model:

f
β⃗
(⃗x) = 1

[
⟨⃗x, β⃗⟩ > 1/2

]
• Loss function: “Square Loss”

L(β⃗) =
n∑
i=1

(⟨⃗x, β⃗⟩ − yi)2

Intuitively tries to make ⟨⃗x, β⃗⟩ close to 0 for examples in class
0, close too 1 for examples in class 1.
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linear classifier via square loss

We can solve for β⃗ my just solving a least squares multiple
linear regression problem.

Do you see any issues here?
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linear classifier via square loss

Problem with square loss:

• Loss increases if ⟨⃗x, β⃗⟩ < 0 even if correct label is 0. Or if
⟨⃗x, β⃗⟩ > 1 even if correct label is 1. Or

• Intuitively we don’t want to “punish” these cases.
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logistic regression

Let h
β⃗
(⃗x) be the logistic function:

h
β⃗
(⃗x) = 1

1+ e−⟨β⃗,⃗x⟩
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logistic regression

Let h
β⃗
(⃗x) be the logistic function:

h
β⃗
(⃗x) = 1

1+ e−⟨β⃗,⃗x⟩

We can think of h
β⃗
(⃗x) as mapping ⟨β⃗, x⃗⟩ to a probability. 14



logistic regression

Loss minimization approach (what works!):

• Model: Let h
β⃗
(⃗x) = 1

1+e−⟨β⃗,⃗x⟩

f
β⃗
(⃗x) = 1

[
h
β⃗
(⃗x) > 1/2

]
• Loss function: “Logistic loss” aka “Cross-entropy loss”

L(β⃗) = −
n∑
i=1

yi log(hβ⃗ (⃗x)) + (1− yi) log(1− h
β⃗
(⃗x))
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logistic loss

Logistic Loss:
L(β⃗) = −

∑n
i=1 yi log(hβ⃗ (⃗x)) + (1− yi) log(1− h

β⃗
(⃗x))
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logistic loss

Logistic Loss:
L(β⃗) = −

∑n
i=1 yi log(hβ⃗ (⃗x)) + (1− yi) log(1− h

β⃗
(⃗x))
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logistic loss

• Convex function, can be minimized using gradient descent
(next lecture).

• Works well in practice.
• Good Bayesian motivation: see posted lecture notes if you
are interested.

Fit using logistic regression/log loss. 18



non-linear transformations

How would we learn a classifier for this data:
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non-linear transformations

How would we learn a classifier for this data using logisitic
regression?
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non-linear transformations

Transform each x⃗ = [x1, x2] to x⃗ = [1, x1, x2, x21 , x22, x1x2]

• Predict class 1 if x21 + x22 < λ.
• Predict class 0 if x21 + x22 ≥ λ.

This is a linear classifier on our transformed data set. Logisitic
regression would learn β⃗ = [0, 0, 0, 1, 1, 0]. 21



error in classification

Once we have a classification algorithm, how do we judge its
performance?

• Simplest answer: Error rate = fraction of data examples
misclassified in test set.

• What are some issues with this approach?
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error in classification

• Precision: Fraction of
positively labeled
examples (label 1) which
are correct.

• Recall: Fraction of true
positives that we labeled
correctly with label 1.

Question: Which should we
optimize for medical
diagnosis?
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error in classification

Possible logistic regression workflow:

• Learn β⃗ and compute h
β⃗
(⃗xi) = 1

1+e−⟨⃗xi,β⃗⟩
for all x⃗i.

• Predict yi = 0 if h
β⃗
(⃗xi) ≤ λ, yi = 1 if h

β⃗
(⃗xi) > λ.

• Default value of λ is 1/2. Increasing λ improves precision.
Decreasing λ improves recall.

This is very heuristic. There are other methods for handling
“class imbalance” which can often lead to good overall error,
but poor precision or recall. Techniques include weighting the
loss function to care more about false negatives, or
subsampling the larger class.
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multiclass

What about when y ∈ {1, . . . ,q} instead of y ∈ {0, 1}

Two options for multiclass data:

• One-vs.-all (most common, also called one-vs.-rest)
• One-vs.-one (slower, but can be more effective)

In both cases, we convert to multiple binary classification
problem.
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one vs. rest

• For q classes train q classifiers. Obtain parameters β⃗1, . . . , β⃗q.

• Assign y to class i with maximum ⟨β⃗i, x⃗⟩.
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one vs. rest

• For q classes train q(q−1)
2 classifiers.

• Assign y to class which i which wins in the most number of
head-to-head comparisons.
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one vs. one

Hard case for one-vs.-all.

• One-vs.-one would be a better choice here.
• Also tends to work better when there is class in balance.
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error in (multiclass) classification

Confusion matrix for k classes:

• Entry i, j is the fraction of class i items classified as class j.
• Overall accuracy is the average of the diagonals.
• Useful to see whole matrix to visualize where errors occur.
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