CS-UY 4563: Lecture 8 Finishing the Bayesian Perspective, Linear Classifiers

NYU Tandon School of Engineering, Prof. Christopher Musco

PROBABILISTIC MODELING

Bayesian or Probabilistic approach to machine learning:

- Decide on simple probabilistic model with parameters $\vec{\theta}$ which could explain our data $(\vec{x}_1, y_1), \dots, (\vec{x}_n, y_n)$.
- Learn $\vec{\theta}$ from past data.
- Given a new input \vec{x} , predict y (either a class label or regression value) using the probabilistic model.

Typically prediction y is chosen to be the maximum a posterior (MAP) estimate under the assumption that data comes from our chosen probabilistic model.

NAIVE BAYES CLASSIFIER

Example from last class:

- Given binary inputs $(\vec{x}_1, y_1), \dots, (\vec{x}_n, y_n)$ (e.g. email bag-of-words vectors and binary labels)
- Came up with model for how $\vec{x_i}$, y_i might be generated.
- · Computed MAP estimate using Bayes rule.

This gave us the Naive Bayes Classifier.

BAYESIAN REGRESSION

The Bayesian view offers an interesting alternative perspective on <u>many</u> machine learning techniques.

Example: Linear Regression.

Probabilistic model:

$$y_i = \langle \vec{x}_i, \vec{\beta} \rangle + \eta$$

where η is a Gaussian random variable with variance σ^2 .

(Here we assume $\vec{x}_1, \dots, \vec{x}_n$ are **fixed**, not random. This is called a "fixed design" setting.)

$$Pr(\eta = z) \sim \frac{1}{\sqrt{2\pi\sigma^2}} e^{-z^2/\sigma^2}$$

BAYESIAN REGRESSION

Not a perfect model, but simple and reasonable:

To make the plot on right I used numpy's **random** library and the **randn** function for generating Gaussian (normal) random numbers:

```
1  ypred = beta1*x + beta0
2  var = 3
3  ypred_with_noise = ypred + var*np.random.randn(ypred.shape[0])
```

QUICK CHECK

Example: Linear Regression.

Probabilistic model:

$$y_i = \langle \vec{x}_i, \vec{\beta} \rangle + \eta$$

where η is a Gaussian random variable with variance σ^2 .

Suppose we learn $\vec{\beta}$ using past data. What is the maximum a posterior (MAP) estimate y^* given observed data \vec{x} ?

• Want to find \underline{y}^* which maximizes $\max_{V} \Pr(y \mid \vec{x})$.

Under our model, $\underline{y} = \langle \vec{x}, \vec{\beta} \rangle + \eta$.

• So $\Pr(y \mid \vec{x})$ is equal to $\Pr(\underline{\eta} = \underline{y} - \langle \vec{x}, \vec{\beta} \rangle)$ • $\Pr(\eta = \underline{y} - \langle \vec{x}, \vec{\beta} \rangle)$ is maximized at $\underline{y} - \langle \vec{x}, \vec{\beta} \rangle = 0$.

- So $y^* = \langle \vec{x}, \vec{\beta} \rangle$ is the MAP estimate.

How should we learn $\vec{\beta}$ for our model from prior data?

Bayesian approach: Use MAP estimate again! But this time for the parameter vector itself, not just for prediction.

Give data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ and target vector $\vec{y} \in \mathbb{R}^n$, choose $\vec{\beta}^*$ to maximize:

The max
$$\Pr(\vec{\beta} \mid X, \vec{y}) = \max_{\vec{\beta}} \frac{\Pr(X, \vec{y} \mid \vec{\beta}) \Pr(\vec{\beta})}{\Pr(X, \vec{y})}$$
.

- Assume all $\vec{\beta}$'s are equally likely. So both $Pr(\vec{\beta})$ and $Pr(\mathbf{X}, \vec{y})$ are fixed, independent of β .
- Need to find $\vec{\beta}^*$ to maximize the <u>likelihood</u> $\Pr(\mathbf{X}, \vec{\mathbf{y}} \mid \vec{\beta})$.

LIKELIHOOD COMPUTATION

•
$$y_i = \langle \vec{x}_i, \vec{\beta} \rangle + \eta$$

• where $p(\eta = z) \sim e^{-z^2/\sigma^2}$

max
$$\frac{\Pr(X, \vec{y} \mid \vec{\beta})}{p(x_i, \vec{y}_i \mid \vec{\beta})} \sim \frac{1}{p(x_i, \vec{y}_i \mid \vec{\beta})} = \frac{1}{p(x_i, \vec{$$

LOG LIKELIHOOD

Easier to work with the log likelihood:

$$\vec{\beta}^* = \arg\max_{\vec{\beta}} \Pr(\mathbf{X}, \vec{y} \mid \vec{\beta}) = \arg\max_{\vec{i}=1}^n e^{-(y_i - \langle \vec{x}_i, \vec{\beta} \rangle)^2 / \sigma^2}$$

$$= \arg\max_{\vec{\beta}} \log \left(\prod_{i=1}^n e^{-(y_i - \langle \vec{x}_i, \vec{\beta} \rangle)^2 / \sigma^2} \right)$$

$$= \arg\max_{\vec{\beta}} \sum_{i=1}^n (y_i - \langle \vec{x}_i, \vec{\beta} \rangle)^2 / \sigma^2$$

$$= \arg\min_{\vec{\beta}} \sum_{i=1}^n (y_i - \langle \vec{x}_i, \vec{\beta} \rangle)^2.$$

Choose $\vec{\beta}^*$ to minimize $\sum_{i=1}^n (y_i - \langle \vec{x}_i, \vec{\beta} \rangle)^2 = \underbrace{\|\vec{y} - \mathbf{X}\vec{\beta}\|_2^2}$

This is a completely different justification for squared loss.

BAYESIAN REGRESSION

If we had modeled our noise η as Laplace noise, we would have found that minimizing $\|\vec{y} - \mathbf{X}\vec{\beta}\|_1$ was optimal.

Laplace noise has "heavier tails", meaning that it results in more outliers.

This is a completely different justification for ℓ_1 loss.

Recall goal is to maximize over $\vec{\beta}$:

$$\Pr(\vec{\beta} \mid \mathbf{X}, \vec{y}) = \frac{\Pr(\mathbf{X}, \vec{y} \mid \vec{\beta}) \Pr(\vec{\beta})}{\Pr(\mathbf{X}, \vec{y})}.$$

assume all $\vec{\beta}$'s equally likely

Bayesian view: Assume values in $\vec{\beta} = [\beta_1, \dots, \beta_d]$ are generated from some probabilistic model.

- Common model: Each $\underline{\beta_i}$ drawn from $\underline{N(0, \gamma^2)}$, i.e. normally distributed, independent.
- Encodes a belief that we are unlikely to see models with large coefficients.

BAYESIAN REGULARIZATION

• We can still ignore the "evidence" term $Pr(X, \vec{y})$ since it is a constant that does not depend on $\vec{\beta}$.

BAYESIAN REGULARIZATION

$$\vec{\beta}* = \arg\max_{\vec{\beta}} \Pr(\mathbf{X}, \vec{y} \mid \vec{\beta}) \cdot \Pr(\vec{\beta})$$

$$= \arg\max_{\vec{\beta}} \prod_{i=1}^{n} e^{-(y_i - \langle \vec{x}_i, \vec{\beta} \rangle)^2 / \sigma^2} \cdot \prod_{i=1}^{d} e^{-(\beta_i)^2 / \gamma^2}$$

$$= \arg\max_{\vec{\beta}} \sum_{i=1}^{n} -(y_i - \langle \vec{x}_i, \vec{\beta} \rangle)^2 / \sigma^2 + \sum_{i=1}^{d} -(\beta_i)^2 / \gamma^2$$

$$= \arg\min_{\vec{\beta}} \sum_{i=1}^{n} (y_i - \langle \vec{x}_i, \vec{\beta} \rangle)^2 + \frac{\sigma^2}{\gamma^2} \sum_{i=1}^{d} (\beta_i)^2 .$$
Choose $\vec{\beta}*$ to minimize $||\vec{y} - \vec{X}\vec{\beta}||_2^2 + \frac{\sigma^2}{\gamma^2}||\vec{\beta}||_2^2$. $\Delta = \frac{6^2}{\sqrt{2}}$
Completely different justification for ridge regularization!

13

BAYESIAN REGULARIZATION

Test your intuition: What modeling assumption justifies LASSO regularization: $\min \|\vec{y} - \mathbf{X}\vec{\beta}\|_2^2 + \lambda \|\vec{\beta}\|_1$?

MOTIVATING PROBLEM

Breast Cancer Biopsy: Determine if a breast lump in a patient is <u>malignant</u> (cancerous) or <u>benign</u> (safe).

- · Collect cells from lump using fine needle biopsy.
- · Stain and examine cells under microscope.
- Based on certain characteristics (shape, size, cohesion) determine if likely malignant or not).

MOTIVATING PROBLEM

Demo: demo_breast_cancer.ipynb

Data: UCI machine learning repository

Breast Cancer Wisconsin (Original) Data Set

Download: Data Folder, Data Set Description

Abstract: Original Wisconsin Breast Cancer Database

Data Set Characteristics:	Multivariate	Number of Instances:	699	Area:	Life
Attribute Characteristics:	Integer	Number of Attributes:	10	Date Donated	1992-07-15
Associated Tasks:	Classification	Missing Values?	Yes	Number of Web Hits:	564320

Features: 10 numerical scores about cell characteristics (Clump Thickness, Uniformity, Marginal Adhesion, etc.)

MOTIVATING PROBLEM

Data: $(\vec{x}_1, y_1), \dots, (\vec{x}_n, y_n)$.

 $\vec{x}_i = [1, 5, 4 \dots, 2]$ contains score values.

Label $y_i \in \{0,1\}$ is 0 if benign cells, 1 if malignant cells.

Goal: Based on scores (which would be collected manually, or even learned on their own using an ML algorithm) predict if a sample of cells is malignant or benign.

Approach:

- Naive Bayes Classifier can be extended to \vec{x} with numerical values (instead of binary values as seen before). Will see on homework.
- · Today: Learn a different type of classifier.

BEGIN BY PLOTTING DATA

We pick two variables, <u>Margin Adhesion</u> and <u>Size Uniformity</u> and plot a scatter plot. Points with label 1 (malignant) are plotted in blue, those with label 2 (benign) are plotted in green.

Lots of overlapping points! Hard to get a sense of the data.

PLOTTING WITH JITTER

Simple + Useful Trick: data <u>jittering</u>. Add tiny random noise (using e.g. np.random.randn) to data to prevent overlap.

Noise is only for plotting. It is not added to the data for training, testing, etc.

BRAINSTORMING

1= molisment

0 = benism

Any ideas for possible <u>classification rules</u> for this data?

LINEAR CLASSIFIER

Given vector of predictors $\vec{x}_i \in \mathbb{R}^d$ (here d=2) find a parameter vector $\vec{\beta} \in \mathbb{R}^d$ and threshold λ .

- Predict $y_i = 0$ if $\langle \vec{x}_i, \vec{\beta} \rangle \leq \lambda$.
- Predict $y_i = 1$ if $\langle \vec{x}_i, \vec{\beta} \rangle > \lambda$

 $\beta_1 \chi_1 + \beta_2 \chi_2 = \lambda$ Line has equation $\langle \vec{x}, \vec{\beta} \rangle = \lambda$

LINEAR CLASSIFIER

As long as we append a 1 onto each data vector $\vec{x_i}$ (i.e. a column of ones onto the data matrix \mathbf{X}) like we did for linear regression, an equivalent function is:

- Predict $y_i = 0$ if $\langle \vec{x}_i, \vec{\beta} \rangle \leq 0$.
- Predict $y_i = 1$ if $\langle \vec{x}_i, \vec{\beta} \rangle > 0$

Line has equation $\langle \vec{x}, \vec{\beta} \rangle = 0$.

0-1 LOSS

Question: How do we find a good linear classifier automatically?

Loss minimization approach (first attempt):

Model¹:

$$f_{\vec{\beta}}(\vec{x}) = \mathbb{1}\left[\langle \vec{x}, \vec{\beta} \rangle > 0\right]$$

Loss function: "0 − 1 Loss"

$$L(\vec{\beta}) = \sum_{i=1}^{n} |f_{\vec{\beta}}(\vec{x}_i - y_i)|$$

¹1[event] is the indicator function: it evaluates to 1 if the argument inside is true, 0 if false.

0-1 LOSS

Problem with 0 - 1 loss:

- The loss function $L(\vec{\beta})$ is not differentiable because $f_{\vec{\beta}}(\vec{x})$ is discontinuous.
- Impossible to take the gradient, very hard to minimize loss to find optimal $\vec{\beta}$.
- · Non-convex function (will make more sense next lecture).

LINEAR CLASSIFIER VIA SQUARE LOSS

Question: How do we find a good linear classifier automatically?

Loss minimization approach (second attempt):

· Model:

$$f_{\vec{\beta}}(\vec{x}) = \mathbb{1}\left[\langle \vec{x}, \vec{\beta} \rangle > 1/2\right]$$

Loss function: "Square Loss"

$$L(\vec{\beta}) = \sum_{i=1}^{n} (\langle \vec{x}, \vec{\beta} \rangle - y_i)^2$$

Intuitively tries to make $\langle \vec{x}, \vec{\beta} \rangle$ close to 0 for examples in class 0, close too 1 for examples in class 1.

LINEAR CLASSIFIER VIA SQUARE LOSS

We can solve for $\vec{\beta}$ my just solving a least squares multiple linear regression problem.

Do you see any issues here?

LINEAR CLASSIFIER VIA SQUARE LOSS

Problem with square loss:

- Loss increases if $\langle \vec{x}, \vec{\beta} \rangle > 1$ even if correct label is 1. Or if $\langle \vec{x}, \vec{\beta} \rangle < 0$ even if correct label is 0.
- Intuitively we don't want to "punish" these cases.

LOGISTIC REGRESSION

Let $h_{\vec{\beta}}(\vec{x})$ be the logistic function:

$$h_{\vec{\beta}}(\vec{x}) = \frac{1}{1 + e^{-\langle \vec{\beta}, \vec{x} \rangle}}$$

LOGISTIC REGRESSION

Let $h_{\vec{\beta}}(\vec{x})$ be the logistic function:

$$h_{\vec{\beta}}(\vec{x}) = \frac{1}{1 + e^{-\langle \vec{\beta}, \vec{x} \rangle}}$$

Loss minimization approach (what works!):

• Model: Let $h_{\vec{\beta}}(\vec{x}) = \frac{1}{1 + e^{-\langle \vec{\beta}, \vec{x} \rangle}}$

$$f_{\vec{\beta}}(\vec{x}) = \mathbb{1}\left[h_{\vec{\beta}}(\vec{x}) > 1/2\right]$$

· Loss function: "Logistic loss" aka "Cross-entropy loss"

$$L(\vec{\beta}) = -\sum_{i=1}^{n} y_i \log(h_{\vec{\beta}}(\vec{x})) + (1 - y_i) \log(1 - h_{\vec{\beta}}(\vec{x}))$$

LOGISTIC LOSS

Logistic Loss:

$$L(\vec{\beta}) = -\sum_{i=1}^{n} y_i \log(h_{\vec{\beta}}(\vec{x})) + (1 - y_i) \log(1 - h_{\vec{\beta}}(\vec{x}))$$

LOGISTIC LOSS

- Convex function, can be minimized using gradient descent (next lecture).
- · Works well in practice.
- Good Bayesian motivation: see posted lecture notes if you are interested.

Fit using logistic regression/log loss.

ERROR IN CLASSIFICATION

Once we have a classification algorithm, how do we judge its performance?

- Simplest answer: Error rate = fraction of data examples misclassified in test set.
- What are some issues with this approach?

ERROR IN CLASSIFICATION

- Precision: Fraction of positively labeled examples (label 1) which are correct
- Recall: Fraction of true positives that we labeled correctly with label 1.

Question: Which should we optimize for medical diagnosis?

ERROR IN CLASSIFICATION

Logistic regression workflow:

- Select $\vec{\beta}$ via training and compute $h_{\vec{\beta}}(\vec{x}_i) = \frac{1}{1 + e^{-\langle \vec{x}_i, \vec{\beta} \rangle}}$ for all \vec{x}_i .
- Predict $y_i = 0$ if $h_{\vec{\beta}}(\vec{x}_i) \le \lambda$, $y_i = 1$ if $h_{\vec{\beta}}(\vec{x}_i) > \lambda$.
- Default value of λ is 1/2. Increasing λ improves <u>precision</u>. Decreasing λ improves <u>recall</u>.