# CS-UY 4563: Lecture 8 Finishing the Bayesian Perspective, Linear Classifiers

NYU Tandon School of Engineering, Prof. Christopher Musco

#### PROBABILISTIC MODELING

## Bayesian or Probabilistic approach to machine learning:

- Decide on simple probabilistic model with parameters  $\vec{\theta}$  which could explain our data  $(\vec{x}_1, y_1), \dots, (\vec{x}_n, y_n)$ .
- Learn  $\vec{\theta}$  from past data.
- Given a new input  $\vec{x}$ , predict y (either a class label or regression value) using the probabilistic model.

Typically prediction y is chosen to be the maximum a posterior (MAP) estimate under the assumption that data comes from our chosen probabilistic model.

#### NAIVE BAYES CLASSIFIER

## Example from last class:

- Given binary inputs  $(\vec{x}_1, y_1), \dots, (\vec{x}_n, y_n)$  (e.g. email bag-of-words vectors and binary labels)
- Came up with model for how  $\vec{x_i}$ ,  $y_i$  might be generated.
- · Computed MAP estimate using Bayes rule.

This gave us the Naive Bayes Classifier.



#### **BAYESIAN REGRESSION**

The Bayesian view offers an interesting alternative perspective on <u>many</u> machine learning techniques.

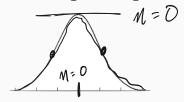
Example: Linear Regression.

#### Probabilistic model:

$$y_i = \langle \vec{x}_i, \vec{\beta} \rangle + \eta$$

where  $\eta$  is a Gaussian random variable with variance  $\sigma^2$ .

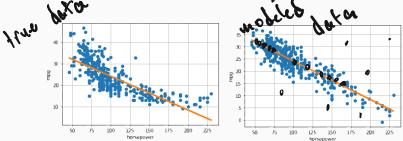
(Here we assume  $\vec{x}_1, \dots, \vec{x}_n$  are **fixed**, not random. This is called a "fixed design" setting.)



$$Pr(\eta = z) \sim \frac{1}{\sqrt{2\pi\sigma^2}} e^{-z^2/\sigma^2}$$

#### **BAYESIAN REGRESSION**

Not a perfect model, but simple and reasonable:



To make the plot on right I used numpy's **random** library and the **randn** function for generating Gaussian (normal) random numbers:

```
1  ypred = beta1*x + beta0
2  var = 3
3  ypred_with_noise = ypred + var*np.random.randn(ypred.shape[0])
```

#### QUICK CHECK

**Example:** Linear Regression.

Probabilistic model:

$$y_i = \langle \vec{x}_i, \vec{\beta} \rangle + \eta$$

where  $\eta$  is a Gaussian random variable with variance  $\sigma^2$ .

Suppose we learn  $\vec{\beta}$  using past data. What is the maximum a posterior (MAP) estimate  $y^*$  given observed data  $\vec{x}$ ?

• Want to find  $\underline{y}^*$  which maximizes  $\max_{V} \Pr(y \mid \vec{x})$ .

Under our model,  $\underline{y} = \langle \vec{x}, \vec{\beta} \rangle + \eta$ .

• So  $\Pr(y \mid \vec{x})$  is equal to  $\Pr(\underline{\eta} = \underline{y} - \langle \vec{x}, \vec{\beta} \rangle)$ •  $\Pr(\eta = \underline{y} - \langle \vec{x}, \vec{\beta} \rangle)$  is maximized at  $\underline{y} - \langle \vec{x}, \vec{\beta} \rangle = 0$ .

- So  $y^* = \langle \vec{x}, \vec{\beta} \rangle$  is the MAP estimate.

## How should we learn $\vec{\beta}$ for our model from prior data?

**Bayesian approach:** Use MAP estimate again! But this time for the parameter vector itself, not just for prediction.

Give data matrix  $\mathbf{X} \in \mathbb{R}^{n \times d}$  and target vector  $\vec{y} \in \mathbb{R}^n$ , choose  $\vec{\beta}^*$  to maximize:

The max 
$$\Pr(\vec{\beta} \mid X, \vec{y}) = \max_{\vec{\beta}} \frac{\Pr(X, \vec{y} \mid \vec{\beta}) \Pr(\vec{\beta})}{\Pr(X, \vec{y})}$$
.

- Assume all  $\vec{\beta}$ 's are equally likely. So both  $Pr(\vec{\beta})$  and  $Pr(\mathbf{X}, \vec{y})$  are fixed, independent of  $\beta$ .
- Need to find  $\vec{\beta}^*$  to maximize the <u>likelihood</u>  $\Pr(\mathbf{X}, \vec{\mathbf{y}} \mid \vec{\beta})$ .

#### LIKELIHOOD COMPUTATION

• 
$$y_i = \langle \vec{x}_i, \vec{\beta} \rangle + \eta$$
  
• where  $p(\eta = z) \sim e^{-z^2/\sigma^2}$ 

max 
$$\frac{\Pr(X, \vec{y} \mid \vec{\beta})}{p(x_i, \vec{y}_i \mid \vec{\beta})} \sim \frac{1}{p(x_i, \vec{y}_i \mid \vec{\beta})} = \frac{1}{p(x_i, \vec{$$

#### LOG LIKELIHOOD

Easier to work with the log likelihood:

$$\vec{\beta}^* = \arg\max_{\vec{\beta}} \Pr(\mathbf{X}, \vec{y} \mid \vec{\beta}) = \arg\max_{\vec{i}=1}^n e^{-(y_i - \langle \vec{x}_i, \vec{\beta} \rangle)^2 / \sigma^2}$$

$$= \arg\max_{\vec{\beta}} \log \left( \prod_{i=1}^n e^{-(y_i - \langle \vec{x}_i, \vec{\beta} \rangle)^2 / \sigma^2} \right)$$

$$= \arg\max_{\vec{\beta}} \sum_{i=1}^n (y_i - \langle \vec{x}_i, \vec{\beta} \rangle)^2 / \sigma^2$$

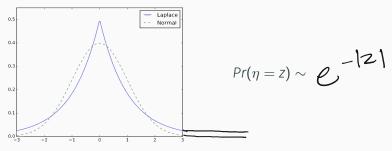
$$= \arg\min_{\vec{\beta}} \sum_{i=1}^n (y_i - \langle \vec{x}_i, \vec{\beta} \rangle)^2.$$

Choose  $\vec{\beta}^*$  to minimize  $\sum_{i=1}^n (y_i - \langle \vec{x}_i, \vec{\beta} \rangle)^2 = \underbrace{\|\vec{y} - \mathbf{X}\vec{\beta}\|_2^2}$ 

This is a completely different justification for squared loss.

#### **BAYESIAN REGRESSION**

If we had modeled our noise  $\eta$  as Laplace noise, we would have found that minimizing  $\|\vec{y} - \mathbf{X}\vec{\beta}\|_1$  was optimal.



Laplace noise has "heavier tails", meaning that it results in more outliers.

This is a completely different justification for  $\ell_1$  loss.

# Recall goal is to maximize over $\vec{\beta}$ :

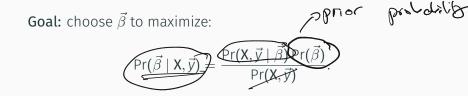
$$\Pr(\vec{\beta} \mid \mathbf{X}, \vec{y}) = \frac{\Pr(\mathbf{X}, \vec{y} \mid \vec{\beta}) \Pr(\vec{\beta})}{\Pr(\mathbf{X}, \vec{y})}.$$

assume all  $\vec{\beta}$ 's equally likely

**Bayesian view:** Assume values in  $\vec{\beta} = [\beta_1, \dots, \beta_d]$  are generated from some probabilistic model.

- Common model: Each  $\underline{\beta_i}$  drawn from  $\underline{N(0, \gamma^2)}$ , i.e. normally distributed, independent.
- Encodes a belief that we are unlikely to see models with large coefficients.

#### **BAYESIAN REGULARIZATION**



• We can still ignore the "evidence" term  $Pr(X, \vec{y})$  since it is a constant that does not depend on  $\vec{\beta}$ .

#### **BAYESIAN REGULARIZATION**

$$\vec{\beta}* = \arg\max_{\vec{\beta}} \Pr(\mathbf{X}, \vec{y} \mid \vec{\beta}) \cdot \Pr(\vec{\beta})$$

$$= \arg\max_{\vec{\beta}} \prod_{i=1}^{n} e^{-(y_i - \langle \vec{x}_i, \vec{\beta} \rangle)^2 / \sigma^2} \cdot \prod_{i=1}^{d} e^{-(\beta_i)^2 / \gamma^2}$$

$$= \arg\max_{\vec{\beta}} \sum_{i=1}^{n} -(y_i - \langle \vec{x}_i, \vec{\beta} \rangle)^2 / \sigma^2 + \sum_{i=1}^{d} -(\beta_i)^2 / \gamma^2$$

$$= \arg\min_{\vec{\beta}} \sum_{i=1}^{n} (y_i - \langle \vec{x}_i, \vec{\beta} \rangle)^2 + \frac{\sigma^2}{\gamma^2} \sum_{i=1}^{d} (\beta_i)^2 .$$
Choose  $\vec{\beta}*$  to minimize  $||\vec{y} - \vec{X}\vec{\beta}||_2^2 + \frac{\sigma^2}{\gamma^2}||\vec{\beta}||_2^2$ .  $\Delta = \frac{6^2}{\sqrt{2}}$ 
Completely different justification for ridge regularization!

13

#### **BAYESIAN REGULARIZATION**

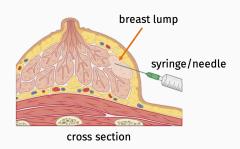
**Test your intuition:** What modeling assumption justifies LASSO regularization:  $\min \|\vec{y} - \mathbf{X}\vec{\beta}\|_2^2 + \lambda \|\vec{\beta}\|_1$ ?

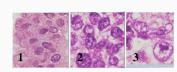


#### MOTIVATING PROBLEM

**Breast Cancer Biopsy:** Determine if a breast lump in a patient is <u>malignant</u> (cancerous) or <u>benign</u> (safe).

- · Collect cells from lump using fine needle biopsy.
- · Stain and examine cells under microscope.
- Based on certain characteristics (shape, size, cohesion) determine if likely malignant or not).





#### MOTIVATING PROBLEM

Demo: demo\_breast\_cancer.ipynb

**Data:** UCI machine learning repository

#### **Breast Cancer Wisconsin (Original) Data Set**

Download: Data Folder, Data Set Description

Abstract: Original Wisconsin Breast Cancer Database



| Data Set Characteristics:  | Multivariate   | Number of Instances:  | 699 | Area:               | Life       |
|----------------------------|----------------|-----------------------|-----|---------------------|------------|
| Attribute Characteristics: | Integer        | Number of Attributes: | 10  | Date Donated        | 1992-07-15 |
| Associated Tasks:          | Classification | Missing Values?       | Yes | Number of Web Hits: | 564320     |

**Features:** 10 numerical scores about cell characteristics (Clump Thickness, Uniformity, Marginal Adhesion, etc.)

#### MOTIVATING PROBLEM

Data:  $(\vec{x}_1, y_1), \dots, (\vec{x}_n, y_n)$ .

 $\vec{x}_i = [1, 5, 4 \dots, 2]$  contains score values.

Label  $y_i \in \{0,1\}$  is 0 if benign cells, 1 if malignant cells.

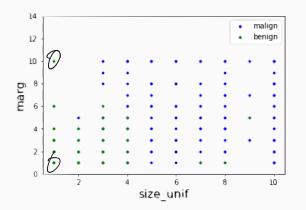
**Goal:** Based on scores (which would be collected manually, or even learned on their own using an ML algorithm) predict if a sample of cells is malignant or benign.

## Approach:

- Naive Bayes Classifier can be extended to  $\vec{x}$  with numerical values (instead of binary values as seen before). Will see on homework.
- · Today: Learn a different type of classifier.

#### **BEGIN BY PLOTTING DATA**

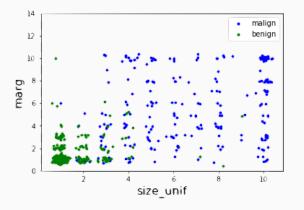
We pick two variables, <u>Margin Adhesion</u> and <u>Size Uniformity</u> and plot a scatter plot. Points with label 1 (malignant) are plotted in blue, those with label 2 (benign) are plotted in green.



Lots of overlapping points! Hard to get a sense of the data.

#### PLOTTING WITH JITTER

Simple + Useful Trick: data <u>jittering</u>. Add tiny random noise (using e.g. np.random.randn) to data to prevent overlap.



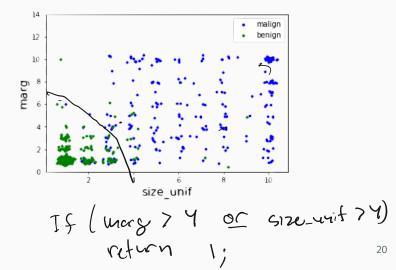
Noise is only for plotting. It is not added to the data for training, testing, etc.

#### BRAINSTORMING

1= molisment

0 = benism

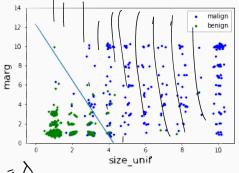
Any ideas for possible <u>classification rules</u> for this data?



#### LINEAR CLASSIFIER

Given vector of predictors  $\vec{x}_i \in \mathbb{R}^d$  (here d=2) find a parameter vector  $\vec{\beta} \in \mathbb{R}^d$  and threshold  $\lambda$ .

- Predict  $y_i = 0$  if  $\langle \vec{x}_i, \vec{\beta} \rangle \leq \lambda$ .
- Predict  $y_i = 1$  if  $\langle \vec{x}_i, \vec{\beta} \rangle > \lambda$

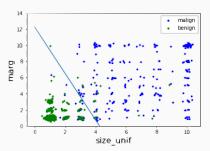


 $\beta_1 \chi_1 + \beta_2 \chi_2 = \lambda$ Line has equation  $\langle \vec{x}, \vec{\beta} \rangle = \lambda$ 

#### LINEAR CLASSIFIER

As long as we append a 1 onto each data vector  $\vec{x_i}$  (i.e. a column of ones onto the data matrix  $\mathbf{X}$ ) like we did for linear regression, an equivalent function is:

- Predict  $y_i = 0$  if  $\langle \vec{x}_i, \vec{\beta} \rangle \leq 0$ .
- Predict  $y_i = 1$  if  $\langle \vec{x}_i, \vec{\beta} \rangle > 0$



Line has equation  $\langle \vec{x}, \vec{\beta} \rangle = 0$ .

#### 0-1 LOSS

**Question:** How do we find a good linear classifier automatically?

Loss minimization approach (first attempt):

Model<sup>1</sup>:

$$f_{\vec{\beta}}(\vec{x}) = \mathbb{1}\left[\langle \vec{x}, \vec{\beta} \rangle > 0\right]$$

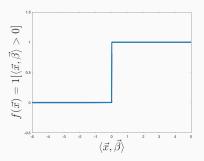
Loss function: "0 − 1 Loss"

$$L(\vec{\beta}) = \sum_{i=1}^{n} |f_{\vec{\beta}}(\vec{x}_i - y_i)|$$

<sup>&</sup>lt;sup>1</sup>1[event] is the indicator function: it evaluates to 1 if the argument inside is true, 0 if false.

#### 0-1 LOSS

### Problem with 0 - 1 loss:



- The loss function  $L(\vec{\beta})$  is not differentiable because  $f_{\vec{\beta}}(\vec{x})$  is discontinuous.
- Impossible to take the gradient, very hard to minimize loss to find optimal  $\vec{\beta}$ .
- · Non-convex function (will make more sense next lecture).

#### LINEAR CLASSIFIER VIA SQUARE LOSS

**Question:** How do we find a good linear classifier automatically?

Loss minimization approach (second attempt):

· Model:

$$f_{\vec{\beta}}(\vec{x}) = \mathbb{1}\left[\langle \vec{x}, \vec{\beta} \rangle > 1/2\right]$$

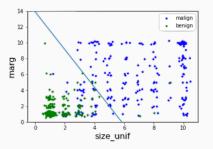
Loss function: "Square Loss"

$$L(\vec{\beta}) = \sum_{i=1}^{n} (\langle \vec{x}, \vec{\beta} \rangle - y_i)^2$$

Intuitively tries to make  $\langle \vec{x}, \vec{\beta} \rangle$  close to 0 for examples in class 0, close too 1 for examples in class 1.

#### LINEAR CLASSIFIER VIA SQUARE LOSS

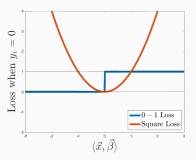
We can solve for  $\vec{\beta}$  my just solving a least squares multiple linear regression problem.



Do you see any issues here?

#### LINEAR CLASSIFIER VIA SQUARE LOSS

## Problem with square loss:



- Loss increases if  $\langle \vec{x}, \vec{\beta} \rangle > 1$  even if correct label is 1. Or if  $\langle \vec{x}, \vec{\beta} \rangle < 0$  even if correct label is 0.
- Intuitively we don't want to "punish" these cases.

#### LOGISTIC REGRESSION

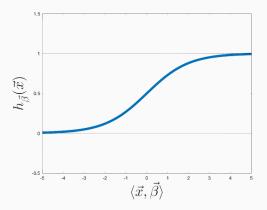
Let  $h_{\vec{\beta}}(\vec{x})$  be the logistic function:

$$h_{\vec{\beta}}(\vec{x}) = \frac{1}{1 + e^{-\langle \vec{\beta}, \vec{x} \rangle}}$$

#### LOGISTIC REGRESSION

Let  $h_{\vec{\beta}}(\vec{x})$  be the logistic function:

$$h_{\vec{\beta}}(\vec{x}) = \frac{1}{1 + e^{-\langle \vec{\beta}, \vec{x} \rangle}}$$



## Loss minimization approach (what works!):

• Model: Let  $h_{\vec{\beta}}(\vec{x}) = \frac{1}{1 + e^{-\langle \vec{\beta}, \vec{x} \rangle}}$ 

$$f_{\vec{\beta}}(\vec{x}) = \mathbb{1}\left[h_{\vec{\beta}}(\vec{x}) > 1/2\right]$$

· Loss function: "Logistic loss" aka "Cross-entropy loss"

$$L(\vec{\beta}) = -\sum_{i=1}^{n} y_i \log(h_{\vec{\beta}}(\vec{x})) + (1 - y_i) \log(1 - h_{\vec{\beta}}(\vec{x}))$$

#### **LOGISTIC LOSS**

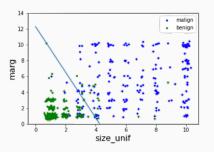
## **Logistic Loss:**

$$L(\vec{\beta}) = -\sum_{i=1}^{n} y_i \log(h_{\vec{\beta}}(\vec{x})) + (1 - y_i) \log(1 - h_{\vec{\beta}}(\vec{x}))$$



#### LOGISTIC LOSS

- Convex function, can be minimized using gradient descent (next lecture).
- · Works well in practice.
- Good Bayesian motivation: see posted lecture notes if you are interested.



Fit using logistic regression/log loss.

#### **ERROR IN CLASSIFICATION**

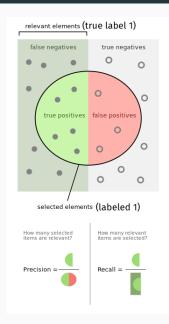
Once we have a classification algorithm, how do we judge its performance?

- Simplest answer: Error rate = fraction of data examples misclassified in test set.
- What are some issues with this approach?

#### **ERROR IN CLASSIFICATION**

- Precision: Fraction of positively labeled examples (label 1) which are correct
- Recall: Fraction of true positives that we labeled correctly with label 1.

**Question:** Which should we optimize for medical diagnosis?



#### **ERROR IN CLASSIFICATION**

## Logistic regression workflow:

- Select  $\vec{\beta}$  via training and compute  $h_{\vec{\beta}}(\vec{x}_i) = \frac{1}{1 + e^{-\langle \vec{x}_i, \vec{\beta} \rangle}}$  for all  $\vec{x}_i$ .
- Predict  $y_i = 0$  if  $h_{\vec{\beta}}(\vec{x}_i) \le \lambda$ ,  $y_i = 1$  if  $h_{\vec{\beta}}(\vec{x}_i) > \lambda$ .
- Default value of  $\lambda$  is 1/2. Increasing  $\lambda$  improves <u>precision</u>. Decreasing  $\lambda$  improves <u>recall</u>.