
CS-UY 4563: Lecture 8
Finishing the Bayesian Perspective, Linear
Classifiers

NYU Tandon School of Engineering, Prof. Christopher Musco
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probabilistic modeling

Bayesian or Probabilistic approach to machine learning:

• Decide on simple probabilistic model with parameters θ⃗
which could explain our data (⃗x1, y1), . . . , (⃗xn, yn).

• Learn θ⃗ from past data.
• Given a new input x⃗, predict y (either a class label or
regression value) using the probabilistic model.

Typically prediction y is chosen to be the maximum a posterior
(MAP) estimate under the assumption that data comes from

our chosen probabilistic model.
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naive bayes classifier

Example from last class:

• Given binary inputs (⃗x1, y1), . . . , (⃗xn, yn) (e.g. email
bag-of-words vectors and binary labels)

• Came up with model for how x⃗i, yi might be generated.
• Computed MAP estimate using Bayes rule.

This gave us the Naive Bayes Classifier.
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other applications of
the bayesian perspective
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bayesian regression

The Bayesian view offers an interesting alternative perspective
on many machine learning techniques.

Example: Linear Regression.

Probabilistic model:

yi = ⟨⃗xi, β⃗⟩+ η

where η is a Gaussian random variable with variance σ2.

(Here we assume x⃗1, . . . , x⃗n are fixed, not random. This is called
a “fixed design” setting.)

Pr(η = z) ∼ 1√
2πσ2

e−z2/σ2
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bayesian regression

Not a perfect model, but simple and reasonable:

To make the plot on right I used numpy’s random library and the
randn function for generating Gaussian (normal) random numbers:
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quick check

Example: Linear Regression.

Probabilistic model:

yi = ⟨⃗xi, β⃗⟩+ η

where η is a Gaussian random variable with variance σ2.

Suppose we learn β⃗ using past data. What is the maximum a
posterior (MAP) estimate y∗ given observed data x⃗?

• Want to find y∗ which maximizes maxy Pr(y | x⃗).
• Under our model, y = ⟨⃗x, β⃗⟩+ η.
• So Pr(y | x⃗) is equal to Pr(η = y− ⟨⃗x, β⃗⟩)
• Pr(η = y− ⟨⃗x, β⃗⟩) is maximized at y− ⟨⃗x, β⃗⟩ = 0.
• So y∗ = ⟨⃗x, β⃗⟩ is the MAP estimate.
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bayesian regression

How should we learn β⃗ for our model from prior data?

Bayesian approach: Use MAP estimate again! But this time for
the parameter vector itself, not just for prediction.

Give data matrix X ∈ Rn×d and target vector y⃗ ∈ Rn, choose β⃗∗

to maximize:

max
β⃗

Pr(β⃗ | X, y⃗) = max
β⃗

Pr(X, y⃗ | β⃗)Pr(β⃗)
Pr(X, y⃗) .

• Assume all β⃗’s are equally likely. So both Pr(β⃗) and
Pr(X, y⃗) are fixed, independent of β.

• Need to find β⃗∗ to maximize the likelihood Pr(X, y⃗ | β⃗).
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likelihood computation

• yi = ⟨⃗xi, β⃗⟩+ η

• where p(η = z) ∼ e−z2/σ2

Pr(X, y⃗ | β⃗) ∼
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log likelihood

Easier to work with the log likelihood:

β⃗∗ = argmax
β⃗

Pr(X, y⃗ | β⃗) = argmax
β⃗

n∏
i=1

e−(yi−⟨⃗xi,β⃗⟩)2/σ2

= argmax
β⃗

log
( n∏
i=1

e−(yi−⟨⃗xi,β⃗⟩)2/σ2
)

= argmax
β⃗

n∑
i=1

−(yi − ⟨⃗xi, β⃗⟩)2/σ2

= argmin
β⃗

n∑
i=1

(yi − ⟨⃗xi, β⃗⟩)2.

Choose β⃗∗ to minimize
∑n

i=1(yi − ⟨⃗xi, β⃗⟩)2 = ∥⃗y− Xβ⃗∥22!

This is a completely different justification for squared loss.
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bayesian regression

If we had modeled our noise η as Laplace noise, we would
have found that minimizing ∥⃗y− Xβ⃗∥1 was optimal.

Pr(η = z) ∼

Laplace noise has “heavier tails”, meaning that it results in
more outliers.

This is a completely different justification for ℓ1 loss.
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bayesian regularization

Recall goal is to maximize over β⃗:

Pr(β⃗ | X, y⃗) = Pr(X, y⃗ | β⃗)Pr(β⃗)
Pr(X, y⃗) .

assume all β⃗’s equally likely

Bayesian view: Assume values in β⃗ = [β1, . . . , βd] are
generated from some probabilistic model.

• Common model: Each βi drawn from N(0, γ2), i.e. normally
distributed, independent.

• Encodes a belief that we are unlikely to see models with
large coefficients.

11



bayesian regularization

Goal: choose β⃗ to maximize:

Pr(β⃗ | X, y⃗) = Pr(X, y⃗ | β⃗)Pr(β⃗)
Pr(X, y⃗) .

• We can still ignore the “evidence” term Pr(X, y⃗) since it is a
constant that does not depend on β⃗.

• Pr(β⃗) = Pr(β1) · Pr(β2) · . . . · Pr(βd)
• Pr(β⃗) ∼
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bayesian regularization

β⃗∗ = argmax
β⃗

Pr(X, y⃗ | β⃗) · Pr(β⃗)

= argmax
β⃗

n∏
i=1

e−(yi−⟨⃗xi,β⃗⟩)2/σ2 ·
n∏
i=1

e−(βi)
2/γ2

= argmax
β⃗

n∑
i=1

−(yi − ⟨⃗xi, β⃗⟩)2/σ2 +
d∑
i=1

−(βi)
2/γ2

= argmin
β⃗

n∑
i=1

(yi − ⟨⃗xi, β⃗⟩)2 +
σ2

γ2

d∑
i=1

(βi)
2/σ2.

Choose β⃗∗ to minimize ∥⃗y− Xβ⃗∥22 + σ2

γ2
∥β⃗∥22.

Completely different justification for ridge regularization!
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bayesian regularization

Test your intuition: What modeling assumption justifies LASSO
regularization: min ∥⃗y− Xβ⃗∥22 + λ∥β⃗∥1?
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linear classification
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motivating problem

Breast Cancer Biopsy: Determine if a breast lump in a patient
is malignant (cancerous) or benign (safe).

• Collect cells from lump using fine needle biopsy.
• Stain and examine cells under microscope.
• Based on certain characteristics (shape, size, cohesion)
determine if likely malignant or not).
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motivating problem

Demo: demo_breast_cancer.ipynb
Data: UCI machine learning repository

https://archive.ics.uci.edu/ml/datasets/breast+cancer+
wisconsin+(original)

Features: 10 numerical scores about cell characteristics
(Clump Thickness, Uniformity, Marginal Adhesion, etc.) 16

https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)


motivating problem

Data: (⃗x1, y1), . . . , (⃗xn, yn).

x⃗i = [1, 5, 4 . . . , 2] contains score values.

Label yi ∈ {0, 1} is 0 if benign cells, 1 if malignant cells.

Goal: Based on scores (which would be collected manually, or
even learned on their own using an ML algorithm) predict if a
sample of cells is malignant or benign.

Approach:

• Naive Bayes Classifier can be extended to x⃗ with numerical
values (instead of binary values as seen before). Will see
on homework.

• Today: Learn a different type of classifier.
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begin by plotting data

We pick two variables, Margin Adhesion and Size Uniformity
and plot a scatter plot. Points with label 1 (malignant) are
plotted in blue, those with label 2 (benign) are plotted in green.

Lots of overlapping points! Hard to get a sense of the data. 18



plotting with jitter

Simple + Useful Trick: data jittering. Add tiny random noise
(using e.g. np.random.randn) to data to prevent overlap.

Noise is only for plotting. It is not added to the data for
training, testing, etc. 19



brainstorming

Any ideas for possible classification rules for this data?
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linear classifier

Given vector of predictors x⃗i ∈ Rd (here d = 2) find a
parameter vector β⃗ ∈ Rd and threshold λ.

• Predict yi = 0 if ⟨⃗xi, β⃗⟩ ≤ λ.
• Predict yi = 1 if ⟨⃗xi, β⃗⟩ > λ

Line has equation ⟨⃗x, β⃗⟩ = λ. 21



linear classifier

As long as we append a 1 onto each data vector x⃗i (i.e. a
column of ones onto the data matrix X) like we did for linear

regression, an equivalent function is:

• Predict yi = 0 if ⟨⃗xi, β⃗⟩ ≤ 0.
• Predict yi = 1 if ⟨⃗xi, β⃗⟩ > 0

Line has equation ⟨⃗x, β⃗⟩ = 0.
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0− 1 loss

Question: How do we find a good linear classifier
automatically?

Loss minimization approach (first attempt):

• Model1:

f
β⃗
(⃗x) = 1

[
⟨⃗x, β⃗⟩ > 0

]
• Loss function: “0− 1 Loss”

L(β⃗) =
n∑
i=1

|f
β⃗
(⃗xi − yi|

1
1[event] is the indicator function: it evaluates to 1 if the argument inside is

true, 0 if false.
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0− 1 loss

Problem with 0− 1 loss:

• The loss function L(β⃗) is not differentiable because f
β⃗
(⃗x)

is discontinuous.
• Impossible to take the gradient, very hard to minimize
loss to find optimal β⃗.

• Non-convex function (will make more sense next lecture).
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linear classifier via square loss

Question: How do we find a good linear classifier
automatically?

Loss minimization approach (second attempt):

• Model:

f
β⃗
(⃗x) = 1

[
⟨⃗x, β⃗⟩ > 1/2

]
• Loss function: “Square Loss”

L(β⃗) =
n∑
i=1

(⟨⃗x, β⃗⟩ − yi)2

Intuitively tries to make ⟨⃗x, β⃗⟩ close to 0 for examples in class
0, close too 1 for examples in class 1.
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linear classifier via square loss

We can solve for β⃗ my just solving a least squares multiple
linear regression problem.

Do you see any issues here?
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linear classifier via square loss

Problem with square loss:

• Loss increases if ⟨⃗x, β⃗⟩ > 1 even if correct label is 1. Or if
⟨⃗x, β⃗⟩ < 0 even if correct label is 0.

• Intuitively we don’t want to “punish” these cases.
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logistic regression

Let h
β⃗
(⃗x) be the logistic function:

h
β⃗
(⃗x) = 1

1+ e−⟨β⃗,⃗x⟩
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logistic regression

Let h
β⃗
(⃗x) be the logistic function:

h
β⃗
(⃗x) = 1

1+ e−⟨β⃗,⃗x⟩
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logistic regression

Loss minimization approach (what works!):

• Model: Let h
β⃗
(⃗x) = 1

1+e−⟨β⃗,⃗x⟩

f
β⃗
(⃗x) = 1

[
h
β⃗
(⃗x) > 1/2

]
• Loss function: “Logistic loss” aka “Cross-entropy loss”

L(β⃗) = −
n∑
i=1

yi log(hβ⃗ (⃗x)) + (1− yi) log(1− h
β⃗
(⃗x))
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logistic loss

Logistic Loss:
L(β⃗) = −

∑n
i=1 yi log(hβ⃗ (⃗x)) + (1− yi) log(1− h

β⃗
(⃗x))
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logistic loss

• Convex function, can be minimized using gradient descent
(next lecture).

• Works well in practice.
• Good Bayesian motivation: see posted lecture notes if you
are interested.

Fit using logistic regression/log loss. 32



error in classification

Once we have a classification algorithm, how do we judge its
performance?

• Simplest answer: Error rate = fraction of data examples
misclassified in test set.

• What are some issues with this approach?
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error in classification

• Precision: Fraction of
positively labeled
examples (label 1) which
are correct.

• Recall: Fraction of true
positives that we labeled
correctly with label 1.

Question: Which should we
optimize for medical
diagnosis?

34



error in classification

Logistic regression workflow:

• Select β⃗ via training and compute h
β⃗
(⃗xi) = 1

1+e−⟨⃗xi,β⃗⟩
for all

x⃗i.
• Predict yi = 0 if h

β⃗
(⃗xi) ≤ λ, yi = 1 if h

β⃗
(⃗xi) > λ.

• Default value of λ is 1/2. Increasing λ improves precision.
Decreasing λ improves recall.
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