CS-UY 4563: Lecture 7
The Bayesian Perspective cont., Linear
Classifiers

NYU Tandon School of Engineering, Prof. Christopher Musco



PROBABILISTIC MODELING

In a Bayesian or Probabilistic approach to machine learning
we always start by conjecturing a

probabilistic model

that plausibly could have generated our data.

- The model guides how we make predictions.

- The model typically has unknown parameters  and we try
to find the most reasonable parameters based on
observed data (more on this later in lecture).



PROBABILISTIC MODELING

Exercise: With a partner, come up with a probabilistic model
for any one of the following data sets (x1,¥1), - - -, (Xn, Vn)-

1. For n people: each x; € {0, 1} with zero indicating male,
one indicating female. Each y; is the height of the person
ininches.

2. For n NYC apartments: each x; is the size of the apartment
in square feet. Each y; is the monthly rent in dollars.

3. For n students: each x; € {Fresh.,Soph.,jun.,Sen.}
indicating class year. Each y; € {0, 1} with zero indicating
the student has not taken machine learning, one
indicating they have.

Record any unknown parameters of your model. What would
be a guess for their values? How would you confirm or refine
this guess using data?



PROBABILISTIC MODELING
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PROBABILISTIC MODELING

Dataset: (x1,y1), ..., (Xn,¥n)

Description: For n NYC apartments: each x; is the size of the

apartment in square feet. Each y; is the monthly rent in dollars.
'),

Model: 256 53 " \6 (X x \\ (O/ 6 >

wiwv ©
mc% ~ 96009}“’

x, —)

///’/)
R = LeX 7 \9\4\”—\’)";3{
b s \6
Fox® \a‘_ ((J +\9u1'§'£’1/'])°x

Uary dede: had =B v -3T o



PROBABILISTIC MODELING

Dataset: (x1,y1), ..., (Xn,¥n)

Description: For n students: each

xj € {Fresh.,Soph.,Jun.,Sen.} indicating class year. Each
yf € {0,1} with zero indicating the student has not taken
machine learning, one indicating they have.
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NAIVE BAYES CLASSIFIER

Goal:

- Build a probabilistic model for a binary classification
problem.

- Estimate parameters of the model.

- From the model derive a classification rule for future

predictions (the Naive Bayes Classifier).



SPAM PREDICTION

feature ML
prediction

extraction bag-of-words
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Both target labels and data vectors are binary.



PROBABILISTIC MODEL FOR EMAIL

Probabilistic model for (bag-of-words, label) pair (X, y):

-(E_eTy = 0 with probability p(y = 0), y = 1 with probability
ply=1=1-— =0).
- p(y = 0) is probability an email is not spam (e.g. 99%).
- p(y = 1) is probability an email is spam (e.g. 1%).
- If y =0, for each i, set x; = 1 with prob. p(x; =1y = 0).
- Ify =1, for each i, set x; = 1 with prob. p(x;=1|y=1).
Unknown model parameters: (olglolo 2\ 11\ )]
+ p(y=0),p(y =), R
- p(x1=1]y=0),...,p(xd =1|y =0).
- p(xi=1]y=1),...,pxd=1]|y=1).

How would you estimate these parameters?



PARAMETER ESTIMATION

Reasonable way to set parameters:

- Set p(y = 0) and p(y = 1) to the empirical fraction of not
spam/spam emails.

- For each word /, set p(x; = 1|y = 0) to the empirical
probability word i appears in a non-spam email.

- For each word I, set p(x; = 1| y = 1) to the empirical
probability word i appears in a spam email.

Estimating these parameters is the only “training” we will do.



DONE WITH MODELING
ON TO PREDICTION



CLASSIFICATION RULE

Given unlabeled input (x, ), choose the label y € {0,1}
which is most likely given the data. Recall x =[0,0,1,...,1,0].

Classification rule: maximum a posterior prob. (MAP) estimate.

Step 1. Compute:

- p(y =0 x): prob. y = 0 given observed data vector x.
- p(y =1 x): prob. y = 1given observed data vector x.

Step 2. Output: 0 or 1 depending on which probability is larger.
p(y =0 |x)and p(y =1 x) are called posterior probabilities.
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EVALUATING THE POSTERIOR

How to compute the posterior? Bayes rule!

p(x|y=0)p(y =0)
ply-1 Ix) = pixly-2) Ply ——\)/p(x)
likelihood x prior )
evidence

posterior =

- Prior: Probability in class 0 prior to seeing any data.
- Posterior: Probability in class 0 after seeing the data.
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EVALUATING THE POSTERIOR

Goal is to determine which is larger:

pw:0|m=p“'yiQ@7:5> s

P
o1 1) Py = W=D
e

How to compute posteriors:

- Ignore evidence p(x) since it is the same for both sides.

- p(y =0) and p(y = 1) already known (computed from
training data).

“px|y=0)=7px|y=1)=7
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NAIVE BAYES

“Naive” Bayes Rule: Compute p(x | y = 0) by assuming o
independence: e & Gom»«cko L
7 S

ool
pX|y=0)=pxi|y=0)-p(x2|y=0)-...-p(xd|y=0)
Coi, 1, 00,1 o1

- p(xj | y = 0) is the probability you observe x; given that an
email is not spam.”

A more complicated method might take dependencies into
account.

"Recall, x; is either 0 when word i is not present, or 1 when word i is present.
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NAIVE BAYES

Final Naive Bayes Classifier

Training/Modeling: Use existing data to compute:

“p(y=0),p(y=1)
- Forall i
- Compute p(0 at position i | y = 0), p(1 at position i | yo)
- Compute p(0 at position i | y = 1), p(1 at position i |y = 1)

Prediction:

- Forall i:
+ Compute p(x |y =0) = [[;p(x;i |y = 0)
-+ Compute p(x [y ="1)=T[;p(xi |y =1)
- Return

argmax[p(x|y=0)-p(y=0),p(x|y=1)-py=1)].
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OTHER APPLICATIONS OF
THE BAYESIAN PERSPECTIVE



BAYESIAN REGRESSION

The Bayesian view offers an interesting alternative perspective
on many machine learning techniques.

Example: Linear Regression.

Probabilistic model:

in(@_ﬁH@

where the 5 drawn from N(0, ¢?) is random Gaussian noise.

2™
Prin=2)~ €~
—
) 2z
B I . Y;(My—efm/é
The symbol ~ means “iIs proportional to”.
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QUICK CHECK

\f -,qrzw?ax ?(‘al 7<'\> /-J“vﬁ

Example: Linear Regression. _ w)z
Probabilistic model: P (a ’ ?"> = 6 e

yi = (X;,8) +n

where the n drawn from N(0, ¢?) is random Gaussian noise.

If we knew 3 what is the maximum a posterior (MAP) estimate

for y; given observed data x;?
0% *

-

. /% B
%LX/@
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BAYESIAN REGRESSION

How should be select 8 for our model?
Bayesian approach: Use MAP estimate again! Now for
parameter vector.

Choose B to maximize:

(3| xy) — PIKY1 B PA(B)

Pr(X,y)

Assume all @'s are equally likely, so we only care about
Pr(X,y | B) when maximizing.

Choose B to maximize:

Pr(X,y | 8) ~
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BAYESIAN REGRESSION

" Yi=(X,8)+n
- where p(n = z) ~ e72/7’

PrX,y | B) ~
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LOG LIKELIHOOD

Easier to work with the log likelihood:

n
argmaxPr(X,y | B) = arg maxH o~ i—(xi.B))* /o’
s i=1

n
— argmax log (H e‘(yf‘<xfﬁ>)2/"2)
2

=1

B 1=1
n
= argmin > i - (x1,8))?
i=1

Choose 8 to minimize 31, (v; — (xi, 8))* = Ily — X8I13!

This is a completely different justification for squared loss.
20



BAYESIAN REGRESSION

0.5

0.4
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If we had modeled our noise n as Laplace noise, we would
have found that minimizing ||y — XB3||; was optimal.

— Laplace
-~ Normal

-3 -2 -1 0 1 2 3

Laplace noise has “heavier tails”, meaning that it results in
more outliers.

This is a completely different justification for ¢; loss.

21



BAYESIAN REGULARIZATION

Recall goal is to maximize over 3:

Pr(p | y) = - D )

assume-attB's-equatty-tkely
Bayesian view: Assume values in 8 = [B4, ..., 84] come from
some distribution.

- Common model: Each g; drawn from N(0,~?), i.e. normally
distributed, independent.

- Encodes a belief that we are unlikely to see models with
very large coefficients.
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BAYESIAN REGULARIZATION

Goal: choose B to maximize:

Pr(B | Ky) = T ),

- We can still ignore the “evidence” term Pr(X,y) since it is a
constant that does not depend on 3.

- Pr(8) = Pr(B1) - Pr(B,) - .- Pr(Ba)
- Pr(B) ~
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BAYESIAN REGULARIZATION

Easier to work with the log likelihood:
arg maxPr(X,y | B) - Pr(B)

_argmaxne i—(x,8))? He (Bi)?/

B =1

_argmaxz — (x;, >)2/02+Z—
=1

2 d

_argmmz — (x;,8 %Z(ﬁi)z/az

i=1
Choose @ to minimize [ly — X33 + %|18]3.
Completely different justification for ridge regularization!
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BAYESIAN REGULARIZATION

Test your intuition: What modeling assumption justifies LASSO
regularization: min |ly — XB||5 + A||8[|+?
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