CS-UY 4563: Lecture 7
The Bayesian Perspective cont., Linear
Classifiers

NYU Tandon School of Engineering, Prof. Christopher Musco



PROBABILISTIC MODELING

In a Bayesian or Probabilistic approach to machine learning
we always start by conjecturing a

probabilistic model

that plausibly could have generated our data.

- The model guides how we make predictions.

- The model typically has unknown parameters 6 and we try
to find the most reasonable parameters based on
observed data (more on this later in lecture).



PROBABILISTIC MODELING

Exercise: With a partner, come up with a probabilistic model
for any one of the following data sets (x1,¥1), .-, (Xn, ¥n)-

1. For n people: each x; € {0,1} with zero indicating male,
one indicating female. Each y; is the height of the person
in inches.

2. For n NYC apartments: each x; is the size of the apartment
in square feet. Each y; is the monthly rent in dollars.

3. For n students: each x; € {Fresh.,Soph.,Jun.,Sen.}
indicating class year. Each y; € {0,1} with zero indicating
the student has not taken machine learning, one
indicating they have.

Record any unknown parameters of your model. What would
be a guess for their values? How would you confirm or refine
this guess using data? 3



PROBABILISTIC MODELING

Dataset: (x1,y1), .., (Xn,¥n)

Description: For n people: each x; € {0,1} with zero indicating
male, one indicating female. Each y; is the height of the person

ininches.

Model:



PROBABILISTIC MODELING

Dataset: (x1,y1), .., (Xn,¥n)

Description: For n NYC apartments: each x; is the size of the
apartment in square feet. Each y; is the monthly rent in dollars.

Model:



PROBABILISTIC MODELING

Dataset: (x1,y1), .., (Xn,¥n)

Description: For n students: each

xj € {Fresh.,Soph.,Jun.,Sen.} indicating class year. Each
y1 € {0,1} with zero indicating the student has not taken
machine learning, one indicating they have.

Model:



NAIVE BAYES CLASSIFIER

Goal:

- Build a probabilistic model for a binary classification
problem.

- Estimate parameters of the model.

- From the model derive a classification rule for future
predictions (the Naive Bayes Classifier).



SPAM PREDICTION

feature ML

extraction bag-of-words prediction
@ s [7[0[1]7[7]0]0]0J0]0[0]T[7]7]0] memmmmp O (safe)

@ mmmmmm) [1]0[0[0[1[0[7[0[0[1[0[0[0[0[0] mmmmmmmdp 1 (Spam)

@ mmmmmm) [1]0[0]0[0[1[1]1]0]0]0]0]0]0[0] w=mmmmdp O (safe)

@ mmmmmm) [7]0[0[0[0[7[0]0[T[0[]00[0[0] wmmmmmm)p O (safe)

@ ) [T[0[0]0[1[0]T[O[T[O]0[1[10]0] wemmmmp 1 (spam)

Both target labels and data vectors are binary.



PROBABILISTIC MODEL FOR EMAIL

Probabilistic model for (bag-of-words, label) pair (x, y):

- Sety = 0 with probability p(y = 0), y = 1 with probability
p(y=1)=1-p(y=0).
- p(y = 0) is probability an email is not spam (e.g. 99%).
- p(y =1) is probability an email is spam (e.g. 1%).
- Ify =0, for each i, set x; = 1 with prob. p(x; =1|y = 0).
- Ify =1, foreach i, set x; = 1 with prob. p(x; =1y =1).

Unknown model parameters:
*ply=20),py=1),
“pxa=1]1y=0),....,p(xn =1[y=0).
cpOa=1ly="),....p(xn =1[y=1).

How would you estimate these parameters?



PARAMETER ESTIMATION

Reasonable way to set parameters:
- Set p(y = 0) and p(y = 1) to the empirical fraction of not
spam/spam emails.

- For each word i, set p(x; = 1| y = 0) to the empirical
probability word i appears in a non-spam email.

- For each word /, set p(x; = 1|y = 1) to the empirical
probability word i appears in a spam email.

Estimating these parameters is the only “training” we will do.

10



DONE WITH MODELING
ON TO PREDICTION



CLASSIFICATION RULE

Given unlabeled input (x,—), choose the label y € {0,1}
which is most likely given the data. Recall x =10,0,1,...,1,0].

Classification rule: maximum a posterior prob. (MAP) estimate.

Step 1. Compute:

- p(y=0]x): prob. y = 0 given observed data vector x.
- p(y =1]|x): prob. y =1 given observed data vector x.

Step 2. Output: 0 or 1 depending on which probability is larger.
p(y=0|x)and p(y =1 x) are called posterior probabilities.

"



EVALUATING THE POSTERIOR

How to compute the posterior? Bayes rule!

_ _ p(x|y=0)p(y=0)
e likelihood x prior )

evidence

- Prior: Probability in class O prior to seeing any data.
- Posterior: Probability in class 0 after seeing the data.

12



EVALUATING THE POSTERIOR

Goal is to determine which is larger:

p(x|y=0)p(y =0)

p(y=0]x)= () Vs.
B _px|y="Nply=1)

How to compute posteriors:

- Ignore evidence p(x) since it is the same for both sides.

- p(y=0) and p(y = 1) already known (computed from
training data).

“px|y=0)=7px|y=1)=7

13



NAIVE BAYES

“Naive” Bayes Rule: Compute p(x | y = 0) by assuming
independence:

px|y=0)=p(|y=0)-px2|y=0)-...-p(xn |y =0)
- p(x; | y = 0) is the probability you observe x; given that an
email is not spam.’

A more complicated method might take dependencies into
account.

"Recall, x; is either 0 when word i is not present, or 1 when word i is present.

14



NAIVE BAYES

Final Naive Bayes Classifier

Training/Modeling: Use existing data to compute:

“p(y=0),ply=1)
- Forall I:
- Compute p(0 at position i | y = 0), p(1 at position i | yo)
- Compute p(0 at position i | y = 1), p(1 at positioni |y =1)

Prediction:
- Forall I:
- Compute p(x |y=0)=][;p(xi | y=0)
- Compute p(x |y="1)=TL;p(x |y=1)
- Return

argmax[p(x|y=0)-p(y=0),p(x|y=1)-py=1)].
15



OTHER APPLICATIONS OF
THE BAYESIAN PERSPECTIVE



BAYESIAN REGRESSION

The Bayesian view offers an interesting alternative perspective
on many machine learning techniques.

Example: Linear Regression.
Probabilistic model:
yi= X, 8) +n

where the n drawn from N(0, o) is random Gaussian noise.

L 1

”

The symbol ~ means “iIs proportional to



QUICK CHECK

Example: Linear Regression.

Probabilistic model:

Vi = (X,8) +n

where the 5 drawn from N(0, o?) is random Gaussian noise.

If we knew B3 what is the maximum a posterior (MAP) estimate
for y; given observed data x;?




BAYESIAN REGRESSION

How should be select 8 for our model?
Bayesian approach: Use MAP estimate again! Now for
parameter vector.

Choose B to maximize:

Pr(X,y)

Assume all 3's are equally likely, so we only care about
Pr(X,y | B) when maximizing.

Choose B to maximize:

PrX,y | B) ~



BAYESIAN REGRESSION

“Yi=(X,8) +n
- where p(n = z) ~ 2/’

Pr(X,y | B) ~

19



LOG LIKELIHOOD

Easier to work with the log likelihood:

n
argmax Pr(X,y | B) = arg max H e~ (i—(xi.8))* /o
8 -

n
— argmax log <H e(Vf<Xfﬂ>)2/"2>
A

i=1

B =1
n
= BT > i — (%, 8))°
=1

Choose B to minimize Y7 (v — (x;, 8))> = |ly — XB]|3!

This is a completely different justification for squared loss.
20



BAYESIAN REGRESSION

If we had modeled our noise n as Laplace noise, we would
have found that minimizing |ly — X3||» was optimal.

os — Laplace
-~ Normal

0.4

0.3

0.2

0.1

00—
=3 -2 = 0 1 2

Laplace noise has “heavier tails”, meaning that it results in
more outliers.

This is a completely different justification for ¢; loss.

21



BAYESIAN REGULARIZATION

Recall goal is to maximize over 3:

Pr(p X y) = T g )

assume-at-B'sequaty-tHkely
Bayesian view: Assume values in 8 = [Bs, ..., 4] come from
some distribution.

- Common model: Fach 3 drawn from N(0,~?), i.e. normally
distributed, independent.

- Encodes a belief that we are unlikely to see models with
very large coefficients.

22



BAYESIAN REGULARIZATION

Goal: choose B to maximize:

Pr(B | Ky) = T ),

- We can still ignore the “evidence” term Pr(X,y) since itis a
constant that does not depend on 3.

* Pr(B) = Pr(B1) - Pr(B2) - ... - Pr(Ba)
- Pr(B) ~

23



BAYESIAN REGULARIZATION

Easier to work with the log likelihood:
argmaxPr(X,y | 8) - Pr(3)
B

n n
= arg max H o~ (Vi—(xi.B8))* /o H e~ (B /v
B

=1 =1
n
=argmax»_ —(y; — (x;, 8))* /o’ +Z
B o
n 0_2 d
= argﬁmin > i— . 8) + Pl > (B)? /o
= =

Choose 3 to minimize |ly — X813 + g—inﬁ\\%.
Completely different justification for ridge regularization!

2%



BAYESIAN REGULARIZATION

Test your intuition: What modeling assumption justifies LASSO
regularization: min |ly — XB||3 + \||8|1?

25



LINEAR CLASSIFICATION



MOTIVATING PROBLEM

Breast Cancer Biopsy: Determine if a breast lump in a patient
is malignant (cancerous) or benign (safe).

- Collect cells from lump using fine needle biopsy.

- Stain and examine cells under microscope.

- Based on certain characteristics (shape, size, cohesion)
determine if likely malignant or not).

cross section

26



MOTIVATING PROBLEM

Demo: demo_breast_cancer.ipynb

Data: UCI machine learning repository

Breast Cancer Wisconsin (Original) Data Set
Download: Data Folder, Data Set Description

Abstract: Original Wisconsin Breast Cancer Database

Data Set Characteristics: || Multivariate Number of Instances: || 699 || Area: Life
Attribute Characteristics: | Integer Number of Attributes: | 10 || Date Donated 1992-07-15
Associated Tasks: Classification || Missing Values? Yes || Number of Web Hits: | 564320

https://archive.ics.uci.edu/ml/datasets/breast+cancer+
wisconsin+(original)

Features: 10 numerical scores about cell characteristics
(Clump Thickness, Uniformity, Marginal Adhesion, etc.) 27


https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)

MOTIVATING PROBLEM

Data: (x1,¥1), .-, (Xn, ¥n)-
Xj = [1,5,4...,2] contains score values.
Label y; € {0,1} is O if benign cells, 1 if malignant cells.

Goal: Based on scores (which would be collected manually, or
even learned on their own using an ML algorithm) predict if a
sample of cells is malignant or benign.

Approach:

- Naive Bayes Classifier can be extended to x with
numerical values (instead of binary values as seen
before). Will see on homework.

- Today: Learn a different type of classifier.

28



BEGIN BY PLOTTING DATA

We pick two variables, Margin Adhesion and Size Uniformity
and plot a scatter plot. Points with label 1 (malignant) are
plotted in blue, those with label 2 (benign) are plotted in green.
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Lots of overlapping points! Hard to get a sense of the data. 29



PLOTTING WITH JITTER

Simple + Useful Trick: data jittering. Add tiny random noise
(using e.g. np.random.randn) to data to prevent overlap.

« malign
12 benign
L T RS oy H W L 0
o B " ea ] =
E . . - .Y
£ ¢ AR TR, - . a
= fay ~ 5, s & - s
4 L Y o *
W v aue % LS * » N
2 BE M b Y ., 3 " ‘et
M w e o . %
0
2 4 2 ] 1

size_unif

Noise is only for plotting. It is not added to the data for
training, testing, etc. 30



PLOTTING WITH JITTER
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BRAINSTORMING

Any ideas for possible classification rules for this data?
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LINEAR CLASSIFIER

Given vector of predictors x; € RY (here d = 2) find a
parameter vector 8 € R9 and threshold \.
- Predicty; = 01if (x;,8) < A\
- Predicty; =11if (x;,8) > A

« malign
17 benign
10 . r -
o 8 o o . . -u-
=
= A . - w“
£ 6 .- LN -
. { "on, -
a4 ¢ M " .
LA | * .
2 - . -
-]
0
[ 8 10
size_unif

Line has equation (x;, 3) = \. 33



LINEAR CLASSIFIER

Next class: How do we find a good linear separator?

34



