
CS-UY 4563: Lecture 7
The Bayesian Perspective cont., Linear
Classifiers

NYU Tandon School of Engineering, Prof. Christopher Musco
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probabilistic modeling

In a Bayesian or Probabilistic approach to machine learning
we always start by conjecturing a

probabilistic model

that plausibly could have generated our data.

• The model guides how we make predictions.
• The model typically has unknown parameters θ⃗ and we try
to find the most reasonable parameters based on
observed data (more on this later in lecture).
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probabilistic modeling

Exercise: With a partner, come up with a probabilistic model
for any one of the following data sets (x1, y1), . . . , (xn, yn).

1. For n people: each xi ∈ {0, 1} with zero indicating male,
one indicating female. Each yi is the height of the person
in inches.

2. For n NYC apartments: each xi is the size of the apartment
in square feet. Each yi is the monthly rent in dollars.

3. For n students: each xi ∈ {Fresh., Soph., Jun., Sen.}
indicating class year. Each y1 ∈ {0, 1} with zero indicating
the student has not taken machine learning, one
indicating they have.

Record any unknown parameters of your model. What would
be a guess for their values? How would you confirm or refine

this guess using data? 3



probabilistic modeling

Dataset: (x1, y1), . . . , (xn, yn)

Description: For n people: each xi ∈ {0, 1} with zero indicating
male, one indicating female. Each yi is the height of the person
in inches.

Model:
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probabilistic modeling

Dataset: (x1, y1), . . . , (xn, yn)

Description: For n NYC apartments: each xi is the size of the
apartment in square feet. Each yi is the monthly rent in dollars.

Model:
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probabilistic modeling

Dataset: (x1, y1), . . . , (xn, yn)

Description: For n students: each
xi ∈ {Fresh., Soph., Jun., Sen.} indicating class year. Each
y1 ∈ {0, 1} with zero indicating the student has not taken
machine learning, one indicating they have.

Model:
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naive bayes classifier

Goal:

• Build a probabilistic model for a binary classification
problem.

• Estimate parameters of the model.
• From the model derive a classification rule for future
predictions (the Naive Bayes Classifier).
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spam prediction

Both target labels and data vectors are binary.
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probabilistic model for email

Probabilistic model for (bag-of-words, label) pair (x, y):
• Set y = 0 with probability p(y = 0), y = 1 with probability
p(y = 1) = 1− p(y = 0).

• p(y = 0) is probability an email is not spam (e.g. 99%).
• p(y = 1) is probability an email is spam (e.g. 1%).

• If y = 0, for each i, set xi = 1 with prob. p(xi = 1 | y = 0).
• If y = 1, for each i, set xi = 1 with prob. p(xi = 1 | y = 1).

Unknown model parameters:
• p(y = 0),p(y = 1),
• p(x1 = 1 | y = 0), . . . ,p(xn = 1 | y = 0).
• p(x1 = 1 | y = 1), . . . ,p(xn = 1 | y = 1).

How would you estimate these parameters?
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parameter estimation

Reasonable way to set parameters:

• Set p(y = 0) and p(y = 1) to the empirical fraction of not
spam/spam emails.

• For each word i, set p(xi = 1 | y = 0) to the empirical
probability word i appears in a non-spam email.

• For each word i, set p(xi = 1 | y = 1) to the empirical
probability word i appears in a spam email.

Estimating these parameters is the only “training” we will do.
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done with modeling
on to prediction
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classification rule

Given unlabeled input (x, ), choose the label y ∈ {0, 1}
which is most likely given the data. Recall x = [0, 0, 1, . . . , 1, 0].

Classification rule: maximum a posterior prob. (MAP) estimate.

Step 1. Compute:

• p(y = 0 | x): prob. y = 0 given observed data vector x.
• p(y = 1 | x): prob. y = 1 given observed data vector x.

Step 2. Output: 0 or 1 depending on which probability is larger.

p(y = 0 | x) and p(y = 1 | x) are called posterior probabilities.
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evaluating the posterior

How to compute the posterior? Bayes rule!

p(y = 0 | x) = p(x | y = 0)p(y = 0)
p(x) (1)

posterior = likelihood× prior
evidence (2)

• Prior: Probability in class 0 prior to seeing any data.
• Posterior: Probability in class 0 after seeing the data.

12



evaluating the posterior

Goal is to determine which is larger:

p(y = 0 | x) = p(x | y = 0)p(y = 0)
p(x) vs.

p(y = 1 | x) = p(x | y = 1)p(y = 1)
p(x)

How to compute posteriors:

• Ignore evidence p(x) since it is the same for both sides.
• p(y = 0) and p(y = 1) already known (computed from
training data).

• p(x | y = 0) = ? p(x | y = 1) = ?

13



naive bayes

“Naive” Bayes Rule: Compute p(x | y = 0) by assuming
independence:

p(x | y = 0) = p(x1 | y = 0) · p(x2 | y = 0) · . . . · p(xn | y = 0)

• p(xi | y = 0) is the probability you observe xi given that an
email is not spam.1

A more complicated method might take dependencies into
account.

1Recall, xi is either 0 when word i is not present, or 1 when word i is present.

14



naive bayes

Final Naive Bayes Classifier

Training/Modeling: Use existing data to compute:

• p(y = 0),p(y = 1)
• For all i:

• Compute p(0 at position i | y = 0),p(1 at position i | y0)
• Compute p(0 at position i | y = 1),p(1 at position i | y = 1)

Prediction:
• For all i:

• Compute p(x | y = 0) =
∏

i p(xi | y = 0)
• Compute p(x | y = 1) =

∏
i p(xi | y = 1)

• Return

argmax [p (x | y = 0) · p (y = 0) ,p (x | y = 1) · p (y = 1)] .
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other applications of
the bayesian perspective
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bayesian regression

The Bayesian view offers an interesting alternative perspective
on many machine learning techniques.

Example: Linear Regression.

Probabilistic model:

yi = ⟨xi,β⟩+ η

where the η drawn from N(0, σ2) is random Gaussian noise.

Pr(η = z) ∼

The symbol ∼ means “is proportional to”. 16



quick check

Example: Linear Regression.

Probabilistic model:

yi = ⟨xi,β⟩+ η

where the η drawn from N(0, σ2) is random Gaussian noise.

If we knew β what is the maximum a posterior (MAP) estimate
for yi given observed data xi?
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bayesian regression

How should be select β for our model?

Bayesian approach: Use MAP estimate again! Now for
parameter vector.

Choose β to maximize:

Pr(β | X, y) = Pr(X, y | β)Pr(β)
Pr(X, y) .

Assume all β’s are equally likely, so we only care about
Pr(X, y | β) when maximizing.

Choose β to maximize:

Pr(X, y | β) ∼
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bayesian regression

• yi = ⟨xi,β⟩+ η

• where p(η = z) ∼ e−z2/σ2

Pr(X, y | β) ∼
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log likelihood

Easier to work with the log likelihood:

argmax
β

Pr(X, y | β) = argmax
β

n∏
i=1

e−(yi−⟨xi,β⟩)2/σ2

= argmax
β

log
( n∏
i=1

e−(yi−⟨xi,β⟩)2/σ2
)

= argmax
β

n∑
i=1

−(yi − ⟨xi,β⟩)2/σ2

= argmin
β

n∑
i=1

(yi − ⟨xi,β⟩)2.

Choose β to minimize
∑n

i=1(yi − ⟨xi,β⟩)2 = ∥y− Xβ∥22!

This is a completely different justification for squared loss.
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bayesian regression

If we had modeled our noise η as Laplace noise, we would
have found that minimizing ∥y− Xβ∥1 was optimal.

Pr(η = z) ∼

Laplace noise has “heavier tails”, meaning that it results in
more outliers.

This is a completely different justification for ℓ1 loss.
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bayesian regularization

Recall goal is to maximize over β:

Pr(β | X, y) = Pr(X, y | β)Pr(β)
Pr(X, y) .

assume all β’s equally likely

Bayesian view: Assume values in β = [β1, . . . , βd] come from
some distribution.

• Common model: Each βi drawn from N(0, γ2), i.e. normally
distributed, independent.

• Encodes a belief that we are unlikely to see models with
very large coefficients.
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bayesian regularization

Goal: choose β to maximize:

Pr(β | X, y) = Pr(X, y | β)Pr(β)
Pr(X, y) .

• We can still ignore the “evidence” term Pr(X, y) since it is a
constant that does not depend on β.

• Pr(β) = Pr(β1) · Pr(β2) · . . . · Pr(βd)
• Pr(β) ∼
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bayesian regularization

Easier to work with the log likelihood:

argmax
β

Pr(X, y | β) · Pr(β)

= argmax
β

n∏
i=1

e−(yi−⟨xi,β⟩)2/σ2 ·
n∏
i=1

e−(βi)
2/γ2

= argmax
β

n∑
i=1

−(yi − ⟨xi,β⟩)2/σ2 +
d∑
i=1

−(βi)
2/γ2

= argmin
β

n∑
i=1

(yi − ⟨xi,β⟩)2 +
σ2

γ2

d∑
i=1

(βi)
2/σ2.

Choose β to minimize ∥y− Xβ∥22 + σ2

γ2
∥β∥22.

Completely different justification for ridge regularization!
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bayesian regularization

Test your intuition: What modeling assumption justifies LASSO
regularization: min ∥y− Xβ∥22 + λ∥β∥1?
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linear classification
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motivating problem

Breast Cancer Biopsy: Determine if a breast lump in a patient
is malignant (cancerous) or benign (safe).

• Collect cells from lump using fine needle biopsy.
• Stain and examine cells under microscope.
• Based on certain characteristics (shape, size, cohesion)
determine if likely malignant or not).
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motivating problem

Demo: demo_breast_cancer.ipynb
Data: UCI machine learning repository

https://archive.ics.uci.edu/ml/datasets/breast+cancer+
wisconsin+(original)

Features: 10 numerical scores about cell characteristics
(Clump Thickness, Uniformity, Marginal Adhesion, etc.) 27

https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)


motivating problem

Data: (x1, y1), . . . , (xn, yn).

xi = [1, 5, 4 . . . , 2] contains score values.

Label yi ∈ {0, 1} is 0 if benign cells, 1 if malignant cells.

Goal: Based on scores (which would be collected manually, or
even learned on their own using an ML algorithm) predict if a
sample of cells is malignant or benign.

Approach:

• Naive Bayes Classifier can be extended to x with
numerical values (instead of binary values as seen
before). Will see on homework.

• Today: Learn a different type of classifier.
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begin by plotting data

We pick two variables, Margin Adhesion and Size Uniformity
and plot a scatter plot. Points with label 1 (malignant) are
plotted in blue, those with label 2 (benign) are plotted in green.

Lots of overlapping points! Hard to get a sense of the data. 29



plotting with jitter

Simple + Useful Trick: data jittering. Add tiny random noise
(using e.g. np.random.randn) to data to prevent overlap.

Noise is only for plotting. It is not added to the data for
training, testing, etc. 30



plotting with jitter

Simple + Useful Trick: data jittering. Add tiny random noise
(using e.g. np.random.randn) to data to prevent overlap.

Noise is only for plotting. It is not added to the data for
training, testing, etc. 31



brainstorming

Any ideas for possible classification rules for this data?
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linear classifier

Given vector of predictors xi ∈ Rd (here d = 2) find a
parameter vector β ∈ Rd and threshold λ.

• Predict yi = 0 if ⟨xi,β⟩ ≤ λ.
• Predict yi = 1 if ⟨xi,β⟩ > λ

Line has equation ⟨xi,β⟩ = λ. 33



linear classifier

Next class: How do we find a good linear separator?
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