CS-UY 4563: Lecture 6
Naive Bayes, the Bayesian Perspective

NYU Tandon School of Engineering, Prof. Christopher Musco



MODEL SELECTION LAB

Lab 3, due Next Thursday.

Sensory area Motor area

Surgical opening

Electrocorticography

- Predict hand motion based on electrical measurements of
a monkeys brain activity.

- Experience working with sequential (time series) data.

- First lab where computation actually matters (solving
regression problems with 40k examples, 1500 features)



OVER-PARAMETERIZED MODELS

If you have enough features, even most basic model will overfit

in practice.
d features
X4 y1
X, Y2
n examples . .
Xn Yn
X y

Example: Linear regression model where d > n. Can always
find 3 so that X3 =y exactly.



AVOIDING OVERFITTING

Regularization: Explicitly discourage overfitting by adding a
regularization penalty to the loss minimization problem.

mein [L(@) + Reg(0)] .

Example: Least squares regression. L(8) = [|X3 — y||
- Ridge regression (£,): Reg(8) = || 8|13 N7 0
* LASSO (&1): Reg(8) = AIBI;
- Elastic net: Reg(8) = M||B1 + M 1815



RIDGE REGULARIZATION
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LASSO REGULARIZATION

Lasso regularization: ming X8 — y||2 + Al 8]

- Similarly encourages coordinates in 3 to be small.
- Often the optimal 8% will have subset of coordinates
equal to zero, in contrast to ridge regularization.
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LASSO REGULARIZATION

AL

Pros: =

- Simpler, more interpretable model.

Cons:

- No closed form solution because ||3||1 is not
differentiable.

- Can be solved with iterative methods (gradient descent),
but generally not as quickly as ridge regression.



CLASSIFICATION



CLASSIFICATION SETUP

- Data Examples: x1,...,x, € R?
- Target: y1,...,¥n € {0}2,...,9 — 1} when there are g
classes.

- Binary Classification: g = 2, so each y; € {0,1}.
- Multi-class Classification: g > 2. '

"Note that there is also multi-label classification where each data example
maybe belong to more than one class.



CLASSIFICATION EXAMPLES

- Medical diagnosis from MRI: 2 classes.
- MNIST digits: 10 classes.
- Full Optical Character Regonition: 100s of classes.

- ImageNet challenge: 21,000 classes.

Running example today: Email Spam Classification.



CLASSIFICATION

Today: ML from a Probabilistic/Bayesian Perspective.

Classification can (and often is) solved using the same
loss-minimization framework we saw for regression.

We won't see that today! We're going to use classification as a
window into another way of thinking about machine learning.



SPAM PREDICTION

feature ML
extraction bag-of-words ¥\ prediction
@ ) [T[0[7[1[1]0]0]0]0[0[O[7]T[1[0] mwemmmmp O (safe)
o woiduorn 200

Xv
@ mmmmmm) [7]0[0[0[7[0[7]0[0[1[0[0[0[0[0] M) 1 (spam)

@ ) [1]0[0[0[0[7[1]7]0]0[0[0[0[0]0] =mmmmmp O (safe)

@ s [7]0[0[0[0[71]0]0][1]0[7]0]0[0]0] =mmmmmp O (safe)

X
s [1]0[0[0[T[0[T[O[T[OO[T[T[0[0] —)p 1 (spam)

Both target labels and data vectors are binary.
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SPAM PREDICTION

First Goal: Model data (x,y) - in our case emails — as a simple
probabilistic process. Probabilistic Modeling.

v | X

How would you randomly create a set of email feature vectors
and labels (from scratch) that looks like a typical inbox?

Should have some spam emails, and some regular emails.
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PROBABILISTIC MODEL FOR EMAIL

fo(oe ]l ooa) i
5) 0}17
N

Random model for generating data example (X, y):

- Set y = 0 with probability bo, y = 1 with probability
bi =1 —bo-
bo is probability an email is not spam (e.g. 99%).
1 is probability an email is spam (e.g. 1%).

- Ify =0, for each i, set x; = 1 with probability__pjo/).

- Ify =1, for each i, set x; = 1 with probability p{"
X: (240 010 =4\~
Each index i corresponds to a different word. For what words
would we expect p/m > pfo)? p(o) > p/“)?

wofd‘\ wore h\"‘b\b’
™ 7?&“’\
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PROBABILITY REVIEW

- Probability: g(x) - the probability event x happens.

- Joint probability: p{xy) - the probability that event x and
event y happen.

- Conditional Probability p(x | y) - the probability x
happens given that y happens.

Alxly) = ?L(_X;D)
o)
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BAYES THEOREM /RULE

15



PROBABILISTIC MODEL FOR EMAIL

Random model for generating data example (X, y):

- Set y = 0 with probability p(Cp), y = 1 with probability
p(G1) =1—p(Co).
- p(Co) is probability an email is not spam (e.g. 99%).
- p(Cy) is probability an email is spam (e.g. 1%).

- Ify =0, for each |, set x; = 1 with probability p(x; = 1| Co).
- If y =1, for each i, set x; = 1 with probability p(x; = 1| G).
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BAYESIAN VIEW ON CLASSIFICATION

Given unlabeled input (x,—),choose the label y which is
most likely given the data. Recall x =[0,0,1,...,1,0].

maximum a posterior probability (MAP) estimate
Bayesian Classification Algorithm:

Compute:

- p(Co|x): probability y = 0 given observed data vector x.
- p(Cy|x): probability y = 1 given observed data vector x.

Output: Cy or C; depending on which probability is larger.
p(Co|x) and p(Cy|x) are called posterior probabilities.
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EVALUATING THE POSTERIOR

How to compute the posterior? Bayes rule!

P C _ (X ‘ CO)p(Co)

' O (1)
( O’ ) P(X)
DOSterior — likelihood x prior (2)

evidence

- Prior: Probability in class Cy prior to seeing any data.
- Posterior: Probability in class Cy after seeing the data.
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EVALUATING THE POSTERIOR

Goal is to determine which is larger:

p(Colx) :W3 w]

We can ignore evidence p(x) since it is the same for both sides.

.2

vs.  p(Glx) =

Estimate all of the other terms from the labeled data set:

- p(Co) = fraction of emails in data which are not spam.

- p(Cy) = fraction of emails in data which are spam.
" p(x|Co) =7
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NAIVE BAYES

“Naive” Bayes Classifier: Approximate p(x | Co) by assuming
independence:

p(x | Co) = p(x1 | Co) - p(x2 | Co) ... p(Xn | Co)
- p(x; | Co) Is the probability you observe x; given that an
email is not spam.?

A more complicated method might take dependencies into
account.

Recall, x; is either 0 when word; is not present, or 1 when word; is present.
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NAIVE BAYES

Final Naive Bayes Classifier

Using data set compute:

* p(Co), p(C1)

- Forall s
- Compute p(0 at position i | Cp), p(1 at position i | Co)
- Compute p(0 at position i | ¢;), p(1 at position i | C;)

For prediction:

- Forall i
- Compute p(x | Co) =TI, p(xi | Co)
+ Compute p(x | G) = [I;p(xi | C1)
- Return

argmax[p (x| Co) p(Co),p (x| C)p(G)]-
21



BAYESIAN REGRESSION

The Bayesian view offers an interesting alternative perspective
on many machine learning techniques.

Example: Linear Regression.
Probabilistic model:
yi=(Xi,8) +n
where the  ~ N(0,0?) is random Gaussian noise.

L

TR—

The symbol ~ means “is proportional to”. )



BAYESIAN REGRESSION

Bayesian Goal: Choose 3 to maximize:

Pr((X,y) | B) Pr(8)
PriXy))

Pr(B [ (X,y)) =

Assume all @'s are equally likely, so we only care about
Pr((X,y) | B) when maximizing.

Choose B to maximize:

Pr((X,y) | B) ~
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LOG LIKELIHOOD

Easier to work with the log likelihood:

n
argmax [ | o—(i—(xi.B))*/?
-

n
— argmax log (H e‘(yf‘<xfﬁ>)2/”2>
B

=1

B 1=1
n
= argﬁmme,- (x;, 8))’
=1

Choose 8 to minimize 31, (v; — (xi, 8))* = Ily — X8I13!

This is a completely different justification for squared loss.
24



BAYESIAN REGRESSION

0.5

0.4

0.3

0.2

0.1

If we had modeled our noise n as Laplace noise, we would
have found that minimizing ||y — XB3||; was optimal.

— Laplace
-~ Normal

-3 -2 -1 0 1 2 3

Laplace noise has “heavier tails”, meaning that it results in
more outliers.

This is a completely different justification for ¢; loss.
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BAYESIAN REGULARIZATION

) .
Bayesian view: Assume values in 8 = [B4, ..., 84] come from
some distribution.

- Common model: 5; ~ N(0,~?), i.e. normally distributed,
independent.

- Encodes a belief that we are unlikely to see models with
very large coefficients.
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BAYESIAN REGULARIZATION

Recall: want to choose 3 to maximize:

Pr(p | () = T B

- We can still ignore the “evidence” term Pr((X,y)) since it is
a constant that does not depend on 8.

- Pr(8) = Pr(B1) - Pr(B,) - .- Pr(Ba)
- Pr(B) ~
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BAYESIAN REGULARIZATION

Easier to work with the log likelihood:
arg max Pr((X,y) | B) - Pr(B)

—argmaxHe (= 04.8))° He B/

B =1

—argmaxz — (x;, >)2/02+Z—
=1
, d

_argmmz — (x;,8 %Z(ﬁi)z/az

i=1
Choose B to minimize |y — X8||2 + j‘y—iHﬂH%!

This is a completely different justification for ridge
regularization. )8



BAYESIAN REGULARIZATION

Test your intuition: What modeling assumption justifies LASSO
regularization: min [ly — X3||5 + X[ 8]
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