
CS-UY 4563: Lecture 6
Naive Bayes, the Bayesian Perspective

NYU Tandon School of Engineering, Prof. Christopher Musco
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model selection lab

Lab 3, due Next Thursday.

• Predict hand motion based on electrical measurements of
a monkeys brain activity.

• Experience working with sequential (time series) data.
• First lab where computation actually matters (solving
regression problems with 40k examples, 1500 features)
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over-parameterized models

If you have enough features, even most basic model will overfit
in practice.

Example: Linear regression model where d ≥ n. Can always
find β so that Xβ = y exactly.
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avoiding overfitting

Regularization: Explicitly discourage overfitting by adding a
regularization penalty to the loss minimization problem.

min
θ

[L(θ) + Reg(θ)] .

Example: Least squares regression. L(β) = ∥Xβ − y∥22.

• Ridge regression (ℓ2): Reg(β) = λ∥β∥22
• LASSO (ℓ1): Reg(β) = λ∥β∥1
• Elastic net: Reg(β) = λ1∥β∥1 + λ2∥β∥22
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ridge regularization

Ridge regression: minβ ∥Xβ − y∥22 + λ∥β∥22.

• Minimized at β = (XTX+ λI)−1XTy.
• Let β∗ = argminβ L(β) and β∗

R = argminβ L(β) + Reg(β).
• Always have ∥β∗

R∥22 < ∥β∗∥22 and ∥Xβ∗
R − y∥22 > ∥Xβ∗ − y∥22.

Feature selection methods attempt to set many coordinates in
β to 0. Regularization encourages coordinates to be small.
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lasso regularization

Lasso regularization: minβ ∥Xβ − y∥22 + λ∥β∥1.

• Similarly encourages coordinates in β to be small.
• Often the optimal β∗

R will have subset of coordinates
equal to zero, in contrast to ridge regularization.
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lasso regularization

Pros:

• Simpler, more interpretable model.

Cons:

• No closed form solution because ∥β∥1 is not
differentiable.

• Can be solved with iterative methods (gradient descent),
but generally not as quickly as ridge regression.
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classification
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classification setup

• Data Examples: x1, . . . , xn ∈ Rd

• Target: y1, . . . , yn ∈ {0, 2, . . . ,q− 1} when there are q
classes.

• Binary Classification: q = 2, so each yi ∈ {0, 1}.
• Multi-class Classification: q > 2. 1

1Note that there is also multi-label classification where each data example
maybe belong to more than one class.
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classification examples

• Medical diagnosis from MRI: 2 classes.
• MNIST digits: 10 classes.
• Full Optical Character Regonition: 100s of classes.
• ImageNet challenge: 21,000 classes.

Running example today: Email Spam Classification.

9



classification

Today: ML from a Probabilistic/Bayesian Perspective.

Classification can (and often is) solved using the same
loss-minimization framework we saw for regression.

We won’t see that today! We’re going to use classification as a
window into another way of thinking about machine learning.
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spam prediction

Both target labels and data vectors are binary.
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spam prediction

First Goal: Model data (x, y) – in our case emails – as a simple
probabilistic process. Probabilistic Modeling.

How would you randomly create a set of email feature vectors
and labels (from scratch) that looks like a typical inbox?

Should have some spam emails, and some regular emails.
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probabilistic model for email

Random model for generating data example (x, y):

• Set y = 0 with probability p0, y = 1 with probability
p1 = 1− p0.

• p0 is probability an email is not spam (e.g. 99%).
• p1 is probability an email is spam (e.g. 1%).

• If y = 0, for each i, set xi = 1 with probability p(0)i .

• If y = 1, for each i, set xi = 1 with probability p(1)i .

Each index i corresponds to a different word. For what words
would we expect p(1)i > p(0)i ? p(0)i > p(1)i ?
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probability review

• Probability: p(x) – the probability event x happens.
• Joint probability: p(x,y) – the probability that event x and
event y happen.

• Conditional Probability p(x | y) – the probability x
happens given that y happens.

p(x|y) =
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bayes theorem/rule

• p(x|y) = p(x,y)
p(y)

• p(y|x) = p(x,y)
p(x)

So:

p(x|y) = p(y|x)p(x)
p(y)
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probabilistic model for email

Random model for generating data example (x, y):

• Set y = 0 with probability p(C0), y = 1 with probability
p(C1) = 1− p(C0).

• p(C0) is probability an email is not spam (e.g. 99%).
• p(C1) is probability an email is spam (e.g. 1%).

• If y = 0, for each i, set xi = 1 with probability p(xi = 1 | C0).
• If y = 1, for each i, set xi = 1 with probability p(xi = 1 | C1).
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bayesian view on classification

Given unlabeled input (x, ),choose the label y which is
most likely given the data. Recall x = [0, 0, 1, . . . , 1, 0].

maximum a posterior probability (MAP) estimate

Bayesian Classification Algorithm:

Compute:

• p(C0|x): probability y = 0 given observed data vector x.
• p(C1|x): probability y = 1 given observed data vector x.

Output: C0 or C1 depending on which probability is larger.

p(C0|x) and p(C1|x) are called posterior probabilities.
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evaluating the posterior

How to compute the posterior? Bayes rule!

p(C0|x) =
p(x | C0)p(C0)

p(x) (1)

posterior = likelihood× prior
evidence (2)

• Prior: Probability in class C0 prior to seeing any data.
• Posterior: Probability in class C0 after seeing the data.
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evaluating the posterior

Goal is to determine which is larger:

p(C0|x) =
p(x | C0)p(C0)

p(x) vs. p(C1|x) =
p(x | C1)p(C1)

p(x)

We can ignore evidence p(x) since it is the same for both sides.

Estimate all of the other terms from the labeled data set:

• p(C0) = fraction of emails in data which are not spam.
• p(C1) = fraction of emails in data which are spam.
• p(x | C0) = ?
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naive bayes

“Naive” Bayes Classifier: Approximate p(x | C0) by assuming
independence:

p(x | C0) = p(x1 | C0) · p(x2 | C0) · . . . · p(xn | C0)

• p(xi | C0) is the probability you observe xi given that an
email is not spam.2

A more complicated method might take dependencies into
account.

2Recall, xi is either 0 when wordi is not present, or 1 when wordi is present.
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naive bayes

Final Naive Bayes Classifier

Using data set compute:

• p(C0),p(C1)
• For all i:

• Compute p(0 at position i | C0),p(1 at position i | C0)
• Compute p(0 at position i | C1),p(1 at position i | C1)

For prediction:

• For all i:
• Compute p(x | C0) =

∏
i p(xi | C0)

• Compute p(x | C1) =
∏

i p(xi | C1)
• Return

argmax [p (x | C0)p (C0) ,p (x | C1)p (C1)] .
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bayesian regression

The Bayesian view offers an interesting alternative perspective
on many machine learning techniques.

Example: Linear Regression.

Probabilistic model:

yi = ⟨xi,β⟩+ η

where the η ∼ N(0, σ2) is random Gaussian noise.

Pr(η = z) ∼

The symbol ∼ means “is proportional to”. 22



bayesian regression

Bayesian Goal: Choose β to maximize:

Pr(β | (X, y)) = Pr((X, y) | β)Pr(β)
Pr((X, y)) .

Assume all β’s are equally likely, so we only care about
Pr((X, y) | β) when maximizing.

Choose β to maximize:

Pr((X, y) | β) ∼
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log likelihood

Easier to work with the log likelihood:

argmax
β

n∏
i=1

e−(yi−⟨xi,β⟩)2/σ2

= argmax
β

log
( n∏
i=1

e−(yi−⟨xi,β⟩)2/σ2
)

= argmax
β

n∑
i=1

−(yi − ⟨xi,β⟩)2/σ2

= argmin
β

n∑
i=1

(yi − ⟨xi,β⟩)2.

Choose β to minimize
∑n

i=1(yi − ⟨xi,β⟩)2 = ∥y− Xβ∥22!

This is a completely different justification for squared loss.
24



bayesian regression

If we had modeled our noise η as Laplace noise, we would
have found that minimizing ∥y− Xβ∥1 was optimal.

Pr(η = z) ∼

Laplace noise has “heavier tails”, meaning that it results in
more outliers.

This is a completely different justification for ℓ1 loss.
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bayesian regularization

assume all β’s equally likely

Bayesian view: Assume values in β = [β1, . . . , βd] come from
some distribution.

• Common model: βi ∼ N(0, γ2), i.e. normally distributed,
independent.

• Encodes a belief that we are unlikely to see models with
very large coefficients.
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bayesian regularization

Recall: want to choose β to maximize:

Pr(β | (X, y)) = Pr((X, y) | β)Pr(β)
Pr((X, y)) .

• We can still ignore the “evidence” term Pr((X, y)) since it is
a constant that does not depend on β.

• Pr(β) = Pr(β1) · Pr(β2) · . . . · Pr(βd)
• Pr(β) ∼
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bayesian regularization

Easier to work with the log likelihood:

argmax
β

Pr((X, y) | β) · Pr(β)

= argmax
β

n∏
i=1

e−(yi−⟨xi,β⟩)2/σ2 ·
n∏
i=1

e−(βi)
2/γ2

= argmax
β

n∑
i=1

−(yi − ⟨xi,β⟩)2/σ2 +
d∑
i=1

−(βi)
2/γ2

= argmin
β

n∑
i=1

(yi − ⟨xi,β⟩)2 +
σ2

γ2

d∑
i=1

(βi)
2/σ2.

Choose β to minimize ∥y− Xβ∥22 + σ2

γ2
∥β∥22!

This is a completely different justification for ridge
regularization. 28



bayesian regularization

Test your intuition: What modeling assumption justifies LASSO
regularization: min ∥y− Xβ∥22 + λ∥β∥1.
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