CS-UY 4563: Lecture 6
Naive Bayes, the Bayesian Perspective

NYU Tandon School of Engineering, Prof. Christopher Musco



MODEL SELECTION LAB

Lab 3, due Next Thursday.

Surgical opening

Electrocorticography.

- Predict hand motion based on electrical measurements of
a monkeys brain activity.

- Experience working with sequential (time series) data.

- First lab where computation actually matters (solving
regression problems with 40k examples, 1500 features)



OVER-PARAMETERIZED MODELS

If you have enough features, even most basic model will overfit
in practice.

d features

X
X,

n examples

Xn

X

Example: Linear regression model where d > n. Can always
find B so that X3 =y exactly.



AVOIDING OVERFITTING

Regularization: Explicitly discourage overfitting by adding a
regularization penalty to the loss minimization problem.

mein [L(@) + Reg(0)] .

Example: Least squares regression. L(3) = [ X8 — y||2.
- Ridge regression (¢,): Reg(8) = M| B3
- LASSO (£1): Reg(B) = A||B|I1
- Elastic net: Reg(8) = M8l + X218]13



RIDGE REGULARIZATION

Ridge regression: ming |X8 — y|3 + A||8]3.

- Minimized at 8 = (XX + AI)~"XTy.
- Let B8* = argming L(B) and B = argming L(B) + Reg(B).
+ Always have ||z 5 < (1817 and [XB; — yI5 > [X8" — I3

Feature selection methods attempt to set many coordinates in
B to 0. Regularization encourages coordinates to be small.



LASSO REGULARIZATION

Lasso regularization: ming [IX8 — y|13 + || 8|1

- Similarly encourages coordinates in 3 to be small.
- Often the optimal B will have subset of coordinates
equal to zero, in contrast to ridge regularization.




LASSO REGULARIZATION

Pros:

- Simpler, more interpretable model.

Cons:

- No closed form solution because ||3]|1 is not
differentiable.

- Can be solved with iterative methods (gradient descent),
but generally not as quickly as ridge regression.



CLASSIFICATION



CLASSIFICATION SETUP

- Data Examples: xq,...,x, € R9
- Target: y1,...,yn € {0,2,...,9 — 1} when there are g
classes.

- Binary Classification: g =2, so each y; € {0,1}.
- Multi-class Classification: g > 2.

"Note that there is also multi-label classification where each data example
maybe belong to more than one class.



CLASSIFICATION EXAMPLES

- Medical diagnosis from MRI: 2 classes.
- MNIST digits: 10 classes.
- Full Optical Character Regonition: 100s of classes.

- ImageNet challenge: 21,000 classes.

Running example today: Email Spam Classification.



CLASSIFICATION

Today: ML from a Probabilistic/Bayesian Perspective.

Classification can (and often is) solved using the same
loss-minimization framework we saw for regression.

We won't see that today! We're going to use classification as a
window into another way of thinking about machine learning.
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SPAM PREDICTION

feature ML

extraction bag-of-words prediction
@ s [7[0[1]7[7]0]0]0J0]0[0]T[7]7]0] memmmmp O (safe)

@ mmmmmm) [1]0[0[0[1[0[7[0[0[1[0[0[0[0[0] mmmmmmmdp 1 (Spam)

@ mmmmmm) [1]0[0]0[0[1[1]1]0]0]0]0]0]0[0] w=mmmmdp O (safe)

@ mmmmmm) [7]0[0[0[0[7[0]0[T[0[]00[0[0] wmmmmmm)p O (safe)

@ ) [T[0[0]0[1[0]T[O[T[O]0[1[10]0] wemmmmp 1 (spam)

Both target labels and data vectors are binary.
M



SPAM PREDICTION

First Goal: Model data (x,y) - in our case emails — as a simple
probabilistic process. Probabilistic Modeling.

How would you randomly create a set of email feature vectors
and labels (from scratch) that looks like a typical inbox?

Should have some spam emails, and some regular emails.
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PROBABILISTIC MODEL FOR EMAIL

Random model for generating data example (X, y):

- Sety = 0 with probability pg, y = 1 with probability
p1=1-po.
- po is probability an email is not spam (e.g. 99%).
- ps is probability an email is spam (e.g. 1%).
- If y =0, for each i, set x; = 1 with probability pfo).

- If y =1, for each i, set x; = 1 with probability pIO).

Each index i corresponds to a different word. For what words

would we expect p,m > pl(o)? pfo) > pf”?
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PROBABILITY REVIEW

- Probability: p(x) - the probability event x happens.

- Joint probability: p(x,y) - the probability that event x and
event y happen.

- Conditional Probability p(x | y) - the probability x
happens given that y happens.

p(xly) =
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BAYES THEOREM /RULE

. p(%.y)
p(X|y) p y)

So:

_ pyX¥)p(x)

p(x]y) 50
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PROBABILISTIC MODEL FOR EMAIL

Random model for generating data example (X, y):

- Sety = 0 with probability p(Co), y = 1 with probability
p(G) =1—p(Co).
- p(Co) is probability an email is not spam (e.g. 99%).
- p(Gy) is probability an email is spam (e.g. 1%).
- If y =0, for each I, set x; = 1 with probability p(x; = 1| Cop).
- If y =1, for each i, set x; = 1 with probability p(x; = 1| G).



BAYESIAN VIEW ON CLASSIFICATION

Given unlabeled input (x,—),choose the label y which is
most likely given the data. Recall x =[0,0,1,...,1,0].

maximum a posterior probability (MAP) estimate

Bayesian Classification Algorithm:
Compute:

- p(Co|x): probability y = 0 given observed data vector x.
- p(Cy|x): probability y = 1 given observed data vector x.

Output: Cy or C; depending on which probability is larger.

p(Co|x) and p(Cy|x) are called posterior probabilities.



EVALUATING THE POSTERIOR

How to compute the posterior? Bayes rule!

p(x | Co)p(Co)
Colx) = —— "2 (1)
p( O’ ) p(X)
Sosierion = likelihood x prior )

evidence

- Prior: Probability in class Cy prior to seeing any data.
- Posterior: Probability in class Cy after seeing the data.



EVALUATING THE POSTERIOR

Goal is to determine which is larger:

p(Colx) = W vs.  p(Gx) =

p(x | G)p(Cy)
p(Xx)

We can ignore evidence p(x) since it is the same for both sides.
Estimate all of the other terms from the labeled data set:
- p(Co) = fraction of emails in data which are not spam.

- p(Cy) = fraction of emails in data which are spam.
- p(x[Co) =7
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NAIVE BAYES

“Naive” Bayes Classifier: Approximate p(x | Cp) by assuming
independence:

p(x | Co) = p(x1 | Co) - p(x2 | Co) - ... p(Xn | Co)
- p(x; | Co) is the probability you observe x; given that an
email is not spam.?

A more complicated method might take dependencies into
account.

Recall, x; is either 0 when word; is not present, or 1 when word; is present.
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NAIVE BAYES

Final Naive Bayes Classifier

Using data set compute:

* p(Co), P(G1)

- Forall i:
- Compute p(0 at position i | Cp), p(1 at position i | Co)
- Compute p(0 at position i | G;), p(1 at position i | C;)

For prediction:

- Forall I:
- Compute p(x | Co) = []; p(x; | Co)
- Compute p(x | Gi) = TL; p(xi | C1)

- Return

argmax [p (x| Co) p(Co),p (x| Ci)p(G)].
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BAYESIAN REGRESSION

The Bayesian view offers an interesting alternative perspective
on many machine learning techniques.

Example: Linear Regression.
Probabilistic model:
yi= X, 8) +n

where the  ~ N(0, 0?) is random Gaussian noise.

The symbol ~ means “is proportional to”. -



BAYESIAN REGRESSION

Bayesian Goal: Choose 3 to maximize:

Pr((X,y) [ B) Pr(8)
PriX,y))

Pr(B | (X,y)) =

Assume all 3's are equally likely, so we only care about
Pr((X,y) | B) when maximizing.

Choose B to maximize:

Pr((X,y) | B) ~
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LOG LIKELIHOOD

Easier to work with the log likelihood:

n
arg max H o~ (Vi—(xi,8))?/o?
A

n
= argmax log (H e(yf<xfﬁ>)2/"2>
A

i=1

B =i
n
= B > i — (%, 8))’
=1

Choose B to minimize Y7 (v; — (x;, 8))* = |ly — X3]|3!

This is a completely different justification for squared loss.
2%



BAYESIAN REGRESSION

If we had modeled our noise n as Laplace noise, we would
have found that minimizing |ly — X3||» was optimal.

os — Laplace
-~ Normal

0.4

0.3

0.2

0.1

00—
=3 -2 = 0 T 2

Laplace noise has “heavier tails”, meaning that it results in
more outliers.

This is a completely different justification for ¢4 loss.
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BAYESIAN REGULARIZATION

assume-at3'sequaty-tkely
Bayesian view: Assume values in 3 = [fs, ..., 4] come from
some distribution.

- Common model: 5; ~ N(0,~?), i.e. normally distributed,
independent.

- Encodes a belief that we are unlikely to see models with
very large coefficients.
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BAYESIAN REGULARIZATION

Recall: want to choose 3 to maximize:

Pr(p | (%)) = o B,

- We can still ignore the “evidence” term Pr((X,y)) since it is
a constant that does not depend on .

* Pr(B) = Pr(B1) - Pr(B2) - ... - Pr(Ba)
- Pr(B) ~
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BAYESIAN REGULARIZATION

Easier to work with the log likelihood:

arggnax Pr((X,y) | B) - Pr(B8)
n n
= argmax [ [ e~ 0i= 8%/ H o~ (B /7
B i |
_argmaxz X,, )/U +Z

Choose 3 to minimize |ly — X813 + %;Hﬁ\\%!

This is a completely different justification for ridge
regularization. )8



BAYESIAN REGULARIZATION

Test your intuition: What modeling assumption justifies LASSO
regularization: min [ly — X33 + A 8|
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