CS-UY 4563: Lecture 5
Model Selection and Regularization

NYU Tandon School of Engineering, Prof. Christopher Musco



COURSE ADMIN

- Multiple linear regression lab due tomorrow night.
- Second written homework posted due next Tuesday 2/18.

Practice with gradients, function transformations, reduction
from piecewise regression to multiple linear regression.
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COURSE ADMIN

- TA office hours moved to 11am - 1pm in 219 Rogers Hall -
this will be their permanent location.

+ | won't have office hours this week.



LOSS MINIMIZATION

Basic machine learning problem:

- Given model fg and loss function Liin(fe)-

- Choose 6* to minimize Liin(fo)-



MODEL SELECTION

Model selection problem:

- Given choice of many models f( 7 92 : eqq).

* Choose 67, ..., 6; to minimize Ltrain(fg1), <oy Lirain(fag)-

- Then choose the “best” model for our data.



MODEL SELECTION EXAMPLE

Polynomial regression models with different degree. See
demo_polyfit.ipynb.

v
—_————

- Model f() [l linear functions.
- Model f()' all quadratic functions.
Modelf() all cubic functions.



MODEL SELECTION EXAMPLE

bag-of-words models and n-grams

Common way to represent documents (emails, webpages,

books) as numerical data. The ultimate example of 1-hot
encoding.

This|is|asentence.
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MODEL SELECTION EXAMPLE

bag-of-words models and n-grams

Common way to represent documents (emails, webpages,
books) as numerical data. The ultimate example of 1-hot

encoding.
This[is|alsentence]
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“a sentence” “isa” “this is”

bi-grams



MODEL SELECTION EXAMPLE

bag-of-words models and n-grams

Common way to represent documents (emails, webpages,
books) as numerical data. The ultimate example of 1-hot
encoding.

Thislis alsentence)
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MODEL SELECTION EXAMPLE

Models of increasing order:

- Model ]‘gw): spam filter that looks at single words.
: Modelf(é): spam filter that looks at bi-grams.
- Model fg): spam filter that looks at tri-grams.

“interest” “low interest” “low interest loan”

Increased length of n-gram means more expressive power.
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MODEL SELECTION EXAMPLE

Electrocorticography ECoG (upcoming lab or demo):

- Implant grid of electrodes on surface of the brain to
measure electrical activity in different regions.

Sensory area Motor area

Surgical opening

Electrocorticography.

- Predict hand motion based on ECoG measurements.
- Model order: predict movement at time t using brain
signals at time t,t —1,...,t — g for varying values of g. 1



MODEL SELECTION

The more complex our model class the better our loss:
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So training loss alone is not usually a good metric for model
selection. Small loss does not imply generalization.
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TRAIN-TEST PARADIGM

Better approach: Evaluate model on fresh test data which was
not used during training.

Test/train split:

- Given data set (X,y), split into two sets (Xiain, Yirain) and
(Xtest, Ytest)-

- Train g models fV, ..., f9 by finding parameters which
minimize the l0ss oNn (Xrains Ytrain)-

- Evaluate loss of each trained model on (Xest, Viest)-

Sometimes you will see the term validation set instead of test set.
Sometimes there will be both: use validation set for choosing the
model, and test set for getting a final performance measure.
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TRAIN-TEST PARADIGM
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- Train loss continues to decrease as model complexity
grows.

- Test loss “turns around” once our model gets too complex.
Minimized around degree 3 — 4.
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TRAIN-TEST PARADIGM

Typical train-test split: 70-90% / 10-30%. Trade-off between
between optimization of model parameters and better
estimate of model performance.

Cross-validation can offer a better trade off:
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TRAIN-TEST INTUITION

Intuition: Models which perform better on the test set will
generalize better to future data.

Goal: Introduce a little bit of formalism to better understand
what this means. What is “future” data?



STATISTICAL LEARNING MODEL

Statistical Learning Model:

- Assume each data example is randomly drawn from some
distribution (x,y) ~ D.

X | v

This is not a simplifying assumptions! The distribution could
be arbitrarily complicated.



RISK

Statistical Learning Model:

- Assume each data example is randomly drawn from some
distribution (x,y) ~ D.

- Define the Risk of a model/parameters:

R(f,0) = E(xy)~p [L(f(X,0) = y)]

here L is some loss function (e.g. L(z) = |z| or L(z) = Z%).

Goal: Find model f € {f(V,...,f19} and parameter vector 6 to
minimize the R(f, 6).



RISK

- (Population) Risk:

R(f: 9) = IEf’(x,y)ND [L (f(X, 0) - y)]

- Empirical Risk: Draw (X1, 1), ..., (Xn,¥n) ~ D
,] n
Re(f,0) = — ; L(f(x.6) ~y)

Minimizing training loss is the same as minimizing the
empirical risk on the training data.

Often called empirical risk minimization.
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EMPIRICAL RISK

For any fixed model f and parameters 6,

E[Re(f, 0)] = R(f, 0).

Only true if fand @ are chosen without looking at the data
used to compute the empirical risR.

20



MODEL SELECTION

+ Train g models (fV,67),..., (A9, 67).
+ For each model, compute empirical risk Re(f(), 87) using
test data.

- Since we assume our original dataset was drawn
independently from D, so is the random test subset.

No matter how our models were trained or how complex they
are, Re(fl", 8%) is an unbiased estimate of the true risk
R(f10,87) for every i. Can use it to distinguish between models.
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ADAPTIVE DATA ANALYSIS

Slight caveat: This is typically not how machine learning or
scientific discover works in practice!

Typical workflow:

- Train a class of models.
-+ Test.

- Adjust class of models.
- Test.

- Adjust class of models.
- Cont...

Final model implicitly depends on test set because
performance on the test set guided how we changed our

model.
2



ADAPTIVE DATA ANALYSIS

Popularity of ML benchmarks and competitions leads to
adaptivity at a massive scale.

11 Active Competitions

Deepfake Detection Challenge $1,000,000
Identify videos with facial or voice manipulations 1,595 teams
.
Google QUEST Q&A Labelmg $25,000
improving automated understanding of complex question answer content 1559 teams
.

$10,000
2,657 teams

" Bengali.Al Handwritten Grapheme Classification $10,000
Classify the components of handwritten Bengali 1194 teams.

N

Kaggle (various competitions)

I M Q. G E NET 14,197,122 images, 21841 synses indexed
o N C
NLC

Explore Download Challenges Publications Updates About

Notlogged in. Login | Signup

Imagenet (image classification and categorization) 23



ADAPTIVE DATA ANALYSIS

Is adaptivity a problem? Does it lead to over-fitting? How
much? How can we prevent it? All current research.

REPORT

The reusable holdout: Preserving validity in adaptive
data analysis

Cynthia Dwork'", Vitaly Feldman?*, Moritz Hardt>", Toniann Pitassi", Omer Reingold®", Aaron Roth5"
+ See all authors and affiliations

Science 07 Aug 2015:
Vol. 349, Issue 6248, pp. 636-638
DOI: 10.1126/science.aaa9375

Do ImageNet Classifiers Generalize to ImageNet?

Benjamin Recht* Rebecca Roelofs Ludwig Schmidt Vaishaal Shankar
UC Berkeley UC Berkeley UC Berkeley UC Berkeley

Abstract

We build new test sets for the CIFAR-10 and ImageNet datasets. Both benchmarks have been
the focus of intense research for almost a decade, raising the danger of overfitting to excessively
re-used test sets. By closely following the original dataset creation processes, we test to what
extent current classification models generalize to new data. We cvaluate a broad range of models
and find accuracy drops of 3% — 15% on CIFAR-10 and 11% — 14% on ImageNet. However,
accuracy gains on the original test sets translate to larger gains on the new test sets. Our results
suggest that the accuracy drops are not caused by adaptivity, but by the models’ inability to
generalize to slightly “harder” images than those found in the original test sets. 2%

12 Jun 2019



REGULARIZATION



OVER-PARAMETERIZED MODELS

In all the model selection examples we've discussed we had
full control over the complexity of the model: could range from
underfitting to overfitting.

In practice, you often don’t have this freedom. Even the most
basic model will overfit.

d features

X
X3

n examples

Xn

X

Example: Linear regression model where d > n. Can always

find B so that X3 =y exactly.
25



FEATURE SELECTION

Select some subset of features to use in model:

—

X X

Filter method: Compute some metric for each feature, and
select features with highest score.

- Example: compute loss/R? value when each feature in X is
used in single variate regression.
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FEATURE SELECTION

Exhaustive approach: Pick best subset of g features.
Faster approach: Greedily select g features.

Stepwise Regression:

- Forward: Step 1: pick single feature that gives lowest loss.
Step k: pick feature that when combined with previous
kR — 1 chosen features gives lowest l0ss.

- Backward: Start with all of the features. Greedily eliminate
those which have least impact on model performance.

Feature selection deserves more than two slides, but we won't
go into too much more detail!

27



ALTERNATIVE APPROACH

Regularization: Explicitly discourage overfitting by adding a
regularization penalty to the loss minimization problem.

mein [L(@) + Reg(0)].

Example: Least squares regression. L(8) = || X8 — y||3.

- Ridge regression (¢,): Reg(B3) = |33

- LASSO (least absolute shrinkage and selection operator)
(¢1): Reg(B) = MBIl

- Elastic net: Reg(3) = M||8[11 + \2118]15
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RIDGE REGULARIZATION

Ridge regression: ming X8 — y|3 + AlIB|3.

-+ As X — oo, we expect ||B]2 — 0 and [|XB — y|I2 — |lyll3.

- Feature selection methods attempt to set many
coordinates in @ to 0. Ridge regularizations encourages
coordinates to be small.

aey 29



RIDGE REGULARIZATION

Ridge regression: ming X8 — y|3 + AlIB|3.

- Can be viewed as shrinking the size of our model class.
Relaxed version of minﬁ:”B”%<C X8 — y||3. Which won't
have a solution at zero for all y, even when
over-parameterized.

d features

X
X3

n examples

Xn

X

- Method is not invariant to data scaling. Typically when
using regularization we mean center and scale columns to
have unit variance. 30



LASSO REGULARIZATION

Lasso regularization: ming [IX8 — y|13 + || 8|1

-+ As X — oo, we expect ||B|l1 — 0 and [|X8 —y|13 — |ly|%.
- Typically encourages subset of 8;'s to go to zero, in
contrast to ridge regularization.

31



LASSO REGULARIZATION

Pros:

- Simpler, more interpretable model.
+ More intuitive reduction in model order.

Cons:

- No closed form solution because ||3]|1 is not
differentiable.

- Can be solved with iterative methods, but generally not as
quickly as ridge regression.
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REGULARIZATION

Notes:

- Model selection/cross validation used to choose optimal
scaling A on A||B]|3 or A||B]]1.

- Often grid search for best parameters is performed in “log
space”. E.g. consider [\, ..., A\q] = 1.5[7473=2=1,-0.1.2.3.4]
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