
CS-UY 4563: Lecture 5
Model Selection and Regularization

NYU Tandon School of Engineering, Prof. Christopher Musco
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course admin

• Multiple linear regression lab due tomorrow night.
• Second written homework posted due next Tuesday 2/18.

Practice with gradients, function transformations, reduction
from piecewise regression to multiple linear regression.
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course admin

• TA office hours moved to 11am - 1pm in 219 Rogers Hall –
this will be their permanent location.

• I won’t have office hours this week.
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loss minimization

Basic machine learning problem:

• Given model fθ and loss function Ltrain(fθ).
• Choose θ∗ to minimize Ltrain(fθ).
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model selection

Model selection problem:

• Given choice of many models f(1)θ1
, f(2)θ2

, . . . , f(q)θq
.

• Choose θ∗
1 , . . . ,θ

∗
q to minimize Ltrain(fθ1), . . . , Ltrain(fθq).

• Then choose the “best” model for our data.

5



model selection example

Polynomial regression models with different degree. See
demo_polyfit.ipynb.

• Model f(1)θ1
: all linear functions.

• Model f(2)θ2
: all quadratic functions.

• Model f(3)θ3
: all cubic functions.

• . . .
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model selection example

bag-of-words models and n-grams

Common way to represent documents (emails, webpages,
books) as numerical data. The ultimate example of 1-hot
encoding.

bag-of-words
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model selection example

bag-of-words models and n-grams

Common way to represent documents (emails, webpages,
books) as numerical data. The ultimate example of 1-hot
encoding.

bi-grams
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model selection example

bag-of-words models and n-grams

Common way to represent documents (emails, webpages,
books) as numerical data. The ultimate example of 1-hot
encoding.

tri-grams
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model selection example

Models of increasing order:

• Model f(1)θ1
: spam filter that looks at single words.

• Model f(2)θ2
: spam filter that looks at bi-grams.

• Model f(3)θ3
: spam filter that looks at tri-grams.

• . . .

“ interest” “low interest” “low interest loan”

Increased length of n-gram means more expressive power.
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model selection example

Electrocorticography ECoG (upcoming lab or demo):

• Implant grid of electrodes on surface of the brain to
measure electrical activity in different regions.

• Predict hand motion based on ECoG measurements.
• Model order: predict movement at time t using brain
signals at time t, t− 1, . . . , t− q for varying values of q. 11



model selection

The more complex our model class the better our loss:

So training loss alone is not usually a good metric for model
selection. Small loss does not imply generalization.
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train-test paradigm

Better approach: Evaluate model on fresh test data which was
not used during training.

Test/train split:

• Given data set (X, y), split into two sets (Xtrain, ytrain) and
(Xtest, ytest).

• Train q models f(1), . . . , f(q) by finding parameters which
minimize the loss on (Xtrain, ytrain).

• Evaluate loss of each trained model on (Xtest, ytest).

Sometimes you will see the term validation set instead of test set.
Sometimes there will be both: use validation set for choosing the
model, and test set for getting a final performance measure.
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train-test paradigm

• Train loss continues to decrease as model complexity
grows.

• Test loss “turns around” once our model gets too complex.
Minimized around degree 3− 4.
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train-test paradigm

Typical train-test split: 70-90% / 10-30%. Trade-off between
between optimization of model parameters and better
estimate of model performance.

Cross-validation can offer a better trade off:
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train-test intuition

Intuition: Models which perform better on the test set will
generalize better to future data.

Goal: Introduce a little bit of formalism to better understand
what this means. What is “future” data?
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statistical learning model

Statistical Learning Model:

• Assume each data example is randomly drawn from some
distribution (x, y) ∼ D.

This is not a simplifying assumptions! The distribution could
be arbitrarily complicated.
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risk

Statistical Learning Model:

• Assume each data example is randomly drawn from some
distribution (x, y) ∼ D.

• Define the Risk of a model/parameters:

R(f,θ) = E(x,y)∼D [L (f(x,θ)− y)]

here L is some loss function (e.g. L(z) = |z| or L(z) = z2).

Goal: Find model f ∈ {f(1), . . . , f(q)} and parameter vector θ to
minimize the R(f,θ).
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risk

• (Population) Risk:

R(f,θ) = E(x,y)∼D [L (f(x,θ)− y)]

• Empirical Risk: Draw (x1, y1), . . . , (xn, yn) ∼ D

RE(f,θ) =
1
n

n∑
i=1

L (f(x,θ)− y)

Minimizing training loss is the same as minimizing the
empirical risk on the training data.

Often called empirical risk minimization.
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empirical risk

For any fixed model f and parameters θ,

E [RE(f,θ)] = R(f,θ).

Only true if f and θ are chosen without looking at the data
used to compute the empirical risk.
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model selection

• Train q models (f(1),θ∗
1 ), . . . , (f(q),θ∗

q).
• For each model, compute empirical risk RE(f(i),θ∗

i ) using
test data.

• Since we assume our original dataset was drawn
independently from D, so is the random test subset.

No matter how our models were trained or how complex they
are, RE(f(i),θ∗

i ) is an unbiased estimate of the true risk
R(f(i),θ∗

i ) for every i. Can use it to distinguish between models.
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adaptive data analysis

Slight caveat: This is typically not how machine learning or
scientific discover works in practice!

Typical workflow:

• Train a class of models.
• Test.
• Adjust class of models.
• Test.
• Adjust class of models.
• Cont...

Final model implicitly depends on test set because
performance on the test set guided how we changed our
model.

22



adaptive data analysis

Popularity of ML benchmarks and competitions leads to
adaptivity at a massive scale.

Kaggle (various competitions)

Imagenet (image classification and categorization) 23



adaptive data analysis

Is adaptivity a problem? Does it lead to over-fitting? How
much? How can we prevent it? All current research.
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regularization
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over-parameterized models

In all the model selection examples we’ve discussed we had
full control over the complexity of the model: could range from
underfitting to overfitting.

In practice, you often don’t have this freedom. Even the most
basic model will overfit.

Example: Linear regression model where d ≥ n. Can always
find β so that Xβ = y exactly.
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feature selection

Select some subset of features to use in model:

Filter method: Compute some metric for each feature, and
select features with highest score.

• Example: compute loss/R2 value when each feature in X is
used in single variate regression.

Any potential limitations of this approach?
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feature selection

Exhaustive approach: Pick best subset of q features.

Faster approach: Greedily select q features.

Stepwise Regression:

• Forward: Step 1: pick single feature that gives lowest loss.
Step k: pick feature that when combined with previous
k− 1 chosen features gives lowest loss.

• Backward: Start with all of the features. Greedily eliminate
those which have least impact on model performance.

Feature selection deserves more than two slides, but we won’t
go into too much more detail!
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alternative approach

Regularization: Explicitly discourage overfitting by adding a
regularization penalty to the loss minimization problem.

min
θ

[L(θ) + Reg(θ)] .

Example: Least squares regression. L(β) = ∥Xβ − y∥22.

• Ridge regression (ℓ2): Reg(β) = λ∥β∥22
• LASSO (least absolute shrinkage and selection operator)
(ℓ1): Reg(β) = λ∥β∥1

• Elastic net: Reg(β) = λ1∥β∥1 + λ2∥β∥22
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ridge regularization

Ridge regression: minβ ∥Xβ − y∥22 + λ∥β∥22.

• As λ → ∞, we expect ∥β∥22 → 0 and ∥Xβ − y∥22 → ∥y∥22.
• Feature selection methods attempt to set many
coordinates in β to 0. Ridge regularizations encourages
coordinates to be small.
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ridge regularization

Ridge regression: minβ ∥Xβ − y∥22 + λ∥β∥22.

• Can be viewed as shrinking the size of our model class.
Relaxed version of minβ:∥β∥22<c ∥Xβ − y∥22. Which won’t
have a solution at zero for all y, even when
over-parameterized.

• Method is not invariant to data scaling. Typically when
using regularization we mean center and scale columns to
have unit variance. 30



lasso regularization

Lasso regularization: minβ ∥Xβ − y∥22 + λ∥β∥1.

• As λ → ∞, we expect ∥β∥1 → 0 and ∥Xβ − y∥22 → ∥y∥22.
• Typically encourages subset of βi’s to go to zero, in
contrast to ridge regularization.
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lasso regularization

Pros:

• Simpler, more interpretable model.
• More intuitive reduction in model order.

Cons:

• No closed form solution because ∥β∥1 is not
differentiable.

• Can be solved with iterative methods, but generally not as
quickly as ridge regression.
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regularization

Notes:

• Model selection/cross validation used to choose optimal
scaling λ on λ∥β∥22 or λ∥β∥1.

• Often grid search for best parameters is performed in “log
space”. E.g. consider [λ1, . . . , λq] = 1.5[−4,−3,−2,−1,−0,1,2,3,4].
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