CS-UY 4563: Lecture 4 Finish Linear Regression, Model Selection

NYU Tandon School of Engineering, Prof. Christopher Musco

COURSE ADMIN

- · First written assignment due Thursday, by midnight.
- Second lab posted lab_robot_partial.ipynb due next Tuesday 2/11, by midnight.

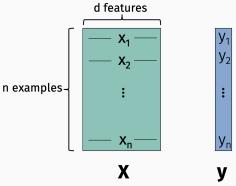
MULTIPLE PREDICTOR DATA SET

Target variable:

• Scalars y_1, \ldots, y_n for n data examples (a.k.a. samples).

Predictor variables:

• d dimensional vectors $\mathbf{x}_1, \dots, \mathbf{x}_n$ for n data examples and d features



MOTIVATING EXAMPLE

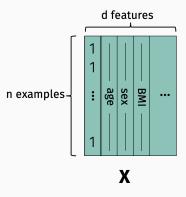
Motivating example: Predict diabetes progression in patients after 1 year based on health metrics. (Measured via numerical score.)

Features: Age, sex, body mass index, average blood pressure, six blood serum measurements (e.g. cholesterol, lipid levels, iron, etc.)

Demo in demo1_diabetes.ipynb.

THE DATA MATRIX

Predictor variables:



MULTIPLE LINEAR REGRESSION

Linear Least-Squares Regression.

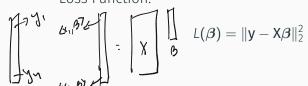
· Model:

$$f_{\beta}(\mathbf{x}) = \langle \mathbf{x}, \boldsymbol{\beta} \rangle$$

· Model Parameters:

$$\boldsymbol{\beta} = [\beta_1, \beta_2, \dots, \beta_d]$$

· Loss Function:



LOSS MINIMIZATION

Machine learning goal: minimize the loss function $L(\beta): \mathbb{R}^d \to \mathbb{R}$. $VL(\beta): \mathbb{R}^d \to \mathbb{R}^d$

Find optimum by determining for which $\beta = [\beta_1, \dots, \beta_d]$ the gradient is 0. I.e. when do we have:

$$\nabla L(\beta) = \begin{bmatrix} \frac{\partial L}{\partial \beta_1} \\ \frac{\partial L}{\partial \beta_2} \\ \vdots \\ \frac{\partial L}{\partial \beta_d} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

GRADIENT WARMUP

Function:
$$f(z) = a^T z$$
 for some fixed column vector $a \in \mathbb{R}^d$

Gradient: $\nabla f(z) = \begin{cases} df/dz, & f(z) = \frac{z}{a_1} \\ df/dz, & f(z) = \frac{a_1}{a_2} \end{cases}$

Function:

 $f(z) = ||z||_2^2$ $z \cdot z$

Gradient:
$$\frac{36}{5} = 22$$
;

GRADIENT WARMUP

Function:
$$f(z) = g(Az) = \text{ for fixed } A \in \mathbb{R}^{n \times d} \text{ and function } g$$
Gradient:
$$w = Az \quad w \in \mathbb{R}^{n}$$

$$dz; g(w) = \sum_{j=1}^{n} \frac{dg}{dw_{j}} \cdot \left(\frac{\partial w_{j}}{\partial z_{i}}\right) \rightarrow A_{j};$$

$$dz; g(w) = \sum_{j=1}^{n} \frac{dg}{dw_{j}} \cdot \left(\frac{\partial w_{j}}{\partial z_{i}}\right) \rightarrow A_{j};$$

$$dz; g(w) = \sum_{j=1}^{n} \frac{dg}{dw_{j}} \cdot \left(\frac{\partial w_{j}}{\partial z_{i}}\right) \rightarrow A_{j};$$

$$dz; g(w) = \sum_{j=1}^{n} \frac{dg}{dw_{j}} \cdot \left(\frac{\partial w_{j}}{\partial z_{i}}\right) \rightarrow A_{j};$$

$$dz; g(w) = \sum_{j=1}^{n} \frac{dg}{dw_{j}} \cdot \left(\frac{\partial w_{j}}{\partial z_{i}}\right) \rightarrow A_{j};$$

$$dz; g(w) = \sum_{j=1}^{n} \frac{dg}{dw_{j}} \cdot \left(\frac{\partial w_{j}}{\partial z_{i}}\right) \rightarrow A_{j};$$

$$dz; g(w) = \sum_{j=1}^{n} \frac{dg}{dw_{j}} \cdot \left(\frac{\partial w_{j}}{\partial z_{i}}\right) \rightarrow A_{j};$$

GRADIENT

Loss function:

$$\frac{\int_{A}^{L(\beta)} = \|y - x\beta\|_{2}^{2}}{\int_{A}^{L(\beta)} = \|y - x\beta\|_{2}^{2}} + \nabla_{y}(\omega)$$

$$\frac{\nabla_{z} g(\omega)}{\nabla_{z} g(\omega)} = \nabla_{z} h(Az) = A^{\dagger} \nabla_{y}(\omega) = A^{\dagger} \nabla_{y}(Az)$$

$$\frac{L(\beta)}{L(\beta)} = \|y\|_{2}^{2} + \|x\beta\|_{2}^{2} - 2 < y, x_{\beta} > 0$$

$$\nabla_{y}(\beta) = \nabla_{y}\|_{2}^{2} + \nabla_{y}(\beta)\|_{2}^{2} - 2\nabla_{y}(x_{\beta})$$

+ x 1.2 x 6 - 2 x y

10

GRADIENT DERIVATION

Loss function: $\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_2^2$.

LOSS MINIMIZATION

Goal: minimize the loss function $L(\beta) = \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_2^2$.

$$\nabla L(\boldsymbol{\beta}) = 2X^{\mathsf{T}}X\boldsymbol{\beta} - 2X^{\mathsf{T}}y = 0$$

Solve for optimal β^* :

$$\mathbf{X}^{T}\mathbf{X}\boldsymbol{\beta}^{*} = \mathbf{X}^{T}\mathbf{y}$$
$$\boldsymbol{\beta}^{*} = \left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{X}^{T}\mathbf{y}$$

TEST YOUR INTUITION

What is the sign of β_1 when we run a <u>simple</u> linear regression using the following predictors for <u>diabetes progression</u> in isolation:

- · Body mass index (BMI): Positive
- Sex (values of 1 indicates male, value of 2 indicates female): Positive

INTERACTING VARIABLES

What is the sign of the corresponding β 's when we run a <u>multiple</u> linear regression using the following predictors together:

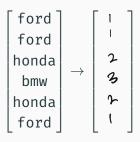
- Body mass index (BMI): Positive
- Sex (values of 1 indicates male, value of 2 indicates female): Negative

Can you explain this? Try to think of your own example of a regression problem where this phenomenon might show up.

DEALING WITH CATEGORICAL VARIABLES

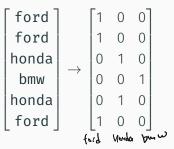
The <u>sex</u> variable in the diabetes problem was <u>binary</u>.

Suppose we go back to the MPG prediction problem. What if we had a <u>categorical</u> predictor variable for car make with more than 2 options: e.g. Ford, BMW, Honda. How would you encode as a numerical column?



ONE HOT ENCODING

Better approach: One Hot Encoding.



- Create a separate feature for every category, which is 1 when the variable is in that category, zero otherwise.
- Not too hard to do by hand, but you can also use library functions like sklearn.preprocessing.OneHotEncoder.

Avoids adding inadvertent linear relationships.

TRANSFORMED LINEAR MODELS

Suppose we have singular variate data examples (x, y). How could we fit the non-linear model:

$$y \approx \beta_{0} + \beta_{1}x + \beta_{2}x^{2} + \beta_{3}x^{3}.$$

$$y \approx \beta_{0} + \beta_{1}x + \beta_{2}x^{2} + \beta_{3}x^{3}.$$

$$y \approx \beta_{0} + \beta_{1}x + \beta_{2}x^{2} + \beta_{3}x^{3}.$$

$$y \approx \beta_{0} + \beta_{1}x + \beta_{2}x^{2} + \beta_{3}x^{3}.$$

$$y \approx \beta_{0} + \beta_{1}x + \beta_{2}x^{2} + \beta_{3}x^{3}.$$

$$y \approx \beta_{0} + \beta_{1}x + \beta_{2}x^{2} + \beta_{3}x^{3}.$$

$$y \approx \beta_{0} + \beta_{1}x + \beta_{2}x^{2} + \beta_{3}x^{3}.$$

$$y \approx \beta_{0} + \beta_{1}x + \beta_{2}x^{2} + \beta_{3}x^{3}.$$

$$y \approx \beta_{0} + \beta_{1}x + \beta_{2}x^{2} + \beta_{3}x^{3}.$$

$$y \approx \beta_{0} + \beta_{1}x + \beta_{2}x^{2} + \beta_{3}x^{3}.$$

$$y \approx \beta_{0} + \beta_{1}x + \beta_{2}x^{2} + \beta_{3}x^{3}.$$

$$y \approx \beta_{0} + \beta_{1}x + \beta_{2}x^{2} + \beta_{3}x^{3}.$$

TRANSFORMED LINEAR MODELS

Transform into a multiple linear regression problem:

Wi M My -
$$X \in \mathbb{N}_{\bullet}^{\bullet}$$
 $X = \begin{bmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 1 & x_2 & x_2^1 & x_2^3 \\ 1 & x_3 & x_3^2 & x_3^3 \\ \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & x_n^3 \end{bmatrix}$

Each column j is generated by a different basis function $\phi_i(x)$. Could have:

•
$$\phi_i(x) = x^q$$

•
$$\phi_i(x) = \sin(x)$$

•
$$\phi_j(x) = \cos(10x)$$

•
$$\phi_j(x) = 1/x$$

Transformations can also be for multivariate data.

Example: Multinomial model.

- Given a dataset with <u>target y</u> and <u>predictors x, z</u>.
- For inputs $(x_1, z_1), \dots, (x_n, z_n)$ construct the data matrix:

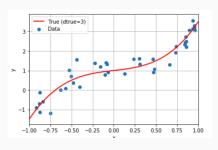
$$\begin{bmatrix} 1 & x_1 & x_1^2 & z_1 & z_1^2 & x_1z_1 \\ 1 & x_2 & x_2^2 & z_2 & z_2^2 & x_2z_2 \\ \vdots & \vdots & & \vdots & & \\ 1 & x_n & x_n^2 & z_n & z_n^2 & x_nz_n \end{bmatrix}$$

· Captures non-linear interaction between x and y.

Remainder of lecture: Learn about <u>model selection</u>, <u>test/train</u> <u>paradigm</u>, and <u>cross-validation</u> through a simple example.

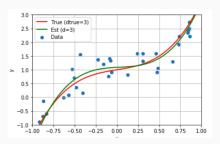
Simple experiment:

- Randomly select data points $x_1, ..., x_n \in [-1, 1]$.
- Choose a degree 3 polynomial p(x).
- Create some fake data: $y_i = p(x_i) + \eta$ where η is a random number (e.g random Gaussian).



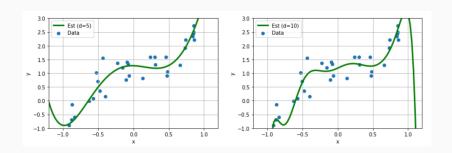
Simple experiment:

• Use multiple linear regression to fit a degree 3 polynomial.



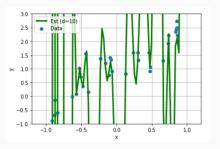
What if we fit a higher degree polynomial?

- Fit degree 5 polynomial under squared loss.
- Fit degree 10 polynomial under squared loss.

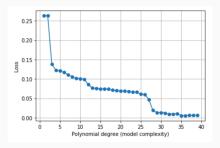


Even higher?

• Fit degree 40 polynomial under squared loss.



The more **complex** our model class (i.e. the higher degree we allow) the better our loss:



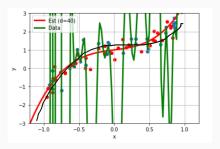
Is our model getting better and better?

Given the raw data, how do we know which model to choose?

Degree 3? Degree 40?

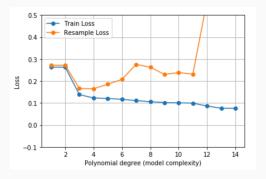
Problem: Loss alone is not informative for choosing model.

For more complex models, we get smaller loss on the training data, but don't expect to perform well on "new" data:



In other words, the model does not generalize.

Solution: Directly test model on "new data".



- · Loss continues to decrease as model complexity grows.
- Performance on new data "turns around" once our model gets too complex. Minimized around degree 4.

TRAIN-TEST PARADIGM

In most situations, we cannot simply collect or generate "new data". Here's an alternative:

Test/train split:

- Given data set (X, y), split into two sets (X_{tr}, y_{tr}) and (X_{ts}, y_{ts}) .
- Train q models f_1, \ldots, f_q by finding parameters which minimize the loss on $(\mathbf{X}_{tr}, \mathbf{y}_{tr})$.
- Evaluate loss of each trained model on (X_{ts}, y_{ts}) .

TRAIN-TEST PARADIGM

Justification:

- Assume each data example is randomly drawn from some distribution $(\mathbf{x}, y) \sim \mathcal{D}$: we don't care about any particulars of this distribution.
- Goal: Find model $f \in \{f_1, \dots, f_q\}$ and parameter vector $\boldsymbol{\theta}$ to minimize the Risk:

$$R(f, \theta) = \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{D}} [L(f(\mathbf{x}, \theta) - y)]$$

where L is some loss function (e.g. L(z) = |z| or $L(z) = z^2$).

TRAIN-TEST PARADIGM

Justification:

- Suppose the testing dataset (X_{ts}, y_{ts}) has m examples.
- · Given any model f and parameters θ , let

$$L_{ts}(f, \boldsymbol{\theta}) = \frac{1}{m} \sum_{\mathbf{x}, \mathbf{y} \in (\mathbf{X}_{ts}, \mathbf{y}_{ts})} L(f(\mathbf{x}, \boldsymbol{\theta}) - \mathbf{y})$$

· Claim:1

$$\mathbb{E}\left[L_{\mathsf{ts}}(f,\boldsymbol{\theta})\right] = R(f,\boldsymbol{\theta}).$$

 So our testing error is an <u>unbiased estimate</u> for the true <u>risk</u> which measures how well a function performs on average for any "new" data point.

¹Only true if f and θ are chose without looking at your test data.

K-FOLD CROSS VALIDATION

- · Randomly divide data in K parts.
 - Typical choice: K = 5 or K = 10.
- Use K-1 parts for training, 1 for test.
- For each model, compute test loss Lts for each "fold".
- · Choose model with best average loss.
- · Retrain best model on entire dataset.

K-FOLD CROSS VALIDATION

Leave-one-out cross validation: take K = n, where n is our total number of samples.

Is there any disadvantage to choosing K larger?