
CS-UY 4563: Lecture 4
Finish Linear Regression, Model Selection

NYU Tandon School of Engineering, Prof. Christopher Musco
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course admin

• First written assignment due Thursday, by midnight.
• Second lab posted lab_robot_partial.ipynb due
next Tuesday 2/11, by midnight.

2



multiple predictor data set

Target variable:

• Scalars y1, . . . , yn for n data examples (a.k.a. samples).

Predictor variables:

• d dimensional vectors x1, . . . , xn for n data examples and d
features
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motivating example

Motivating example: Predict diabetes progression in patients
after 1 year based on health metrics. (Measured via numerical
score.)

Features: Age, sex, body mass index, average blood pressure,
six blood serum measurements (e.g. cholesterol, lipid levels,
iron, etc.)

Demo in demo1_diabetes.ipynb.
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the data matrix

Predictor variables:
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multiple linear regression

Linear Least-Squares Regression.

• Model:

fβ(x) = ⟨x,β⟩

• Model Parameters:

β = [β1, β2, . . . , βd]

• Loss Function:

L(β) = ∥y− Xβ∥22
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loss minimization

Machine learning goal: minimize the loss function
L(β) : Rd → R.

Find optimum by determining for which β = [β1, . . . , βd] the
gradient is 0. I.e. when do we have:

∇L(β) =


∂L
∂β1
∂L
∂β2...
∂L
∂βd

 =


0
0
...
0


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gradient warmup

Function:

f(z) = aTz for some fixed column vector a ∈ Rd

Gradient:

Function:

f(z) = ∥z∥22

Gradient:
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gradient warmup

Function:

f(z) = g(Az) = for fixed A ∈ Rn×d and function g

Gradient:
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gradient

Loss function:

L(β) = ∥y− Xβ∥22
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gradient derivation

Loss function: ∥y− Xβ∥22.
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loss minimization

Goal: minimize the loss function L(β) = ∥y− Xβ∥22.

∇L(β) = 2XTXβ − 2XTy = 0

Solve for optimal β∗:

XTXβ∗ = XTy

β∗ =
(
XTX

)−1 XTy
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test your intuition

What is the sign of β1 when we run a simple linear regression
using the following predictors for diabetes progression in
isolation:

• Body mass index (BMI): Positive
• Sex (values of 1 indicates male, value of 2 indicates
female): Positive
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interacting variables

What is the sign of the corresponding β’s when we run a
multiple linear regression using the following predictors
together:

• Body mass index (BMI): Positive
• Sex (values of 1 indicates male, value of 2 indicates
female): Negative

Can you explain this? Try to think of your own example of a
regression problem where this phenomenon might show up.
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dealing with categorical variables

The sex variable in the diabetes problem was binary.

Suppose we go back to the MPG prediction problem. What if
we had a categorical predictor variable for car make with more
than 2 options: e.g. Ford, BMW, Honda. How would you encode
as a numerical column?

ford
ford
honda
bmw

honda
ford


→




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one hot encoding

Better approach: One Hot Encoding.

ford
ford
honda
bmw
honda
ford


→



1 0 0
1 0 0
0 1 0
0 0 1
0 1 0
1 0 0


• Create a separate feature for every category, which is 1
when the variable is in that category, zero otherwise.

• Not too hard to do by hand, but you can also use library
functions like sklearn.preprocessing.OneHotEncoder.

Avoids adding inadvertent linear relationships.
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transformed linear models

Suppose we have singular variate data examples (x, y). How
could we fit the non-linear model:

y ≈ β0 + β1x+ β2x2 + β3x3.
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transformed linear models

Transform into a multiple linear regression problem:

X =


1 x1 x21 x31
1 x2 x12 x32
1 x3 x23 x33
...

...
...

1 xn x2n x3n


Each column j is generated by a different basis function ϕj(x).
Could have:

• ϕj(x) = xq

• ϕj(x) = sin(x)
• ϕj(x) = cos(10x)
• ϕj(x) = 1/x

18



transformed linear models

Transformations can also be for multivariate data.

Example: Multinomial model.

• Given a dataset with target y and predictors x, z.
• For inputs (x1, z1), . . . , (xn, zn) construct the data matrix:

1 x1 x21 z1 z21 x1z1
1 x2 x22 z2 z22 x2z2
...

...
...

1 xn x2n zn z2n xnzn


• Captures non-linear interaction between x and y.
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model selection

Remainder of lecture: Learn about model selection, test/train
paradigm, and cross-validation through a simple example.
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fitting a polynomial

Simple experiment:

• Randomly select data points x1, . . . , xn ∈ [−1, 1].
• Choose a degree 3 polynomial p(x).
• Create some fake data: yi = p(xi) + η where η is a random
number (e.g random Gaussian).
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fitting a polynomial

Simple experiment:

• Use multiple linear regression to fit a degree 3 polynomial.
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fitting a polynomial

What if we fit a higher degree polynomial?

• Fit degree 5 polynomial under squared loss.
• Fit degree 10 polynomial under squared loss.
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fitting a polynomial

Even higher?

• Fit degree 40 polynomial under squared loss.
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model selection

The more complex our model class (i.e. the higher degree we
allow) the better our loss:

Is our model getting better and better?

Given the raw data, how do we know which model to choose?
Degree 3? Degree 5? Degree 40?
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model selection

Problem: Loss alone is not informative for choosing model.

For more complex models, we get smaller loss on the training
data, but don’t expect to perform well on “new” data:
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model selection

Solution: Directly test model on “new data”.

• Loss continues to decrease as model complexity grows.
• Performance on new data “turns around” once our model
gets too complex. Minimized around degree 4.
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train-test paradigm

In most situations, we cannot simply collect or generate “new
data”. Here’s an alternative:

Test/train split:

• Given data set (X, y), split into two sets (Xtr, ytr) and (Xts, yts).

• Train q models f1, . . . , fq by finding parameters which minimize
the loss on (Xtr, ytr).

• Evaluate loss of each trained model on (Xts, yts).
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train-test paradigm

Justification:

• Assume each data example is randomly drawn from some
distribution (x, y) ∼ D: we don’t care about any particulars of
this distribution.

• Goal: Find model f ∈ {f1, . . . , fq} and parameter vector θ to
minimize the Risk:

R(f,θ) = E(x,y)∼D [L (f(x,θ)− y)]

where L is some loss function (e.g. L(z) = |z| or L(z) = z2).
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train-test paradigm

Justification:

• Suppose the testing dataset (Xts, yts) has m examples.

• Given any model f and parameters θ, let

Lts(f,θ) =
1
m

∑
x,y∈(Xts,yts)

L (f(x,θ)− y)

• Claim:

E [Lts(f,θ)] = R(f,θ).

• So our testing error is an unbiased estimate for the true risk
which measures how well a function performs on average for
any “new” data point.
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k-fold cross validation

• Randomly divide data in K parts.
• Typical choice: K = 5 or K = 10.

• Use K− 1 parts for training, 1 for test.
• For each model, compute test loss Lts for each “fold”.
• Choose model with best average loss.
• Retrain best model on entire dataset.

31



k-fold cross validation

Leave-one-out cross validation: take K = n, where n is our
total number of samples.

Is there any disadvantage to choosing K larger?
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