
CS-UY 4563: Lecture 4
Finish Linear Regression, Model Selection

NYU Tandon School of Engineering, Prof. Christopher Musco

1

course admin

• First written assignment due Thursday, by midnight.
• Second lab posted lab_robot_partial.ipynb due
next Tuesday 2/11, by midnight.

2

multiple predictor data set

Target variable:

• Scalars y1, . . . , yn for n data examples (a.k.a. samples).

Predictor variables:

• d dimensional vectors x1, . . . , xn for n data examples and d
features

3

motivating example

Motivating example: Predict diabetes progression in patients
after 1 year based on health metrics. (Measured via numerical
score.)

Features: Age, sex, body mass index, average blood pressure,
six blood serum measurements (e.g. cholesterol, lipid levels,
iron, etc.)

Demo in demo1_diabetes.ipynb.

4

the data matrix

Predictor variables:

5

multiple linear regression

Linear Least-Squares Regression.

• Model:

fβ(x) = ⟨x,β⟩

• Model Parameters:

β = [β1, β2, . . . , βd]

• Loss Function:

L(β) = ∥y− Xβ∥22

6

loss minimization

Machine learning goal: minimize the loss function
L(β) : Rd → R.

Find optimum by determining for which β = [β1, . . . , βd] the
gradient is 0. I.e. when do we have:

∇L(β) =


∂L
∂β1
∂L
∂β2...
∂L
∂βd

 =


0
0
...
0



7

gradient warmup

Function:

f(z) = aTz for some fixed column vector a ∈ Rd

Gradient:

Function:

f(z) = ∥z∥22

Gradient:

8

gradient warmup

Function:

f(z) = g(Az) = for fixed A ∈ Rn×d and function g

Gradient:

9

gradient

Loss function:

L(β) = ∥y− Xβ∥22

10

gradient derivation

Loss function: ∥y− Xβ∥22.

11

loss minimization

Goal: minimize the loss function L(β) = ∥y− Xβ∥22.

∇L(β) = 2XTXβ − 2XTy = 0

Solve for optimal β∗:

XTXβ∗ = XTy

β∗ =
(
XTX

)−1 XTy

12

test your intuition

What is the sign of β1 when we run a simple linear regression
using the following predictors for diabetes progression in
isolation:

• Body mass index (BMI): Positive
• Sex (values of 1 indicates male, value of 2 indicates
female): Positive

13

interacting variables

What is the sign of the corresponding β’s when we run a
multiple linear regression using the following predictors
together:

• Body mass index (BMI): Positive
• Sex (values of 1 indicates male, value of 2 indicates
female): Negative

Can you explain this? Try to think of your own example of a
regression problem where this phenomenon might show up.

14

dealing with categorical variables

The sex variable in the diabetes problem was binary.

Suppose we go back to the MPG prediction problem. What if
we had a categorical predictor variable for car make with more
than 2 options: e.g. Ford, BMW, Honda. How would you encode
as a numerical column?

ford
ford
honda
bmw

honda
ford


→





15

one hot encoding

Better approach: One Hot Encoding.

ford
ford
honda
bmw
honda
ford


→



1 0 0
1 0 0
0 1 0
0 0 1
0 1 0
1 0 0


• Create a separate feature for every category, which is 1
when the variable is in that category, zero otherwise.

• Not too hard to do by hand, but you can also use library
functions like sklearn.preprocessing.OneHotEncoder.

Avoids adding inadvertent linear relationships.
16

transformed linear models

Suppose we have singular variate data examples (x, y). How
could we fit the non-linear model:

y ≈ β0 + β1x+ β2x2 + β3x3.

17

transformed linear models

Transform into a multiple linear regression problem:

X =


1 x1 x21 x31
1 x2 x12 x32
1 x3 x23 x33
...

...
...

1 xn x2n x3n


Each column j is generated by a different basis function ϕj(x).
Could have:

• ϕj(x) = xq

• ϕj(x) = sin(x)
• ϕj(x) = cos(10x)
• ϕj(x) = 1/x

18

transformed linear models

Transformations can also be for multivariate data.

Example: Multinomial model.

• Given a dataset with target y and predictors x, z.
• For inputs (x1, z1), . . . , (xn, zn) construct the data matrix:

1 x1 x21 z1 z21 x1z1
1 x2 x22 z2 z22 x2z2
...

...
...

1 xn x2n zn z2n xnzn


• Captures non-linear interaction between x and y.

19

model selection

Remainder of lecture: Learn about model selection, test/train
paradigm, and cross-validation through a simple example.

20

fitting a polynomial

Simple experiment:

• Randomly select data points x1, . . . , xn ∈ [−1, 1].
• Choose a degree 3 polynomial p(x).
• Create some fake data: yi = p(xi) + η where η is a random
number (e.g random Gaussian).

21

fitting a polynomial

Simple experiment:

• Use multiple linear regression to fit a degree 3 polynomial.

22

fitting a polynomial

What if we fit a higher degree polynomial?

• Fit degree 5 polynomial under squared loss.
• Fit degree 10 polynomial under squared loss.

23

fitting a polynomial

Even higher?

• Fit degree 40 polynomial under squared loss.

24

model selection

The more complex our model class (i.e. the higher degree we
allow) the better our loss:

Is our model getting better and better?

Given the raw data, how do we know which model to choose?
Degree 3? Degree 5? Degree 40?

25

model selection

Problem: Loss alone is not informative for choosing model.

For more complex models, we get smaller loss on the training
data, but don’t expect to perform well on “new” data:

26

model selection

Solution: Directly test model on “new data”.

• Loss continues to decrease as model complexity grows.
• Performance on new data “turns around” once our model
gets too complex. Minimized around degree 4.

27

train-test paradigm

In most situations, we cannot simply collect or generate “new
data”. Here’s an alternative:

Test/train split:

• Given data set (X, y), split into two sets (Xtr, ytr) and (Xts, yts).

• Train q models f1, . . . , fq by finding parameters which minimize
the loss on (Xtr, ytr).

• Evaluate loss of each trained model on (Xts, yts).

28

train-test paradigm

Justification:

• Assume each data example is randomly drawn from some
distribution (x, y) ∼ D: we don’t care about any particulars of
this distribution.

• Goal: Find model f ∈ {f1, . . . , fq} and parameter vector θ to
minimize the Risk:

R(f,θ) = E(x,y)∼D [L (f(x,θ)− y)]

where L is some loss function (e.g. L(z) = |z| or L(z) = z2).

29

train-test paradigm

Justification:

• Suppose the testing dataset (Xts, yts) has m examples.

• Given any model f and parameters θ, let

Lts(f,θ) =
1
m

∑
x,y∈(Xts,yts)

L (f(x,θ)− y)

• Claim:

E [Lts(f,θ)] = R(f,θ).

• So our testing error is an unbiased estimate for the true risk
which measures how well a function performs on average for
any “new” data point.

30

k-fold cross validation

• Randomly divide data in K parts.
• Typical choice: K = 5 or K = 10.

• Use K− 1 parts for training, 1 for test.
• For each model, compute test loss Lts for each “fold”.
• Choose model with best average loss.
• Retrain best model on entire dataset.

31

k-fold cross validation

Leave-one-out cross validation: take K = n, where n is our
total number of samples.

Is there any disadvantage to choosing K larger?

32

