
CS-UY 4563: Lecture 3
Multiple Linear Regression

NYU Tandon School of Engineering, Prof. Christopher Musco
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course admin

• First lab assignment lab_housing_partial.ipynb
due tomorrow, by midnight.

• First written assignment due Wednesday, by midnight.
• 10% extra credit if you use LaTeX (Overleaf is easy) or
Markdown (I use Typora) to typeset your assignment.
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reminder: supervised regression

Training Dataset:

• Given input pairs (x1, y1), . . . , (xn, yn).
• Each xi is an input data point (the predictor).
• Each yi is a continuous output variable (the target).

Objective:

• Have the computer automatically find some function f(x)
such that f(xi) is close to yi for the input data.
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example from last class

Predict miles per gallon of a vehicle given information about
its engine/make/age/etc.
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example from last class

Dataset:
• x1, . . . , xn ∈ R (horsepowers of n cars – this is the
predictor/independent variable)

• y1, . . . , yn ∈ R (MPG – this is the response/dependent
variable)
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supervised learning framework

What are the three components needed to setup a supervised
learning problem?

1.

2.

3.
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supervised learning definitions

• Model fθ(x): Class of equations or programs which map input x
to predicted output. We want fθ(xi) ≈ yi for training inputs.

• Model Parameters θ: Vector of numbers. These are numerical
nobs which parameterize our class of models.

• Loss Function L(θ): Measure of how well a model fits our data.
Typically some function of fθ(x1)− y1, . . . , fθ(xn)− yn

Goal: Choose parameters θ∗ which minimize the Loss Function:

θ∗ = argmin
θ

L(θ)
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linear regression

Linear Regression

• Model: fβ0,β1(x) = β0 + β1 · x

• Model Parameters: β0, β1

• Loss Function: L(β0, β1) =
∑n

i=1 |yi − fβ0,β1(xi)|2

Goal: Choose β0, β1 to minimize
L(β0, β1) =

∑n
i=1 |yi − β0 − β1xi|2.
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minimizing squared loss for regression

Claim: L(β0, β1) is minimized when:

• β1 = σxy/σ
2
x

• β0 = ȳ− β1x̄

Where:

• Let ȳ = 1
n
∑n

i=1 yi. ȳ is the mean of y.
• Let x̄ = 1

n
∑n

i=1 xi. ȳ is the mean of x.
• Let σ2x = 1

n
∑n

i=1(xi − x̄)2. σ2x is the variance of x.
• Let σxy = 1

n
∑n

i=1(xi − x̄)(yi − ȳ). σxy is the covariance.

Note: Only got a nice closed form solution thanks to our
choice of loss function.
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a few comments

Let Lmin = minβ0,β1 L(β0, β1).

R2 = 1− Lmin
nσ2y

is exactly the R2 value you may remember from statistics. A.k.a.
the “coefficient of determination”.

The smaller the loss, the closer R2 is to 1, which means we
have a better regression fit.
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a few comments

Many reasons you might get a poor regression fit:
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a few comments

Some of these are fixable!

• Remove outliers, use more robust loss function.
• Non-linear model transformation.

Fit the model 1
mpg ≈ β0 + β1 · horsepower.
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nonlinear transformation

Fit the model 1
mpg ≈ β0 + β1 · horsepower.

• Set ỹ1, . . . , ỹn = 1/y1, . . . , 1/yn.
• Learn function f such that f(xi) predicts ỹi.
• Predict 1/f(xi) as MPG for car i.
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nonlinear transformation

Fit the model 1
mpg ≈ β0 + β1 · horsepower.

• Set ỹ1, . . . , ỹn = 1/y1, . . . , 1/yn.
• Learn function f such that f(xi) predicts ỹi.
• Predict 1/f(xi) as MPG for car i.

Much better fit, same exact learning algorithm!
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multiple linear regression

Predict target y using multiple features, simultaneously.

Motivating example: Predict diabetes progression in patients
after 1 year based on health metrics. (Measured via numerical
score.)

Features: Age, sex, body mass index, average blood pressure,
six blood serum measurements (e.g. cholesterol, lipid levels,
iron, etc.)

Demo in demo1_diabetes.ipynb.
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libraries for this demo

Introducing Scikit Learn.
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scikit learn

Pros:

• One of the most popular “traditional” ML libraries.

• Many built in models for regression, classification,
dimensionality reduction, etc.

• Easy to use, works with ‘numpy‘, ‘scipy‘, other libraries we use.

• Great for rapid prototyping, testing models.

Cons:

• Everything is very “black-box”: difficult to debug, understand
why models aren’t working, speed up code, etc.

• You will likely want to dive deeper than the built-in functions
for your project. 17



scikit learn

Modules used:

• datasets module contains a number of pre-loaded
datasets. Saves time over downloading and importing
with pandas.

• linear_model can be used to solve Multiple Linear
Regression. A bit overkill for this simple model, but gives
you an idea of sklearn’s general structure.
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the data matrix

Target variable:

• Scalars y1, . . . , yn for n data examples (a.k.a. samples).

Predictor variables:

• d dimensional vectors x1, . . . , xn for n data examples and d
features
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the data matrix

Target variable:

• Scalars y1, . . . , yn for n data examples (a.k.a. samples).

Predictor variables:

• d dimensional vectors x1, . . . , xn for n data examples and d
features
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multiple linear regression

Data matrix indexing:

X =


x11 x12 . . . x1d
x21 x22 . . . x2d
x31 x32 . . . x3d
...

...
...

xn1 xn2 . . . xnd


Multiple Linear Regression Model:

Predict yi ≈ β0 + β1xi1 + β2xi2 + . . .+ βdxid

The rate at which diabetes progress depends on many factors,
with each factor having a different magnitude effect.
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multiple linear regression

Assume first columns contains all 1’s. If it doesn’t append on a
column of all 1’s.

X =


x11 x12 . . . x1d
x21 x22 . . . x2d
x31 x32 . . . x3d
...

...
...

xn1 xn2 . . . xnd

 =


1 x12 . . . x1d
1 x22 . . . x2d
1 x32 . . . x3d
...

...
...

1 xn2 . . . xnd


Multiple Linear Regression Model:

Predict yi ≈ β1xi1 + β2xi2 + . . .+ βdxid
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multiple linear regression

Use as much linear algebra notation as possible!

• Model:

• Model Parameters:

• Loss Function:
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multiple linear regression

Linear Least-Squares Regression.

• Model:

fβ(x) = ⟨x,β⟩

• Model Parameters:

β = [β1, β2, . . . , βd]

• Loss Function:

L(β) =
n∑
i=1

|yi − ⟨xi,β⟩|2

= ∥y− Xβ∥22
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linear algebraic form of loss function
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loss minimization

Machine learning goal: minimize the loss function
L(β) : Rd → R.

Find optimum by determining for which β = [β1, . . . , βd] all
partial derivatives are 0. I.e. when do we have:

∂L
∂β1
∂L
∂β2...
∂L
∂βd

 =


0
0
. . .

0
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gradient

For any function L(β) : Rd → R, ∇L(β) is a function from
Rd → Rd defined:

∇L(β) =


∂L
∂β1
∂L
∂β2...
∂L
∂βd


The gradient of the loss function is a central tool in machine
learning. We will use it again and again.
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gradient

Loss function:

∥y− Xβ∥22

Gradient:

−2 · XT(y− Xβ)
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gradient warmup
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gradient derivation

Loss function: ∥y− Xβ∥22.
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loss minimization

Goal: minimize the loss function L(β) = ∥y− Xβ∥22.

−2 · XT(y− Xβ) = 0

Solve for optimal β∗:

XTXβ∗ = XTy

β∗ =
(
XTX

)−1 XTy
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multiple linear regression solution

Need to compute β∗ = argminβ ∥y− Xβ∥22 =
(
XTX

)−1 XTy.
• Main cost is computing (XTX)−1 which takes O(nd2) time.
• Can solve slightly faster using the method
numpy.linalg.lstsq, which is running an algorithm
based on QR decomposition.

• For larger problems, can solve much faster using an
iterative methods like scipy.sparse.linalg.lsqr.

Will learn more about iterative methods when we study
Gradient Descent.
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test your intuition

What is the sign of β1 when we run a simple linear regression
using the following predictors in isolation:

• Body mass index (BMI): positive
• Sex (values of 1 indicates male, value of 2 indicates
female): positive

What is the sign of the corresponding β’s when we run a
multiple linear regression using the following predictors
together:

• Body mass index (BMI): positive
• Sex (values of 1 indicates male, value of 2 indicates
female): negative

Can you explain this? What are other examples when this
phenomenon might show up? 33



transformed linear models

How could we fit the non-linear model:

yi ≈ β0 + β1xi + β2x2i + β3x3i .
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transformed linear models

Transform into a multiple linear regression problem:

X =


1 x1 x21 x31
1 x2 x12 x32
1 x3 x23 x33
...

...
...

1 xn x2n x3n


Each column j is generated by a different basis function ϕj(x).
Could have:

• ϕj(x) = xq

• ϕj(x) = sin(x)
• ϕj(x) = cos(10)
• ϕj(x) = 1/x
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transformed linear models

Suppose we go back to the MPG prediction problem. What if
we had a categorical random variable for car make: e.g. Ford,
BMW, Honda. How would you encode as a numerical column?

ford
ford
honda
bmw

honda
ford


→
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one hot encoding

Better approach: One Hot Encoding.

ford
ford
honda
bmw
honda
ford


→



1 0 0
1 0 0
0 1 0
0 0 1
0 1 0
1 0 0


Avoids adding inadvertent linear relationships.
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