
CS-UY 4563: Lecture 24
Reinforcement Learning

NYU Tandon School of Engineering, Prof. Christopher Musco

1

some material we didn’t have time for

Supervised learning:

• Decision trees. Very effective model for problems with few
features. Difficult to train, but heuristics work well in
practice.

• Boosting. Approach for combining several “weak” models
to obtain better overall accuracy than any one model
alone.

Unsupervised learning:

• Adversarial models. Modern alternative to auto-encoders
that performs very well for lots of interesting problems,
especially in generative ML.

• eClustering. Hugely important for data exploration and
visualization.

2

data clustering

Iemportant unsupervised learning task:

Separate unlabeled data into natural clusters.

• Exploratory data analysis.
• Categorizing and grouping data.
• Visualizing data.

3

data clustering

Example application:

Images of Cats.

Find sub-classes in your data which you did not know about.
Helps you decide how to adjust features or improve data set
for a supervised application. 4

data clustering

k-center clustering:

• Choose centers c⃗1, . . . , c⃗k ∈ Rd.
• Assign data point x⃗ to cluster i if c⃗i is the “nearest” center.
• Can use any distance metric.

5

k-center clustering

Given data points x⃗1, . . . , x⃗n and distance metric ∆(⃗x, c⃗) → R,
choose c⃗1, . . . , c⃗k to minimize:

Cost(⃗c1, . . . , c⃗k) =
n∑
i=1

min
j

∆(⃗xi, c⃗j).

In general this could be a hard optimization problem.

6

k-means clustering

Common choice: Use Euclidean distance. I.e. set ∆(⃗x, c⃗) = ∥⃗x− c⃗∥22.

• If k = 1, optimal choice for c1 is the centroid 1
n
∑n

i=1 x⃗n. For large
k the problem is NP-hard.

• Can be solved efficiently in practice using optimization
techniques known as alternating minimization. Called “Llyod’s
algorithm” when applied to k-means clustering.

• Euclidean k-means can only identify linearly separable clusters.

7

reinforcement learning

Today: Give flavor of the area and insight into one algorithm
(Q-learning) which has been successful in recent years.

Basic setup:1

• Agent interacts with environment over time 1, . . . , t.
• Takes repeated sequence of actions, a1, . . . ,at which
effect the environment.

• State of the environment over time denoted s1, . . . , st.
• Earn rewards r1, . . . , rt depending on actions taken and
states reached.

• Goal is to maximize reward over time.
1Slide content adapted from: http://cs231n.stanford.edu/

8

http://cs231n.stanford.edu/

reinforcement learning examples

Classic inverted pendulum problem:

• Agent: Cart/software
controlling cart.

• State: Position of the car,
pendulum head, etc.

• Actions: Move cart left or
move right.

• Reward: 1 for every time
step that |θ| < 90◦
(pendulum is upright). 0
when |θ| = 90◦ 9

reinforcement learning examples

This problem has a long history in Control Theory. Other
applications of classical control:

• Semi-autonomous vehicles (airplanes, helicopters, rockets, etc.)

• Industrial processes (e.g. controlling large chemical reactions)

• Robotics

control theory : reinforcement learning :: stats : machine learning

10

reinforcement learning examples

Strategy games, like Go:

• State: Position of all pieces
on board.

• Actions: Place new piece.

• Reward: 1 if in winning
position at time t. 0
otherwise.

This is a sparse reward problem. Payoff only comes after many times
steps, which makes the problem very challenging.

11

reinforcement learning examples

Video games, like classic Atari games:

• State: Raw pixels on the
screen (sometimes there is
also hidden state which
can’t be observed by the
player).

• Actions: Actuate controller
(up,down,left,right,click).

• Reward: 1 if point scored at
time t.

12

mathematical framework for rl

Model problem as a Markov Decision Process (MDP):

• S : Set of all possible states. |S| = n.

• A : Set of all possible actions. |A| = k.

• Reward function
R(s,a) : S ×A → probability distribution over R. rt ∼ R(st,at).

• State transition function
P(s,a) : S ×A → probability distribution over S . st+1 ∼ P(st,at).

Why is this called a Markov decision process? What does the term
Markov refer to?

13

mathematical framework for rl

Goal: Learn a policy Π : S → A from states to actions which
maximized expected cumulative reward.

• Start is state s0.
• For t = 0 . . . , T

• rt ∼ R(st,Π(st)).
• st+1 ∼ P(st,Π(st)).

The time horizon T could be finite (game with fixed number of
steps) or infinite (stock investing). Goal is to maximize:

reward(Π) = E
T∑
t=0

rt

[s0,a0, r0], [s1,a1, r1], . . . , [st,at, rt] is called a trajectory of the
MDP under policy Π.

14

simple example: gridworld

• rt = −.01 if not at an end position. ±1 if at end position.
• P(st,a) : 50% of the time move in the direction indicated
by a. 50% of the time move in a random direction.

What is the optimal policy Π? 15

simple example: gridworld

• rt = −.5 if not at an end position. ±1 if at end position.
• P(st,a) : 50% of the time move in the direction indicated
by a. 50% of the time move in a random direction.

What is the optimal policy Π? 16

discount factor

For infinite or very long times horizon games (large T), we often
introduce a discount factor γ and seek instead to find a policy
Π which minimizes:

E
T∑
t=0

γtrt

where rt ∼ R(st,Π(st)) and st+1 ∼ P(st,Π(st)) as before.

From now on assume T = ∞. We can do this without loss of
generality by adding a time parameter to state and moving into
an “end state” with no additional rewards once the time hits T.

17

value function and q function

Two important definitions.

• Value function: VΠ(s) = EΠ,s0=s
∑

t≥0 γ
trt. Measures the

expected return if we start in state s and follow policy Π.
• Q-function: QΠ(s,a) = EΠ,s0=s,a0=a

∑
t≥0 γ

trt. Measures
the expected return if we start in state s, play action a,
and then follow policy Π.

Q∗(s,a) = max
Π

EΠ,s0=s,a0=a
∑
t≥0

γtrt.

If we knew the function Q∗, we would immediately know an
optimal policy. Whenever we’re in state s, we should always
play action a∗ = argmax∗Q(s,a).

18

bellman equation

Q∗ satisfies what’s known as a Bellman equation:

Q∗(s,a) = Es′∼P(s,a)
[
R(s,a) + γmax

a′
Q∗(s′,a′)

]
.

Value Iteration: Used fixed point iteration to find Q∗:

• Initialize Q0 (e.g. randomly).
• For i = 1, . . . , z:

• Qi = Es′∼P(s,a)
[
R(s,a) + γmaxa′ Qi−1(s′,a′)

]
Possible to prove that Qi → Q∗ as i→ ∞.

Note that many details are involved in this computation.

Need to handle the expectations on the right hand side by
randomly sampling trajectories from the MDP.

19

central issue in reinforcement learning

Bigger issue: Even writing down Q∗ is intractable... This is a
function over |S||A| possible inputs. Even for relatively simple
games, |S| is gigantic...

Back of the envelope calculations:

• Tic-tac-toe: 3(3×3) ≈ 20, 000
• Chess: ≈ 1043 (due to Claude Shannon).
• Go: 3(19∗×19) ≈ 10171.
• Atari: 128(210×160) ≈ 1071,000.

Number of atoms in the universe: ≈ 1082.

20

machine learning approach

Learn a simpler function Q(s,a, θ) ≈ Q∗(s,a) parameterized by
a small number of parameters θ.

Example: Suppose our state can be represented by a vector in
Rd and our action a by an integer in 1, . . . , |A|. We could use a
linear function where θ is a small matrix:

21

machine learning approach

Learn a simpler function Q(s,a, θ) ≈ Q∗(s,a) parameterized by
a small number of parameters θ.

Example: Could also use a (deep) neural network.

DeepMind: “Human-level control through deep reinforcement
learning”, Nature 2015. 22

machine learning approach

If Q(s,a, θ) is a good approximation to Q∗(s,a) then we have
an approximately optimal policy: Π̃∗(s) = argmaxa Q(s,a, θ).

• Start in state s0.
• For t = 1, 2, . . .

• a∗ = argmaxa Q(s,a, θ)
• st ∼ P(st−1,a∗)

How do we find an optimal θ? If we knew Q∗(s,a) could use
supervised learning, but the true Q function is infeasible to

compute.

23

q-learning w/ function approximation

Find θ which satisfies the Bellman equation:

Q∗(s,a) = Es′∼P(s,a)
[
R(s,a) + γmax

a′
Q∗(s′,a′)

]
Q(s,a, θ) ≈ Es′∼P(s,a)

[
R(s,a) + γmax

a′
Q(s,a, θ)

]
.

Should be true for all a, s. Should also be true for a, s ∼ D for
any distribution D:

Es,a∼DQ(s,a, θ) ≈ Es,a∼DEs′∼P(s,a)
[
R(s,a) + γmax

a′
Q(s,a, θ)

]
.

Loss function:

L(θ) = Es,a∼D (y− Q(s,a, θ))2

where y = Es′∼P(s,a) [R(s,a) + γmaxa′ Q(s′,a′, θ)].

24

q-learning w/ function approximation

Minimize loss with gradient descent:

∇L(θ) = −2 · Es,a∼D∇Q(s,a, θ) ·
[
R(s,a) + γmax

a′
Q(s′,a′, θ)− Q(s,a, θ)

]
In practice use stochastic gradient:

∇L(θ, s,a) = −2 · ∇Q(s,a, θ) ·
[
R(s,a) + γmax

a′
Q(s′,a′, θ)− Q(s,a, θ)

]

• Initialize θ0

• For i = 0, 1, 2, . . .
• Choose random s,a ∼ D.
• Set θi+1 = θi − η · ∇L(θi, s,a)

where η is a learning rate parameter.

25

q-learning w/ function approximation

• Initialize θ0

• For i = 0, 1, 2, . . .

• Choose random s,a ∼ D.
• Set θi+1 = θi −∇L(θi, s,a).

What is the distribution D?

• Random play: Choose uniformly over reachable states + actions.

Wasteful: Seeks to approximate Q∗ well in parts of the state-action
space that don’t actually matter for optimal play. Would require a
ton of samples.

26

q-learning w/ function approximation

More common approach: Play according to current guess for
optimal policy, with some random “off-policy” exploration. The
D is the distribution over states/actions results form this play.
Note that D changes over time...

ϵ-greedy approach:

• Initialize s0.
• For t = 0, 1, 2, . . . ,

• ai =
{
argmaxa Q(st,a, θcurr) with probabilty (1− ϵ)

random action with probabilty ϵ

Exploration-exploitation tradeoff. Increasing ϵ = more
exploration.

27

references

Lots of other details we don’t have time for! References:

• Original DeepMind Atari paper:
https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf,
which is very readable.

• Stanford lecture video:
https://www.youtube.com/watch?v=lvoHnicueoE and
slides: http://cs231n.stanford.edu/slides/2017/
cs231n_2017_lecture14.pdf

Important concept we did not cover: experience replay.

28

https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
https://www.youtube.com/watch?v=lvoHnicueoE
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture14.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture14.pdf

atari demo

https://www.youtube.com/watch?v=V1eYniJ0Rnk

29

https://www.youtube.com/watch?v=V1eYniJ0Rnk

