
CS-UY 4563: Lecture 24
Reinforcement Learning

NYU Tandon School of Engineering, Prof. Christopher Musco
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some material we didn’t have time for

Supervised learning:

• Decision trees. Very effective model for problems with few
features. Difficult to train, but heuristics work well in
practice.

• Boosting. Approach for combining several “weak” models
to obtain better overall accuracy than any one model
alone.

Unsupervised learning:

• Adversarial models. Modern alternative to auto-encoders
that performs very well for lots of interesting problems,
especially in generative ML.

• eClustering. Hugely important for data exploration and
visualization.
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data clustering

Iemportant unsupervised learning task:

Separate unlabeled data into natural clusters.

• Exploratory data analysis.
• Categorizing and grouping data.
• Visualizing data.
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data clustering

Example application:

Images of Cats.

Find sub-classes in your data which you did not know about.
Helps you decide how to adjust features or improve data set
for a supervised application. 4



data clustering

k-center clustering:

• Choose centers c⃗1, . . . , c⃗k ∈ Rd.
• Assign data point x⃗ to cluster i if c⃗i is the “nearest” center.
• Can use any distance metric.
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k-center clustering

Given data points x⃗1, . . . , x⃗n and distance metric ∆(⃗x, c⃗) → R,
choose c⃗1, . . . , c⃗k to minimize:

Cost(⃗c1, . . . , c⃗k) =
n∑
i=1

min
j

∆(⃗xi, c⃗j).

In general this could be a hard optimization problem.
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k-means clustering

Common choice: Use Euclidean distance. I.e. set ∆(⃗x, c⃗) = ∥⃗x− c⃗∥22.

• If k = 1, optimal choice for c1 is the centroid 1
n
∑n

i=1 x⃗n. For large
k the problem is NP-hard.

• Can be solved efficiently in practice using optimization
techniques known as alternating minimization. Called “Llyod’s
algorithm” when applied to k-means clustering.

• Euclidean k-means can only identify linearly separable clusters.
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reinforcement learning

Today: Give flavor of the area and insight into one algorithm
(Q-learning) which has been successful in recent years.

Basic setup:1

• Agent interacts with environment over time 1, . . . , t.
• Takes repeated sequence of actions, a1, . . . ,at which
effect the environment.

• State of the environment over time denoted s1, . . . , st.
• Earn rewards r1, . . . , rt depending on actions taken and
states reached.

• Goal is to maximize reward over time.
1Slide content adapted from: http://cs231n.stanford.edu/
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reinforcement learning examples

Classic inverted pendulum problem:

• Agent: Cart/software
controlling cart.

• State: Position of the car,
pendulum head, etc.

• Actions: Move cart left or
move right.

• Reward: 1 for every time
step that |θ| < 90◦
(pendulum is upright). 0
when |θ| = 90◦ 9



reinforcement learning examples

This problem has a long history in Control Theory. Other
applications of classical control:

• Semi-autonomous vehicles (airplanes, helicopters, rockets, etc.)

• Industrial processes (e.g. controlling large chemical reactions)

• Robotics

control theory : reinforcement learning :: stats : machine learning
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reinforcement learning examples

Strategy games, like Go:

• State: Position of all pieces
on board.

• Actions: Place new piece.

• Reward: 1 if in winning
position at time t. 0
otherwise.

This is a sparse reward problem. Payoff only comes after many times
steps, which makes the problem very challenging.
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reinforcement learning examples

Video games, like classic Atari games:

• State: Raw pixels on the
screen (sometimes there is
also hidden state which
can’t be observed by the
player).

• Actions: Actuate controller
(up,down,left,right,click).

• Reward: 1 if point scored at
time t.
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mathematical framework for rl

Model problem as a Markov Decision Process (MDP):

• S : Set of all possible states. |S| = n.

• A : Set of all possible actions. |A| = k.

• Reward function
R(s,a) : S ×A → probability distribution over R. rt ∼ R(st,at).

• State transition function
P(s,a) : S ×A → probability distribution over S . st+1 ∼ P(st,at).

Why is this called a Markov decision process? What does the term
Markov refer to?
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mathematical framework for rl

Goal: Learn a policy Π : S → A from states to actions which
maximized expected cumulative reward.

• Start is state s0.
• For t = 0 . . . , T

• rt ∼ R(st,Π(st)).
• st+1 ∼ P(st,Π(st)).

The time horizon T could be finite (game with fixed number of
steps) or infinite (stock investing). Goal is to maximize:

reward(Π) = E
T∑
t=0

rt

[s0,a0, r0], [s1,a1, r1], . . . , [st,at, rt] is called a trajectory of the
MDP under policy Π.
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simple example: gridworld

• rt = −.01 if not at an end position. ±1 if at end position.
• P(st,a) : 50% of the time move in the direction indicated
by a. 50% of the time move in a random direction.

What is the optimal policy Π? 15



simple example: gridworld

• rt = −.5 if not at an end position. ±1 if at end position.
• P(st,a) : 50% of the time move in the direction indicated
by a. 50% of the time move in a random direction.

What is the optimal policy Π? 16



discount factor

For infinite or very long times horizon games (large T), we often
introduce a discount factor γ and seek instead to find a policy
Π which minimizes:

E
T∑
t=0

γtrt

where rt ∼ R(st,Π(st)) and st+1 ∼ P(st,Π(st)) as before.

From now on assume T = ∞. We can do this without loss of
generality by adding a time parameter to state and moving into
an “end state” with no additional rewards once the time hits T.
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value function and q function

Two important definitions.

• Value function: VΠ(s) = EΠ,s0=s
∑

t≥0 γ
trt. Measures the

expected return if we start in state s and follow policy Π.
• Q-function: QΠ(s,a) = EΠ,s0=s,a0=a

∑
t≥0 γ

trt. Measures
the expected return if we start in state s, play action a,
and then follow policy Π.

Q∗(s,a) = max
Π

EΠ,s0=s,a0=a
∑
t≥0

γtrt.

If we knew the function Q∗, we would immediately know an
optimal policy. Whenever we’re in state s, we should always
play action a∗ = argmax∗Q(s,a).
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bellman equation

Q∗ satisfies what’s known as a Bellman equation:

Q∗(s,a) = Es′∼P(s,a)
[
R(s,a) + γmax

a′
Q∗(s′,a′)

]
.

Value Iteration: Used fixed point iteration to find Q∗:

• Initialize Q0 (e.g. randomly).
• For i = 1, . . . , z:

• Qi = Es′∼P(s,a)
[
R(s,a) + γmaxa′ Qi−1(s′,a′)

]
Possible to prove that Qi → Q∗ as i→ ∞.

Note that many details are involved in this computation.

Need to handle the expectations on the right hand side by
randomly sampling trajectories from the MDP.
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central issue in reinforcement learning

Bigger issue: Even writing down Q∗ is intractable... This is a
function over |S||A| possible inputs. Even for relatively simple
games, |S| is gigantic...

Back of the envelope calculations:

• Tic-tac-toe: 3(3×3) ≈ 20, 000
• Chess: ≈ 1043 (due to Claude Shannon).
• Go: 3(19∗×19) ≈ 10171.
• Atari: 128(210×160) ≈ 1071,000.

Number of atoms in the universe: ≈ 1082.
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machine learning approach

Learn a simpler function Q(s,a, θ) ≈ Q∗(s,a) parameterized by
a small number of parameters θ.

Example: Suppose our state can be represented by a vector in
Rd and our action a by an integer in 1, . . . , |A|. We could use a
linear function where θ is a small matrix:
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machine learning approach

Learn a simpler function Q(s,a, θ) ≈ Q∗(s,a) parameterized by
a small number of parameters θ.

Example: Could also use a (deep) neural network.

DeepMind: “Human-level control through deep reinforcement
learning”, Nature 2015. 22



machine learning approach

If Q(s,a, θ) is a good approximation to Q∗(s,a) then we have
an approximately optimal policy: Π̃∗(s) = argmaxa Q(s,a, θ).

• Start in state s0.
• For t = 1, 2, . . .

• a∗ = argmaxa Q(s,a, θ)
• st ∼ P(st−1,a∗)

How do we find an optimal θ? If we knew Q∗(s,a) could use
supervised learning, but the true Q function is infeasible to

compute.
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q-learning w/ function approximation

Find θ which satisfies the Bellman equation:

Q∗(s,a) = Es′∼P(s,a)
[
R(s,a) + γmax

a′
Q∗(s′,a′)

]
Q(s,a, θ) ≈ Es′∼P(s,a)

[
R(s,a) + γmax

a′
Q(s,a, θ)

]
.

Should be true for all a, s. Should also be true for a, s ∼ D for
any distribution D:

Es,a∼DQ(s,a, θ) ≈ Es,a∼DEs′∼P(s,a)
[
R(s,a) + γmax

a′
Q(s,a, θ)

]
.

Loss function:

L(θ) = Es,a∼D (y− Q(s,a, θ))2

where y = Es′∼P(s,a) [R(s,a) + γmaxa′ Q(s′,a′, θ)].
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q-learning w/ function approximation

Minimize loss with gradient descent:

∇L(θ) = −2 · Es,a∼D∇Q(s,a, θ) ·
[
R(s,a) + γmax

a′
Q(s′,a′, θ)− Q(s,a, θ)

]
In practice use stochastic gradient:

∇L(θ, s,a) = −2 · ∇Q(s,a, θ) ·
[
R(s,a) + γmax

a′
Q(s′,a′, θ)− Q(s,a, θ)

]

• Initialize θ0

• For i = 0, 1, 2, . . .
• Choose random s,a ∼ D.
• Set θi+1 = θi − η · ∇L(θi, s,a)

where η is a learning rate parameter.
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q-learning w/ function approximation

• Initialize θ0

• For i = 0, 1, 2, . . .

• Choose random s,a ∼ D.
• Set θi+1 = θi −∇L(θi, s,a).

What is the distribution D?

• Random play: Choose uniformly over reachable states + actions.

Wasteful: Seeks to approximate Q∗ well in parts of the state-action
space that don’t actually matter for optimal play. Would require a
ton of samples.

26



q-learning w/ function approximation

More common approach: Play according to current guess for
optimal policy, with some random “off-policy” exploration. The
D is the distribution over states/actions results form this play.
Note that D changes over time...

ϵ-greedy approach:

• Initialize s0.
• For t = 0, 1, 2, . . . ,

• ai =
{
argmaxa Q(st,a, θcurr) with probabilty (1− ϵ)

random action with probabilty ϵ

Exploration-exploitation tradeoff. Increasing ϵ = more
exploration.
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references

Lots of other details we don’t have time for! References:

• Original DeepMind Atari paper:
https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf,
which is very readable.

• Stanford lecture video:
https://www.youtube.com/watch?v=lvoHnicueoE and
slides: http://cs231n.stanford.edu/slides/2017/
cs231n_2017_lecture14.pdf

Important concept we did not cover: experience replay.
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atari demo

https://www.youtube.com/watch?v=V1eYniJ0Rnk
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