
CS-UY 4563: Lecture 22
Principal Component Analysis, Semantic
Embeddings

NYU Tandon School of Engineering, Prof. Christopher Musco

1

side note on autoencoder architectures

An autoencoder is a model f : Rd → Rd. In other words, the
output is the same dimension as the input:

• Image→ Image
• Video→ Video
• Audio clip→ Audio clip

This structure is also useful for some supervised machine
learning problems.

2

image segmentation

Goal: Learn mask which separates image pixels by what object
(foreground or background) that they belong to.

First step in multi-objects classification and scene
understanding. Harder than classifying single objects. 3

end-to-end image segmentation

Model: Input is image x⃗, output is image m⃗ that has the same
size as x⃗, but each pixel value is a label for a segmented region.

Now our training process is actually supervised, but uses the
same structure as an autoencoder.

4

end-to-end image coloration

Model: Input is black and white image x⃗, output is colorized
image m⃗.

5

end-to-end super resolution

Model: Input is pixelated or blurred image x⃗, output is
full-resolution image m⃗.

6

principal component analysis

Simple linear autoencoder: Given input x⃗ ∈ Rd,

f(⃗x)T = x⃗TW1W2

7

principal component analysis

Encoder: e(⃗x) = x⃗TW1. Decoder: d(⃗z) = z⃗W2

8

principal component analysis

Given training data set x⃗1, . . . , x⃗n, let X denote our data matrix.
Let X̃ = XW1W2.

Goal: Find W1,W2 to minimize the Frobenius norm loss
∥X− X̃∥2F = ∥X− XW1W2∥2F.

9

low-rank approximation

Recall:

• The columns of a matrix with column rank k can all be written
as linear combinations of just k columns.

• The rows of a matrix with row rank k can all be written as linear
combinations of k rows.

• Column rank = row rank = rank.

X̃ is a low-rank matrix. It only has rank k for k≪ d. 10

low-rank approximation

Principal component analysis amounts to finding a rank k
matrix X̃ which approximates the data matrix X as closely as
possible.

In general, X will have rank d.

11

singular value decomposition

Any matrix X can be written:

Where UTU = I, VTV = I, and σ1 ≥ σ2 ≥ . . . σd ≥ 0. I.e. U and V are
orthogonal matrices.

This is called the singular value decomposition.

Can be computed in O(nd2) time (faster with approximation algos). 12

orthogonal matrices

Let u1, . . . ,un ∈ Rn denote the columns of U. I.e. the left
singular vectors of X.

∥ui∥22 = uTi uj =

13

singular value decomposition

Can read off optimal low-rank approximations from the SVD:

Eckart–Young–Mirsky Theorem: For any k ≤ d, Xk = UkΣkVTk is
the optimal k rank approximation to X:

Xk = argmin
X̃ with rank ≤ k

∥X− X̃∥2F.

14

singular value decomposition

Claim: Xk = UkΣkVTk = XVkVTk.

So for a model with k hidden variables, we obtain an optimal
autoencoder by setting W1 = Vk, W2 = VTk. f(⃗x) = x⃗VkVTk. 15

singular value decomposition

Computing the SVD.

• Full SVD:
U,S,V = scipy.linalg.svd(X).

Runs in O(nd2) time.
• Just the top k components:
U,S,V = scipy.sparse.linalg.svds(X, k).

Runs in roughly O(ndk) time.

16

principal component analysis

Usually X⃗’s columns (features) are mean centered and
normalized to variance 1 before computing principal
components.

17

low rank approximation

What does recovered data X̃ = Xk look like?

18

low rank approximation

The error can be written as:

∥X− Xk∥2F =
d∑
i=k

σ2i .

19

principal components

What do the principal components looks like?

Want a small set of vector v⃗1, . . . , v⃗k so that most data
examples x⃗ can be written as a linear combination of these
basis vectors:

x⃗ ≈ c1⃗v1 + c2v⃗2 + . . .+ ckv⃗k

One possible basis:

More compact basis:

20

principal components

MNIST principal components:

Often principal components are difficult to interpret. 21

loading vectors

What do the loading vectors looks like?

The loading vector z⃗ for an example x⃗ contains coefficients which
recombine the top k principal components v⃗1, . . . , v⃗k to

approximately reconstruct x⃗.

Provide a short “finger print” for any image x⃗ which can be used to
reconstruct that image. 22

loading vectors: similarity view

For any x⃗ with loading vector z⃗, zi is the inner product similarity
between x⃗ and the ith principal component v⃗i.

23

loading vectors: projection view

So we approximate x⃗ ≈ x̃ = ⟨⃗x, v⃗1⟩ · v1 + . . .+ ⟨⃗x, v⃗k⟩ · v⃗k.

Projection onto first 2 principal components.

Equivalent to projecting x⃗ onto the k-dimensional subspace
spanned by v⃗1, . . . , v⃗k.

24

loading vectors: projection view

For an example x⃗i, the loading vector z⃗i contains the
coordinates in the projection space:

Projection onto first 2 principal components.

25

pca applications

Like any autoencoder, PCA can be used for:

• Feature extraction
• Denoising and rectification
• Data generation
• Compression
• Visualization

26

pca for data visualization

“Genes Mirror Geography Within Europe” – Nature, 2008.

Each data vector xi contains genetic information for one person in
Europe. Set k = 2 and plot (XV)i for each i on a 2-d plane. Color
points by what country they are from.

27

semantic embeddings: motivating problem

Consider data sets which consist of text:

Review 1: So far this thing is great. It takes up way less space
and does a great job opening cans.

Review 2: Well designed, compact, and easy to use. I’ll never
use another can opener.

Review 3: Not entirely sure this was worth 20. Mom couldn’t
figure out how to use it and it’s fairly difficult to turn for
someone with arthritis.

Goal is to classify reviews as “positive” or “negative”.

28

semantic embeddings: motivating problem

Step 1: Need to convert reviews to numerical data.

One approach: Bag-of-words features.

29

semantic embeddings: motivating problem

Vocabulary: Small, handy, excellent, great, quality, compact, easy,
difficult.

Review 1: Very small and handy for traveling or camping. Excellent
quality, operation, and appearance..

[, , , , , , ,]

Review 2: So far this thing is great. Well designed, compact, and
easy to use. I’ll never use another can opener.

[, , , , , , ,]

Review 3: Not entirely sure this was worth 20. Mom couldn’t figure
out how to use it and it’s fairly difficult to turn for someone with
arthritis.

[, , , , , , ,] 30

semantic embeddings

This approach only works well for very large data sets.

The algorithm is ignorant to a the fact that “great” and “excellent”
are near synonyms. Or that “difficult” and “easy” are antonyms.

Goal: Map words to numerical vectors in a semantically meaningful
way. Similar words map to similar vectors. Dissimilar words to
dissimilar vectors.

31

32

latent semantic analysis

• ⟨⃗yi, z⃗a⟩ ≈ 1 when doci contains worda.
• If doci and doci both contain worda, ⟨⃗yi, z⃗a⟩ ≈ ⟨⃗yj, z⃗a⟩ = 1.

33

example: latent semantic analysis

• The columns z⃗1, z⃗2, . . . give representations of words, with
z⃗i and z⃗j tending to have high dot product if wordi and
wordj appear in many of the same documents.

• Z corresponds to the top k right singular vectors: the
eigenvectors of XXT. Intuitively, what is XXT?

• (XXT)i,j =

34

example: word embedding

Not obvious how to convert a word into a feature vector that
captures the meaning of that word. Approach suggested by
LSA: build a d× d symmetric “similarity matrix” M between
words, and factorize: M ≈ FFT for rank k F.

• Similarity measures: How often do wordi,wordj appear in
the same sentence, in the same window of w words, in
similar positions of documents in different languages?

• Replacing XXT with these different metrics (sometimes
appropriately transformed) leads to popular word
embedding algorithms: word2vec, GloVe, etc.

35

example: word embedding

word2vec was originally described as a neural-network
method, but Levy and Goldberg show that it is simply low-rank
approximation of a specific similarity matrix. Neural word

embedding as implicit matrix factorization.
36

