
CS-UY 4563: Lecture 21
Auto-encoders, Principal Component Analysis

NYU Tandon School of Engineering, Prof. Christopher Musco

1



course logistics

• Next weeks should be focused on project work! Final report due
5/11.

• I am still working through proposals. If you feel blocked/need
my input to move forward on project, please email or come to
office hours.

• Each group will give a 5 minute presentation in class on 5/6 or
5/11. Link for signing up for a slot is on the course webpage.

• Details on expectations for presentation will be released soon.

2



transfer learning

Machine learning algorithms like neural networks learn high
level features.

These features are useful for other tasks that the network was
not trained specifically to solve. 3



autoencoder

Idea behind autoencoders: If you have limited labeled data, make
the inputs the targets. Learn to reconstruct input data and extract
high-level features along the way.

4



autoencoder

Encoder: e : Rd → Rk

Decoder: d : Rk → Rd

f(⃗x) = e(d(x))

The number of learned features k is typically≪ d.

5



autoencoder reconstruction

Example image reconstructions from autoencoder:

https://www.biorxiv.org/content/10.1101/214247v1.full.pdf

Input parameters: d = 49152.
Bottleneck “latent” parameters: k = 1024.

6

https://www.biorxiv.org/content/10.1101/214247v1.full.pdf


autoencoders for feature extraction

Autoencoders also have many other applications besides
feature extraction.

• Learned image compression.
• Denoising and in-painting.
• Image synthesis.

7



autoencoders for data compression

Due to their bottleneck design, autoencoders perform
dimensionality reduction and thus data compression.

Given input x⃗, we can completely recover f(⃗x) from z⃗ = e(⃗x). z⃗
typically has many fewer dimensions than x⃗ and for a typical
f(⃗x) will closely approximate x⃗. 8



autoencoders for image compression

The best lossy compression algorithms are tailor made for specific
types of data:

• JPEG 2000 for images

• MP3 for digital audio.

• MPEG-4 for video.

All of these algorithms take advantage of specific structure in these
data sets. E.g. JPEG assumes images are locally “smooth”.

9



autoencoders for image compression

With enough input data, autoencoders can be trained to find this
structure on their own.

“End-to-end optimized image compression”, Ballé, Laparra, Simoncelli

Need to be careful about how you choose loss function, design the
network, etc. but can lead to much better image compression than
“hand-designed” algorithms like JPEG. 10



autoencoders for data restoration

Train autoencoder on uncorrupted data. Pass corrupted data x⃗
through autoencoder and return f(⃗x) as repaired result.1

1Works much better if trained on corrupted data. More on this later.

11



autoencoders learn compressed representations

Why does this work?

Definitions:

• Let A be our original data space. E.g. A = Rd for some
dimension d.

• Let S be the set of all data examples which could be the output
of our autoencoder f. We have that S ⊂ A. Formally,
S = {⃗y ∈ Rd : y⃗ = f(⃗x) for some x⃗ ∈ Rd}. 12



autoencoders learn compressed representations

Consider 128× 128× 3 images with pixels values in 0, 1 . . . , 255. How
many unqique images are there in A?

Suppose z⃗ holds k values between in 0, .1, .2, . . . , 1. Roughly how
many unique images are there in S?

13



autoencoders learn compressed representations

So, any autoencoder can only represent a tiny fraction of all
possible images. This is a good thing.

14



autoencoders learn compressed representations

S = {⃗y ∈ Rd : y⃗ = f(⃗x) for some x⃗ ∈ Rd}

For a good (accurate, small bottleneck) autoencoder, S will
closely approximate I . Both will be much smaller than A.

15



autoencoders learn compressed representations

f(⃗x) projects an image x⃗ closer to the space of natural images.

16



autoencoders for data generation

Suppose we want to generate a random natural image. How
might we do that?

• Option 1: Draw each pixel in x⃗ value uniformly at random.
Draws a random image from A.

• Option 2: Draws x⃗ randomly image from S .

How do we randomly select an image from S?

17



autoencoders for data generation

How do we randomly select an image x⃗ from S?

Randomly select code z⃗, then set x⃗ = e(⃗z).2

2Lots of details to think about here. In reality, people use “variational
autoencoders” (VAEs), which are a natural modification of AEs.

18



autoencoders for data generation

Generative models are a growing area of machine learning, drive by
a lot of interesting new ideas. Generative Adversarial Networks in
particular are now a major competitor with variational autoencoders.

19



principal component analysis

Remainder of lecture: Deeper dive into understanding a
simple, but powerful autoencoder architecture. Specifically we
will learn about principal component analysis (PCA) as a type
of autoencoder.

PCA is the “linear regression” of unsupervised learning: often
the go-to baseline method for feature extraction and
dimensionality reduction.

Very important outside machine learning as well.

20



principal component analysis

Consider the simplest possible autoencoder:

• One hidden layer. No non-linearity. No biases.

• Latent space of dimension k.

• Weight matrices are W1 ∈ Rd×k and W2 ∈ Rk×d. 21



principal component analysis

Given input x⃗ ∈ Rd, what is f(⃗x) expressed in linear algebraic
terms?

f(⃗x)T = x⃗TW1W2

22



principal component analysis

Encoder: e(⃗x) = x⃗TW1. Decoder: d(⃗z) = z⃗W2

23



principal component analysis

Given training data set x⃗1, . . . , x⃗n, let X denote our data matrix.
Let X̃ = XW1W2.

Goal of training autoencoder: Learn weights (i.e. learn
matrices W1W2) so that X̃ is as close to X as possible.

24



frobenius norm

Natural squared autoencoder loss: Minimize L(X, X̃) where:

L(X, X̃) =
n∑
i=1

∥⃗xi − f(⃗xi)∥22

=
n∑
i=1

d∑
j=1

(⃗xi[j]− f(⃗xi)[j])2

= ∥X− X̃∥2F

Recall that for a matrix M, ∥M∥2F is called the Frobenius norm.
∥M∥2F =

∑
i,jM2

i,j.

Question: How should we find W1,W2 to minimize
∥X− X̃∥2F = ∥X− XW1W2∥2F?

25



low-rank approximation

Recall:

• The columns of a matrix with column rank k can all be written
as linear combinations of just k columns.

• The rows of a matrix with row rank k can all be written as linear
combinations of k rows.

• Column rank = row rank = rank.

X̃ is a low-rank matrix since it has rank k for k≪ d. 26



low-rank approximation

Principal component analysis is the task of finding W1, W2,
which amounts to finding a rank k matrix X̃ which
approximates the data matrix X as closely as possible.

In general, X will have rank d.

27



singular value decomposition

Any matrix X can be written:

Where UTU = I, VTV = I, and σ1 ≥ σ2 ≥ . . . σd ≥ 0. I.e. U and V are
orthogonal matrices.

This is called the singular value decomposition.

Can be computed in O(nd2) time (faster with approximation algos). 28



orthogonal matrices

Let u1, . . . ,un ∈ Rn denote the columns of U. I.e. the top left
singular vectors of X.

∥ui∥22 = uTi uj =

29



singular value decomposition

Can read off optimal low-rank approximations from the SVD:

Eckart–Young–Mirsky Theorem: For any k ≤ d, Xk = UkΣkVTk is
the optimal k rank approximation to X:

Xk = argmin
X̃ with rank ≤ k

∥X− X̃∥2F.

30



singular value decomposition

Claim: Xk = UkΣkVTk = XVkVTk.

So for a model with k hidden variables, we obtain an optimal
autoencoder by setting W1 = Vk, W2 = VTk. f(⃗x) = x⃗VkVTk. 31



principal component analysis

To be continued...
32


