
CS-UY 4563: Lecture 20
Auto-encoders, Dimensionality Reduction,
Principal Component Analysis

NYU Tandon School of Engineering, Prof. Christopher Musco

1



course logistics

Convolutional neural net demo: demo_classification.ipynb.

• Classification on CIFAR 10 data set. 60k images, 10 classes.

• You’re going to want to use a GPU. Easiest way to access more
compute power is through Google Colab.

2



tricks of the trade

Beyond techniques already discussed (back-prop, batch gradient
descent, adaptive learning rates) effectively training convolutional
networks requires a lot of “tricks”. In the demo we use:

• Batch normalization (accelerate training).

• Dropout (prevent over-fitting)

• Data-augmentation.

3



batch normalization

Start with any neural network architecture:

For input x⃗,

z̄ = w⃗Tx⃗+ b
z = s(z̄)

where w⃗, b, and s are weights, bias, and non-linearity. 4



batch normalization

z̄ is a function of the input x⃗. We can write it as z̄(⃗x). Consider
the mean and standard deviation of the hidden variable over
our entire dataset x⃗1 . . . , x⃗n:

µ =
1
n

n∑
j=1

z̄(⃗xj)

σ2 =
1
n

n∑
j=1

(z̄(⃗xj)− µ)2

Just as normalization (mean centering, scaling to unit
variance) is sometimes used for input features, batch-norm
applies normalization to learned features.

5



batch normalization

Can add a batch normalization layer after any layer:

ū =
z̄− µ

σ

u = s(γ · ū+ c).

Where γ and c are learned parameters. Has the effect of
mean-centering/normalizing z̄, and then mapping back to have a
new mean and new standard deviation.

6



batch normalization

Proposed in 2015: “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift”, Ioffe, Szegedy.

Doesn’t change the expressive power of the network, but allows for
significant convergence acceleration. Authors and others have good
intuition for why: happy to discuss this more offline.

7



dropout

Proposed in 2012: “Dropout: A Simple Way to Prevent Neural
Networks from Overfitting”, Srivastava et al.

During training, ignore a random subset of neurons during each
gradient step. Select each neuron to be included independently with
probability p (typically p ≈ .5). During testing, no dropout is used.

8



dropout

• Only used on fully connected layers.

• Simultaneously performs model regularization (model
simplification) and model averaging.

• Has become less important in modern CNNs (convolutional
neural nets) as the final fully connected layers become less
important. But still a very helpful technique to know about!

9



data augmentation

Great general tool to know about. Main idea:

• More training data typically leads to a more accurate model.

• Artificially enlarge training data with simple transformations.

Take training images and randomly shift, flip, rotate, skew, darken,
lighten, shift colors, etc. to create new training images. Final
classifier will be more robust to these transformations.

10



one-shot learning

What if you want to apply deep convolutional networks to a problem
where you do not have a lot of labeled data in the first place?

Example: Classify images of different Quidditch balls.

11



one-shot learning

A human could probably achieve near perfect classification
accuracy even given access to a single labeled example from
each class:

Major question in ML: How? Can we design ML algorithms
which can do the same?

12



transfer learning

Transfer knowledge from one task we already know how to
solve to another.

For example, we have learned from past experience that balls
used in sports have consistent shapes, colors, and sizes. These
features can be used to distinguish balls of different type.

13



feature learning

Examples of possible high-level features a human would learn:

14



feature learning

If these features are highly informative (i.e. lead to highly
separable data) few training examples are needed to learn.

Might suffice to classify ball using nearest training example in
feature space, even if just a handful of training examples.

15



transfer learning

Empirical observation: Features learned when training models
like deep neural nets seem to capture exactly these sorts of
high-level properties.

Even if we can’t put into words what each feature in z⃗ means... 16



transfer learning

This is now a common technique in computer vision:

1. Download network trained on large image classification dataset
(e.g. Imagenet).

2. Extract features z⃗ for amy new image x⃗ by running it through the
network up until layer before last.

3. Use these features in a simpler machine learning algorithm that
requires less data (nearest neighbor, logistic regression, etc.).

This approach has even been used on the quidditch problem:
github.com/thatbrguy/Object-Detection-Quidditch

17

github.com/thatbrguy/Object-Detection-Quidditch


unsupervised feature learning

Transfer learning: Lots of labeled data for one problem makes
up for little labeled data for another.

What if we don’t even have much labeled data for irrelevant
classes?

How to extract features in a data-driven way from unlabeled
data is one of the central problems in unsupervised learning.

Unsupervised and semi-supervised learning will be the main
topics of the next 2 weeks.

18



supervised vs. unsupervised learning

• Supervised learning: All input data examples come with
targets/labels. What machines are good at now.

• Unsupervised learning: No input data examples come
with targets/labels. Interesting problems to solve include
clustering, anomaly detection, semantic embedding, etc.

• Semi-supervised learning: Some (typically very few) input
data examples come with targets/labels. What human
babies are really good at, and we would love to make
machines better at.

19



transfer learning

Back to the problem at hand: Want to extract meaningful
features from an already trained neural network.

20



autoencoder

Simple but clever idea: If we have inputs x⃗1, . . . , x⃗n ∈ Rd but no
targets y1, . . . , yn to learn, just make the inputs the targets.

• Let f
θ⃗
: Rd → Rd be our model.

• Let L be a loss function. E.g. squared loss:
L
θ⃗
(⃗x) = ∥⃗x− f

θ⃗
(⃗x)∥22.

• Train model: θ⃗∗ = min
θ⃗

∑n
i=1 Lθ⃗ (⃗x).

If f
θ⃗
is a model that incorporates feature learning, hopefully

these features will capture high-level meaning.

f
θ⃗
is called an autoencoder. It maps inputs space to inputs

space.

21



autoencoder

Two examples of autoencoder architectures:

Which would lead to better feature learning?

22



autoencoder

Important property of autoencoders: no matter what architecture is
use, there must always be a bottleneck with fewer parameters than
the input. The bottleneck ensures information is “distilled” from
low-level features to high-level features.

23



autoencoder

Architecture typically split into two parts:

Encoder: e : Rd → Rk

Decoder: d : Rd → Rk

f(⃗x) =

Often symmetric, but does not have to be. 24



autoencoder reconstruction

Example image reconstructions from autoencoder:

https://www.biorxiv.org/content/10.1101/214247v1.full.pdf

Input parameters: d = 49152.
Bottleneck “latent” parameters: k = 1024. 25

https://www.biorxiv.org/content/10.1101/214247v1.full.pdf


autoencoders for feature extraction

At least for now, the best autoencoders do not work as well as
for feature extraction as supervised methods. But, they have
many other applications.

• Image segmentation.
• Learned image compression.
• Denoising and in-painting.
• Image synthesis.

26


