CS-UY 4563: Lecture 2 Simple Linear Regression

NYU Tandon School of Engineering, Prof. Christopher Musco

COURSE ADMIN

- Please enroll for Piazza. Only about 60% of class has.
- First lab assignment: lab_housing_partial.ipynb
 - Due next Tuesday, 2/4 at 11:59pm.
 - Go through the simple regression demonstration demo_auto_mpg.ipynb.
 - Turn in entire Jupyter Notebook via NYU Classes.
 - At top of notebook list any collaborators you worked with (as many as you like).
 - There will be a corresponding written homework released shortly.

Goal: Develop algorithms to make decisions or predictions based on data.

• Input: A single piece of data (an image, audio file, patient healthcare record, MRI scan).

• **Output:** A prediction or decision (this image is a stop sign, this stock will go up 10% next quarter, turn the car right).

Step 1: Collect and label many input/output pairs (\mathbf{x}_i, y_i) . For our digit images, we have each $\mathbf{x}_i \in \mathbb{R}^{28 \times 28}$ and $y_i \in \{0, 1, \dots, 9\}$.

This is called the training dataset.

Step 2: Learn from the examples we have.

• Have the computer <u>automatically</u> find some function $f(\mathbf{x})$ such that $f(\mathbf{x}_i) = y_i$ for most (\mathbf{x}_i, y_i) in our training data set (by searching over many possible functions).

In supervised learning every input \mathbf{x}_i in our training dataset comes with a desired output y_i (typically generated by a human, or some other process).

Types of supervised earning:

- Classification predict a discrete class label.
- **Regression** predict a <u>continuous</u> value.
 - Dependent variable, response variable, target variable, lots of different names for *y_i*.

Another example of supervised classification: Face Detection.

Each input data example x_i is an image. Each output y_i is 1 if the image contains a face, 0 otherwise.

• Harder than digit recognition, but we now have very reliable methods (used in nearly all digital cameras, phones, etc.)

Other examples of supervised classification:

- <u>Object detection</u> (Input: image, Output: dog or cat)
- <u>Spam detection</u> (Input: email text, Output: spam or not)
- <u>Medical diagnosis</u> (Input: patient data, Output: disease condition or not)
- <u>Credit decision making</u> (Input: financial data, Output: offer loan or not)

Example of supervised regression: Stock Price Prediction.

Each input **x** is a vector of metrics about a company (sales volume, PE ratio, earning reports, historical price data).

Each output y_i is the **price of the stock** 3 months in the future.

Other examples of supervised regression:

- <u>Home price prediction</u> (Inputs: square footage, zip code, number of bathrooms, Output: Price)
- <u>Car price prediction</u> (Inputs: make, model, year, miles driven, Output: Price)
- <u>Weather prediction</u> (Inputs: weather data at nearby stations, Output: tomorrows temperature)
- <u>Robotics/Control</u> (Inputs: information about environment and current position at time t, Output: estimate of position at time t + 1)

Later in the class we will talk about other models:

- Unsupervised learning (no labels or response variable)
 - Clustering
 - Representation Learning
- · Reinforcement learning
 - Game playing

You might also hear about semi-supervised learning or active learning – these categories aren't always cut and dry.

In **supervised learnings** every input \mathbf{x}_i in our training dataset comes with a desired output y_i (typically generated by a human, or some other process).

Types of supervised earning:

- Classification predict a discrete class label.
- **Regression** predict a <u>continuous</u> value.
 - Dependent variable, response variable, target variable, lots of different names for *y_i*.

Motivating example: Predict the highway miles per gallon (MPG) of a car given quantitative information about its engine. Demo in **demo_auto_mpg.ipynb**.

What factors might matter?

PREDICTING MPG

Data set available from the UCI Machine Learning Repository: https://archive.ics.uci.edu/.

This place is a great resource for projects!

Datasets from UCI (and many other places) comes as tab, space, or comma delimited files.

housing.data			🗉 auto-	mpg.data $ imes$								
Users > christophermusco > Desktop > auto-mpg.data												
1	18.0	8	307.0	130.0	3504.	12.0	70	1	"chevrolet chevelle malibu"			
2	15.0	8	350.0	165.0	3693.	11.5	70	1	"buick skylark 320"			
3	18.0	8	318.0	150.0	3436.	11.0	70	1	"plymouth satellite"			
4	16.0	8	304.0	150.0	3433.	12.0	70	1	"amc rebel sst"			
5	17.0	8	302.0	140.0	3449.	10.5	70	1	"ford torino"			
6	15.0	8	429.0	198.0	4341.	10.0	70	1	"ford galaxie 500"			
7	14.0	8	454.0	220.0	4354.	9.0	70	1	"chevrolet impala"			
8	14.0	8	440.0	215.0	4312.	8.5	70	1	"plymouth fury iii"			
9	14.0	8	455.0	225.0	4425.	10.0	70	1	"pontiac catalina"			
10	15.0	8	390.0	190.0	3850.	8.5	70	1	"amc ambassador dpl"			
11	15.0	8	383.0	170.0	3563.	10.0	70	1	"dodge challenger se"			
12	14.0	8	340.0	160.0	3609.	8.0	70	1	"plymouth 'cuda 340"			
13	15.0	8	400.0	150.0	3761.	9.5	70	1	"chevrolet monte carlo"			
14	14.0	8	455.0	225.0	3086.	10.0	70	1	"buick estate wagon (sw)"			
15	24.0	4	113.0	95.00	2372.	15.0	70	3	"toyota corona mark ii"			
16	22.0	6	198.0	95.00	2833.	15.5	70	1	"plymouth duster"			
17	18.0	6	199.0	97.00	2774.	15.5	70	1	"amc hornet"			
18	21.0	6	200.0	85.00	2587.	16.0	70	1	"ford maverick"			
19	27.0	4	97.00	88.00	2130.	14.5	70	3	"datsun pl510"			
20	26.0	4	97.00	46.00	1835.	20.5	70	2	"volkswagen 1131 deluxe sedan"			
21	25.0	4	110.0	87.00	2672.	17.5	70	2	"peugeot 504"			
22	24.0	4	107.0	90.00	2430.	14.5	70	2	"audi 100 ls"			
23	25.0	4	104.0	95.00	2375.	17.5	70	2	"saab 99e"			
24	26.0	4	121.0	113.0	2234.	12.5	70	2	"bmw 2002"			
25	21.0	6	199.0	90.00	2648.	15.0	70	1	"amc gremlin"			
26	10.0	8	360.0	215.0	4615.	14.0	70	1	"ford f250"			

PREDICTING MPG

Check dataset description to know what each column means.

	E hous	housing.data		🗏 auto-	mpg.data $ imes$						
	Users > christophermusco > Desktop > = auto-mpg,data										X1
y ₁ —	1.	18.0	8	307.0	130.0	3504.	12.Ə	70	1	"chevrolet chevelle malibu"	
	2.	15.0	8	350.0	165.0	3693.	11.5	70	1	"buick skylark 320" 🗲	— X ₂
y ₂ —	3	18.0	8	318.0	150.0	3436.	11. Ə	70	1	"plymouth satellite"	_
	4	16.0	8	304.0	150.0	3433.	12.0	70	1	"amc rebel sst"	- X3
y ₃ <	5	17.0	8	302.0	140.0	3449.	10.5	70	1	"ford torino"	
	6	15.0	8	429.0	198.0	4341.	10.0	70	1	"ford galaxie 500"	
	7	14.0	8	454.0	220.0	4354.	9.0	70	1	"chevrolet impala"	
	8	14.0	8	440.0	215.0	4312.	8.5	70	1	"plymouth fury iii"	
	9	14.0	8	455.0	225.0	4425.	10.0	70	1	"pontiac catalina"	
	10	15.0	8	390.0	190.0	3850.	8.5	70	1	"anc ambassador dpl"	
	11	15.0	8	383.0	170.0	3563.	10.0	70	1	"dodge challenger se"	
	12	14.0	8	340.0	160.0	3609.	8.0	70	1	"plymouth 'cuda 340"	
	13	15.0	8	400.0	150.0	3761.	9.5	70	1	"chevrolet monte carlo"	
	14	14.0	8	455.0	225.0	3086.	10.0	70	1	"buick estate wagon (sw)"	
	15	24.0	4	113.0	95.00	2372.	15.0	70	3	"toyota corona mark ii"	
	16	22.0	6	198.0	95.00	2833.	15.5	70	1	"plymouth duster"	
	17	18.0	6	199.0	97.00	2774.	15.5	70	1	"amc hornet"	
	18	21.0	6	200.0	85.00	2587.	16.0	70	1	"ford maverick"	
	19	27.0	4	97.00	88.00	2130.	14.5	70	3	"datsun pl510"	
	20	26.0	4	97.00	46.00	1835.	20.5	70	2	"volkswagen 1131 deluxe sedan"	
	21	25.0	4	110.0	87.00	2672.	17.5	70	2	"peugeot 504"	
	22	24.0	4	107.0	90.00	2430.	14.5	70	2	"audi 100 ls"	
	23	25.0	4	104.0	95.00	2375.	17.5	70	2	"saab 99e"	
	24	26.0	4	121.0	113.0	2234.	12.5	70	2	"bmw 2002"	
	25	21.0	6	199.0	90.00	2648.	15.0	70	1	"amc gremlin"	
	26	10.0	8	360.0	215.0	4615.	14.0	70	1	"ford f250"	

'mpg', 'cylinders','displacement', 'horsepower', 'weight', 'acceleration', 'model year', 'origin', 'car name'

- Use **pandas** for reading data from delimited files. Stores data in a type of table called a "data frame" but this is just a wrapper around a **numpy** array.
- Use matplotlib for initial exploration.

Linear regression from a Machine Learning (not a Statistics) perspective. Our first supervised machine learning model.

Only focus on <u>one predictive variable</u> at a time (e.g. horsepower). This is why it's called <u>simple</u> linear regression.

SIMPLE LINEAR REGRESSION

Dataset:

- $x_1, \ldots, x_n \in \mathbb{R}$ (horsepowers of *n* cars this is the predictor/independent variable)
- $y_1, \ldots, y_n \in \mathbb{R}$ (MPG this is the response/dependent variable)

- Model $f_{\theta}(x)$: Class of equations or programs which map input x to predicted output. We want $f_{\theta}(x_i) \approx y_i$ for training inputs.
- Model Parameters θ: Vector of numbers. These are numerical nobs which parameterize our class of models.
- Loss Function $L(\theta)$: Measure of how well a model fits our data. Typically some function of $f_{\theta}(x_1) - y_1, \dots, f_{\theta}(x_n) - y_n$

Goal: Choose parameters θ^* which minimize the Loss Function:

$$\boldsymbol{\theta}^* = \operatorname*{arg\,min}_{\boldsymbol{\theta}} L(\boldsymbol{\theta})$$

LINEAR REGRESSION

General Supervised Learning

• Model: $f_{\theta}(x)$

Linear Regression

• Model:

 \cdot Model Parameters: heta

• Model Parameters:

· Loss Function: L(heta)

Loss Function:

What is a natural loss function for linear regression?

HOW TO MEASURE GOODNESS OF FIT

Typical choices are a function of $y_1 - f_{\beta_0,\beta_1}(x_1), \ldots, y_n - f_{\beta_0,\beta_1}(x_n)$

- ℓ_2 /Squared Loss: $L(\beta_0, \beta_1) = \sum_{i=1}^n [y_i f_{\beta_0, \beta_1}(x_i)]^2$.
- ℓ_1 /Lease absolute deviations: $L(\beta_0, \beta_1) = \sum_{i=1}^n |y_i f_{\beta_0, \beta_1}(x_i)|$.
- ℓ_{∞} Loss $L(\beta_0, \beta_1) = \max_{i \in 1, \dots, n} |y_i f_{\beta_0, \beta_1}(x_i)|.$

HOW TO MEASURE GOODNESS OF FIT

We're going to start with the Squared Loss/Sum-of-Squares Loss. Also called "Residual Sum-of-Squares (RSS)"

- Relatively <u>robust</u> to outliers.
- Simple to define, leads to simple algorithms for finding β_0, β_1
- Justifications from <u>classical statistics</u> related to assumptions about Gaussian noise. Will discuss later in the course.

LINEAR REGRESSION

General Supervised Learning

• Model: $f_{\theta}(x)$

Linear Regression

• Model: $f_{\beta_0,\beta_1}(x) = \beta_0 + \beta_1 \cdot x$

 \cdot Model Parameters: heta

• Model Parameters: β_0, β_1

• Loss Function: $L(\theta)$ • Loss Function: $L(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - f_{\beta_0, \beta_1}(x_i))^2$

Goal: Choose β_0, β_1 to minimize $L(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$.

This is the entire job of any **Supervised Learning Algorithm**. ²⁵

FUNCTION MINIMIZATION

Univariate function:

 $x^3 + 3 \cdot x^2 - 5 \cdot x + 1$

• Find all places where derivative f'(x) = 0 and check which has the smallest value.

Multivariate function: $L(\beta_0, \beta_1)$

• Find values of β_0, β_1 where <u>all</u> partial derivatives equal 0.

•
$$\frac{\partial L}{\partial \beta_0} = 0$$
 and $\frac{\partial L}{\partial \beta_1} = 0$.

Multivariate function: $L(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$

- Find values of β_0, β_1 where <u>all</u> partial derivatives equal 0.
- $\frac{\partial L}{\partial \beta_0} = 0$ and $\frac{\partial L}{\partial \beta_1} = 0$.

Some definitions:

• Let
$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$
.
• Let $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$.
• Let $\sigma_y^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \overline{y})^2$.
• Let $\sigma_x^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$.
• Let $\sigma_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$

 \bar{y} is the <u>mean</u> of y. \bar{y} is the <u>mean</u> of x. σ_y^2 is the <u>variance</u> of y. σ_x^2 is the <u>variance</u> of x. σ_{xy} is the covariance.

Claim: $L(\beta_0, \beta_1)$ is minimized when:

•
$$\beta_1 = \sigma_{XY}/\sigma_X^2$$

•
$$\beta_0 = \bar{y} - \beta_1 \bar{x}$$

PROOF

PROOF

Takeaways:

- Minimizing functions is often easy with calculus.
- Tools we will see again: linearity of derivatives, chain rule.
- Simple closed form formula for optimal parameters β_0^* and β_1^* for squared-loss!

Let
$$L(\beta_0, \beta_1) = \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2$$
.

$$R^2 = 1 - \frac{L(\beta_0, \beta_1)}{n\sigma_v^2}$$

is exactly the R^2 value you may remember from statistics. The smaller the loss, the closer R^2 is to 1, which means we have a better regression fit.

Many reasons you might get a poor regression fit:

Some of these are fixable!

- Remove outliers, use more robust loss function.
- Non-linear model transformation.

Fit the model $\frac{1}{mpg} \approx \beta_0 + \beta_1 \cdot \text{horsepower}$.

Much better fit, same exact learning algorithm!