
CS-UY 4563: Lecture 2
Simple Linear Regression

NYU Tandon School of Engineering, Prof. Christopher Musco
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course admin

• Please enroll for Piazza. Only about 60% of class has.
• First lab assignment: lab_housing_partial.ipynb

• Due next Tuesday, 2/4 at 11:59pm.
• Go through the simple regression demonstration
demo_auto_mpg.ipynb.

• Turn in entire Jupyter Notebook via NYU Classes.
• At top of notebook list any collaborators you worked with
(as many as you like).

• There will be a corresponding written homework released
shortly.
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basic goal

Goal: Develop algorithms to make decisions or predictions
based on data.

• Input: A single piece of data (an image, audio file, patient
healthcare record, MRI scan).

• Output: A prediction or decision (this image is a stop sign,
this stock will go up 10% next quarter, turn the car right).
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supervised learning

Step 1: Collect and label many input/output pairs (xi, yi). For
our digit images, we have each xi ∈ R28×28 and
yi ∈ {0, 1, . . . , 9}.

This is called the training dataset.
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supervised

Step 2: Learn from the examples we have.

• Have the computer automatically find some function f(x)
such that f(xi) = yi for most (xi, yi) in our training data set
(by searching over many possible functions).
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machine learning

In supervised learning every input xi in our training dataset
comes with a desired output yi (typically generated by a
human, or some other process).

Types of supervised earning:

• Classification – predict a discrete class label.
• Regression – predict a continuous value.

• Dependent variable, response variable, target variable, lots
of different names for yi.
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supervised learning

Another example of supervised classification: Face Detection.

Each input data example xi is an image. Each output yi is 1 if
the image contains a face, 0 otherwise.

• Harder than digit recognition, but we now have very
reliable methods (used in nearly all digital cameras,
phones, etc.)
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supervised learning

Other examples of supervised classification:

• Object detection (Input: image, Output: dog or cat)
• Spam detection (Input: email text, Output: spam or not)
• Medical diagnosis (Input: patient data, Output: disease
condition or not)

• Credit decision making (Input: financial data, Output: offer
loan or not)
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supervised learning

Example of supervised regression: Stock Price Prediction.

Each input x is a vector of metrics about a company (sales
volume, PE ratio, earning reports, historical price data).

Each output yi is the price of the stock 3 months in the future.

9



supervised learning

Other examples of supervised regression:

• Home price prediction (Inputs: square footage, zip code,
number of bathrooms, Output: Price)

• Car price prediction (Inputs: make, model, year, miles
driven, Output: Price)

• Weather prediction (Inputs: weather data at nearby
stations, Output: tomorrows temperature )

• Robotics/Control (Inputs: information about environment
and current position at time t, Output: estimate of
position at time t+ 1)
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other types of learning

Later in the class we will talk about other models:

• Unsupervised learning (no labels or response variable)
• Clustering
• Representation Learning

• Reinforcement learning
• Game playing

You might also hear about semi-supervised learning or active
learning – these categories aren’t always cut and dry.
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supervised learning

In supervised learnings every input xi in our training dataset
comes with a desired output yi (typically generated by a
human, or some other process).

Types of supervised earning:

• Classification – predict a discrete class label.
• Regression – predict a continuous value.

• Dependent variable, response variable, target variable, lots
of different names for yi.
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predicting mpg

Motivating example: Predict the highway miles per gallon
(MPG) of a car given quantitative information about its engine.
Demo in demo_auto_mpg.ipynb.

What factors might matter?
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predicting mpg

Data set available from the UCI Machine Learning Repository:
https://archive.ics.uci.edu/.

This place is a great resource for projects! 14

https://archive.ics.uci.edu/


predicting mpg

Datasets from UCI (and many other places) comes as tab,
space, or comma delimited files.
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predicting mpg

Check dataset description to know what each column means.

’mpg’, ’cylinders’,’displacement’, ’horsepower’, ’weight’,
’acceleration’, ’model year’, ’origin’, ’car name’
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libraries for initial data reading

• Use pandas for reading data from delimited files. Stores
data in a type of table called a “data frame” but this is just
a wrapper around a numpy array.

• Use matplotlib for initial exploration.
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simple linear regression

Linear regression from a Machine Learning (not a Statistics)
perspective. Our first supervised machine learning model.

Only focus on one predictive variable at a time (e.g.
horsepower). This is why it’s called simple linear regression.
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simple linear regression

Dataset:
• x1, . . . , xn ∈ R (horsepowers of n cars – this is the
predictor/independent variable)

• y1, . . . , yn ∈ R (MPG – this is the response/dependent
variable)
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supervised learning definitions

• Model fθ(x): Class of equations or programs which map input x
to predicted output. We want fθ(xi) ≈ yi for training inputs.

• Model Parameters θ: Vector of numbers. These are numerical
nobs which parameterize our class of models.

• Loss Function L(θ): Measure of how well a model fits our data.
Typically some function of fθ(x1)− y1, . . . , fθ(xn)− yn

Goal: Choose parameters θ∗ which minimize the Loss Function:

θ∗ = argmin
θ

L(θ)
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linear regression

General Supervised Learning

• Model: fθ(x)

• Model Parameters: θ

• Loss Function: L(θ)

Linear Regression

• Model:

• Model Parameters:

• Loss Function:
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how to measure goodness of fit

What is a natural loss function for linear regression?
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how to measure goodness of fit

Typical choices are a function of y1 − fβ0,β1(x1), . . . , yn − fβ0,β1(xn)

• ℓ2/Squared Loss: L(β0, β1) =
∑n

i=1 [yi − fβ0,β1(xi)]
2.

• ℓ1/Lease absolute deviations: L(β0, β1) =
∑n

i=1 |yi − fβ0,β1(xi)|.

• ℓ∞ Loss L(β0, β1) = maxi∈1,...,n |yi − fβ0,β1(xi)|.
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how to measure goodness of fit

We’re going to start with the Squared Loss/Sum-of-Squares Loss.
Also called “Residual Sum-of-Squares (RSS)”

• Relatively robust to outliers.

• Simple to define, leads to simple algorithms for finding β0, β1
• Justifications from classical statistics related to assumptions
about Gaussian noise. Will discuss later in the course.
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linear regression

General Supervised Learning

• Model: fθ(x)

• Model Parameters: θ

• Loss Function: L(θ)

Linear Regression

• Model:
fβ0,β1(x) = β0 + β1 · x

• Model Parameters: β0, β1

• Loss Function: L(β0, β1) =∑n
i=1(yi − fβ0,β1(xi))2

Goal: Choose β0, β1 to minimize
L(β0, β1) =

∑n
i=1(yi − β0 − β1xi)2.

This is the entire job of any Supervised Learning Algorithm. 25



function minimization

Univariate function:

x3 + 3 · x2 − 5 · x+ 1

• Find all places where derivative f′(x) = 0 and check which
has the smallest value. 26



function minimization

Multivariate function: L(β0, β1)

• Find values of β0, β1 where all partial derivatives equal 0.
• ∂L

∂β0
= 0 and ∂L

∂β1
= 0.

27



minimizing squared loss for regression

Multivariate function: L(β0, β1) =
∑n

i=1(yi − β0 − β1xi)2

• Find values of β0, β1 where all partial derivatives equal 0.
• ∂L

∂β0
= 0 and ∂L

∂β1
= 0.

Some definitions:

• Let ȳ = 1
n
∑n

i=1 yi. ȳ is the mean of y.
• Let x̄ = 1

n
∑n

i=1 xi. ȳ is the mean of x.
• Let σ2y = 1

n
∑n

i=1(yi − ȳ)2. σ2y is the variance of y.
• Let σ2x = 1

n
∑n

i=1(xi − x̄)2. σ2x is the variance of x.
• Let σxy = 1

n
∑n

i=1(xi − x̄)(yi − ȳ). σxy is the covariance.

Claim: L(β0, β1) is minimized when:

• β1 = σxy/σ
2
x

• β0 = ȳ− β1x̄ 28



proof
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proof
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minimizing squared loss for regression

Takeaways:

• Minimizing functions is often easy with calculus.
• Tools we will see again: linearity of derivatives, chain rule.
• Simple closed form formula for optimal parameters β∗

0
and β∗

1 for squared-loss!
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a few comments

Let L(β0, β1) =
∑n

i=1(yi − β0 − β1xi)2.

R2 = 1− L(β0, β1)
nσ2y

is exactly the R2 value you may remember from statistics.

The smaller the loss, the closer R2 is to 1, which means we
have a better regression fit.
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a few comments

Many reasons you might get a poor regression fit:
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a few comments

Some of these are fixable!

• Remove outliers, use more robust loss function.
• Non-linear model transformation.

Fit the model 1
mpg ≈ β0 + β1 · horsepower.

Much better fit, same exact learning algorithm!
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