
CS-UY 4563: Lecture 19
Convolutional Neural Networks

NYU Tandon School of Engineering, Prof. Christopher Musco

1



course logistics

• I will be reviewing project proposals over the next few
days. If you need feedback sooner, please email
separately to set up a meeting, or stop by office hours.

• Written Homework 4 due next Monday.
• Work through demo_convolutions.ipynb, now on
course website.

2



convolutional feature extraction

Last lecture: Convolution in 1, 2, and 3D is a powerful generic
tool for designing natural feature transformations for
time-series data, audio data, or images.

3



2d convolution

w =

0 1 2
2 2 0
0 1 2



4



application 1: smoothing

A uniform or Gaussian filter can be used to smooth input data:

5



application 2: pattern matching

Convolution can be used to find local patterns in images:

6



side note

Good question from Piazza: Won’t this filter yield lots of false
positives?

7



side note

Possible fix that doesn’t require image normalization:

8



applications of convolution

Application 3: Edge detection.

Consider a 2D edge detection filter:

W1 =
[
1 −1

]
W2 =

[
1
−1

]

9



applications of convolution

Sobel filter is more commonly used:

W1 =

1 0 −1
2 0 −2
1 0 −1

 W2 =

 1 2 1
0 0 0
−1 −2 −1



10



directional edge detection

Can define edge detection filters for any orientation.

11



edge detection

How would edge detection as a feature extractor help you
classify images of city-scapes vs. images of landscapes?

12



edge detection

mean(IC) = .108 vs. mean(IL) = .123

The image with highest vertical edge response isn’t the city-scape.
13



edge detection + pattern matching

Feed edge detection result into pattern matcher that looks for
long vertical lines.

14



hierarchical convolutional features

mean(VC) = .062 vs. mean(VL) = .054

mean(VC · VC) = .042 vs. mean(VL · VL) = .018

The image with highest average response to (edge detector) +
(vertical pattern) is the city scape.

mean(V) is an extracted scalar feature which could be used for
classifying cityscapes from landscapes using a linear classifier.

15



hierarchical convolutional features

Hierarchical combinations of simple convolution filters are
very powerful for understanding images.

In particular, edge detection seems like a critical first step.

Lots of evidence from biology.

16



visual system

Light comes into the eye through the lens and is detected by an
array of photosensitive cells in the retina.

Rod cells are sensitive to all light, larger cone cells are sensitive to
specific colors. We have three types of cones:

17



visual system

Signal passes from the retina to the primary (V1) visual cortex, which
has neurons that connect to higher level parts of the brain.

What sort of processing happens in the primary cortex?

Lots of edge detection!
18



edge detectors in cats

Huber + Wiesel, 1959: “Receptive fields of single neurones in the cat’s
striate cortex.” Won Nobel prize in 1981.

Different neurons fire when the cat is presented with stimuli at
different angles. Cool video at
https://www.youtube.com/watch?v=OGxVfKJqX5E.
”What the Frog’s Eye Tells the Frog’s Brain”, Lettvin et al. 1959. Found
explicit edge detection circuits in a frogs visual cortex.

19

https://www.youtube.com/watch?v=OGxVfKJqX5E


explicit feature engineering

State of the art until ∼ 10 years ago:

• Convolve image with edge detection filters at many
different angles.

• Hand engineer features based on the responses.
• SIFT and HOG features were especially popular.

20



convolutional neural networks

Neural network approach: Learn the parameters of the convolution
filters based on training data.

First convolutional layer involves n1 convolution filters W1, . . . ,Wn1.
Each is small, e.g. 5× 5. Every entry in Wi is a free parameter:
∼ 25 · n1 parameters to learn.

Produces n1 matrices of hidden variables: i.e. a tensor with depth n1.

21



convolutional neural networks

A fully connected layer that extracts the same feature would require
(28 · 28 · 24 · 24) · n1 = 451, 584 · n1 parameters.

By “baking in” knowledge about what type of features matter, we
greatly simply the network.

Each of the n1 ouputs is typically processed with a non-linearity.
Most commonly a Rectified Linear Unity (ReLU): x = max(x̄, 0).

22



pooling and downsampling

Convolution + non-linearity are typically followed by a layer
which performs pooling + down-sampling.

Most common approach is max-pooling.

23



pooling and downsampling

Convolution + non-linearity are typically followed by a layer
which performs pooling + down-sampling.

Most common approach is max-pooling.

24



pooling and downsampling

• Reduces number of variables,
helps prevent over-fitting
and speed up training.

• Helps “smooth” result of
convolutional filters.

• Improves shift-invariance.

25



pooling and downsampling

Many possible variations on standard 2x2 max-pooling.

26



overall network architecture

Each layer contains a 3D tensor of variables. Last few layers
are standard fully connected layers.

27



understanding layers

What type of convolutional filters do we learn from gradient
descent? Lots of edge detectors in the first layer!

Other layers are harder to understand... but the hypothesis is that
hidden variables later in the network encode for “higher level
features”:

28



understanding layers

Technique to probe later neurons: Use optimization to find images
that most strongly “activate” a given neuron deep in the network.

“Understanding Neural Networks Through Deep Visualization”, Yosinski et al.
29



tricks of the trade

Beyond techinques discussed for general neural nets (back-prop,
batch gradient descent, adaptive learning rates) training
convolutional networks requires a lot of “tricks”.

• Batch normalization (accelerate training).

• Dropout (prevent over-fitting)

• Residual connections (accelerate training, allow for more depth
– 100s of layers).

And convolutional networks require lots of training data.

30



transfer learning

What if you want to apply deep convolutional networks to a problem
where you don’t have a lot of data?

Idea behind transfer learning: features transformations learned
when training a classifier on e.g. Imagenet are often useful in other
problems, even with different inputs, classes, etc.

31



transfer learning

• Download state of the art pre-trained network (Alexnet,
VGG, Inception, etc.)

• Chop off classification layer.
• Use first part of network as feature extractor.
• Solve classification problem using more scalable
methods: kernel SVM, logistic regression, shallow fully
connected net, etc.

Very easy to do in Tensorflow/Keras. Many pre-trained
networks are made available.

32



demos

Two demos to be released shortly:

• Classification of CIFAR-10 dataset using 2 layer neural nets
in Keras. You will likely want to use Google Collab to
access a GPU.

• Transfer learning in Keras.

33


