
CS-UY 4563: Lecture 18
Convolutional Feature Extraction

NYU Tandon School of Engineering, Prof. Christopher Musco

1



course logistics

• Midterm 2 exam is canceled.
• In place of midterm grade, you will be awarded maximum
grade from your homework, first midterm, or project.

• Project Proposal due tonight.
• See guidelines for what to include at:
https://www.chrismusco.com/introml/project_
guidelines.pdf

• New written homework posted. Due next Monday.

2

https://www.chrismusco.com/introml/project_guidelines.pdf
https://www.chrismusco.com/introml/project_guidelines.pdf


neural network demos

Quick note from last class. Two demos uploaded on neural
networks:

• keras_demo_synthetic.ipynb
• keras_demo_mnist.ipynb

3



neural network software

Low-level libraries have built in optimizers (SGD and improvements)
and can automatically perform backpropagation for arbitrary
network structures. Also ptimize code for any available GPUs.

Keras has high level functions for defining and training a neural
network architecture. 4



neural network software

Define model:

Compile model:

Train model:

5



multiclass classification

The MNIST demo performs multiclass classification. Typically
approach to multiclass problems with neural networks is to
have one output neuron per class:

Classification rule: Place in input x⃗ in class i if zi is the neuron
with maximum value after running x⃗ through the network.

6



multiclass classification

Last layer typically uses a “softmax” nonlinearity to map all
values z̄1, . . . , z̄q to values between 0 and 1:

zi =
e−z̄i∑q
j=1 e

−z̄j
.

7



multiclass classification

Trained using multiclass cross-entropy loss. Let
z1(⃗x, θ), . . . , zq(⃗x, θ) be the outputs obtain when running the
network on input x⃗ with parameters (weights and baises) θ⃗.

L(y, x⃗, θ⃗) = −
q∑
i=1

1[y = i] log(zi(⃗x, θ)).

Overall loss for training data (⃗x1, y1), . . . , (⃗xn, yn) is:

L(θ⃗) =
n∑
i=1

L(yi, x⃗i, θ⃗)

Used in our demo and very standard for neural network
classification.

8



feature extraction

Why do neural networks work so well?

Treat feature transformation/extraction as part of the learning
process instead of making this the users job.

But sometimes they still need a nudge in the right direction...

9



basic feature extraction

10



basic feature extraction

Final output or class label y is a linear function of the final
layer variables u1, . . . ,uk. You could just as well have taken
these variables and used them to predict y via linear
regression, logistic regression, SVM, any other linear method.

11



basic feature extraction

Sigmoid activation: Each hidden variable zi equal to 1
1+e−z̄i

where zi = w⃗Tx⃗+ b for input x⃗.

Other non-linearities yield similarly simple feature extractions.

12



basic feature extraction

If you combine more hidden variables, you can start building
more complicated classifiers.

How about for even more complex datasets?

13



basic feature extraction

With more layers, complexity starts ramping up...

But there’s a limit...
14



basic feature extraction

Modern machine learning algorithms can differentiate
between images of African and Asian elephants...

The features needed for a task like this are far more complex
then we could expect a network to learn completely on its own
using simple combinations of linear layers + non-linearities.

15



convolutional feature extraction

Today’s topic: Understand why convolution is a powerful way
of extracting features from:

• Image data.
• Audio data.
• Time series data.

Ultimately, can build convolutional networks that already have
convolutional feature extraction pre-coded in. Just need to
learn weights.

16



motivating example

What features would tell use this image contains a stop sign?

Typically way of vectorizing an image chops up and splits up
any pixels in the stop sign. We need very complex features to
piece these back together again... 17



convolution

Objects or features of an image often involve pixels that are spatially
correlated. Convolution explicitly encodes this.

Definition (Discrete 1D convolution1)
Given x⃗ ∈ Rd and w⃗ ∈ Rk the discrete convolution x⃗⊛ w⃗ is a
d− k+ 1 vector with:

[⃗x⊛ w⃗]i =
k∑
j=1

x⃗(j+i−1)w⃗j

Think of x⃗ ∈ Rd as long data vector (e.g. d = 512) and w⃗ ∈ Rk as short
filter vector (e.g. k = 8). u⃗ = [⃗x⊛ w⃗] is a feature transformation.
1This is slightly different from the definition of convolution you might have
seen in a Digital Signal Processing class because w⃗ does not get “flipped”. In
signal processing our operation would be called correlation.

18



1d convolution

19



match the convolution

20



2d convolution

Definition (Discrete 2D convolution)
Given matrices x ∈ Rd1×d2 and w ∈ Rk1×k2 the discrete convolution
x⊛ w is a (d1 − k1 + 1)× (d2 − k2 + 1) matrix with:

[x⊛ w]i,j =
k1∑
ℓ=1

k2∑
h=1

x(i+ℓ−1),(j+h−1) · wℓ,h

Again technically this is “correlation” not “convolution”. Should be
performed in Python using scipy.signal.correlate2d instead
of scipy.signal.convolve2d.
w is called the filter or convolution kernel and again is typically
much smaller than x.

21



2d convolution

s w =

0 1 2
2 2 0
0 1 2



22



zero padding

Sometimes “zero-padding” is introduced so x⊛w is d1 × d2 if x
is d1 × d2.

Need to pad on left and right by (k1 − 1)/2 and on top and
bottom by (k2 − 1)/2.

23



applications of convolution

Examples code will be available in
demo1_convolutions.ipynb.

Application 1: Blurring/smooth.

In one dimension:

• Uniform (moving average) filter: w⃗i = 1
k for i = 1, . . . , k.

• Gaussian filter: w⃗i ∼ exp(i−k/2)2/σ2 for i = 1, . . . , k.

24



smoothing filters

25



smoothing filters

Useful for smoothing time-series data, or removing
noise/static from audio data.

Replaces every data point with a local average.

26



smoothing in two dimensions

In two dimensions:

• Uniform filter: wi,j = 1
k1k2 for i = 1, . . . , k1, j = 1, . . . , k2.

• Gaussian filter: w⃗i ∼ exp
(i−k1/2)

2+(j−k2/2)
2

σ2 for i = 1, . . . , k1,
j = 1, . . . , k2.

Larger filter equates to more smoothing.

27



smoothing in two dimensions

For Gaussian filter, you typically choose k ≳ 2σ to capture the
fall-off of the Gaussian.

Both approaches effectively denoise and smooth images.
28



smoothing for feature extraction

When combined with other feature extractors, smoothing at
various levels allows the algorithm to focus on high-level
features over low-level features.

29



applications of convolution

Application 2: Pattern matching.

Slide a pattern over an image. Output of convolution will be
higher when pattern correlates well with underlying image.

30



local pattern matching

Applications of local pattern matching:

• Check if an image contains text.
• Look for specific sound in audio recording.
• Check for other well-structured objects

31



3d convolution

Recall that color images actually have three color channels for
red, green, blues. Each pixel is represented by 3 values (e.g. in
0, . . . , 255) giving the intensity in each channel.

[0, 0, 0] = black, [0, 0, 0] = white, [1, 0, 0] = pure red, etc.

View image as 3D tensor:

32



3d convolution

Can be convolved with 3D filter:
Definition (Discrete 2D convolution)
Given tensors x ∈ Rd1×d2×d3 and w ∈ Rk1×k2×k3 the discrete
convolution x⊛ w is a (d1 − k1 + 1)× (d2 − k2 + 1)× (d3 − k3 + 1)
tensor with:

[x⊛ w]i,j,g =
k1∑
ℓ=1

k2∑
m=1

k3∑
n=1

x(i+ℓ−1),(j+m−1),(g+n−1) · wℓ,m,n

33



3d convolution

34



3d convolution

Relatively robust to imperfections, damage, occlusion, etc.

35



3d convolution

In general extracting different color information is very useful
for image understanding:

36



frequency detection

Less obvious example of pattern matching: Frequency
detection in audio.

Any 1D signal (including a sound wave) can be decomposed
into component frequencies:

x⃗(t) = sin(f1t+ s1) + sin(f2t+ s2) + sin(f3t+ s3) + . . . 37



frequency detection

Convolve audio signal with snippet of pure frequency to determine
where difference frequencies are prevalent. Detect things like:

• Common notes in a song.

• Different instruments.

• Human voices vs. other noise.

Main idea behind short-time Fourier transforms/spectrograms.
38



applications of convolution

Application 3: Edge detection.

Consider a 2d Sobel filter:

W1 =

1 0 −1
2 0 −2
1 0 −1

 W2 =

 1 2 1
0 0 0
−1 −2 −1



39



applications of convolution

Edges with different orientations are low-level features
compared to what we might get from e.g. explicit pattern
matching. They still provide some immediately useful
information about an image.

More useful when combined to build higher-level features.

40



applications of convolution

Next class: Design neural network architectures that have
convolutionoal operations built-in. The exact weights are left
as free variables. Lowest layers do low-level feature extraction
like edge detection, higher layers learn higher-level concepts.

41


