
CS-UY 4563: Lecture 17
Neural Networks cont.

NYU Tandon School of Engineering, Prof. Christopher Musco

1



course logistics

• Lab lab_mnist_partial.ipynb due Thursday, 4/9.
• Project Proposal due next Monday, 4/13.

• See guidelines for what to include at:
https://www.chrismusco.com/introml/project_
guidelines.pdf

• Can be crudely formatted. A shared Google doc is fine, or
email me a PDF.

• I’m seeing lots of really cool project ideas!

2

https://www.chrismusco.com/introml/project_guidelines.pdf
https://www.chrismusco.com/introml/project_guidelines.pdf


training neural networks

Two main algorithmic tools for training neural network
models:

1. Stochastic gradient descent.
2. Back-propogation.

3



training neural networks

Let f(θ⃗, x⃗) be our neural network.

Wi and b⃗i are the weight matrix and bias vector for layer i and
gi is the non-linearity (e.g. sigmoid). θ⃗ = [W0, b⃗0, . . . ,Wℓ, b⃗ℓ] is
a vector of all entries in these matrices.

Goal: Given training data (⃗x1, y1), . . . , (⃗xn, yn) minimize the loss

L(θ⃗) =
n∑
i=1

L
(
yi, f(θ⃗, x⃗i)

)

To do so, we need to compute ∇L
(
yi, f(θ⃗, x⃗i)

)
for all i.

4



gradient of the loss

Last lecture: Reduced our goal to computing ∇f(θ⃗, x⃗), where
the gradient is with respect to the parameters θ⃗.

This will be done using backprop.

5



backprop example

Notation for next few slides:
• a,b, . . . , z are the node names, and used to denote values at
nodes after applying non-linearity.

• ā, b̄, . . . , z̄ denote value before applying non-linearity.

• Wi,j is the weight of edge from node i to node j.

• s(·) : R → R is the non-linear activation function.

• βj is the bias for node j.

Example: h = s(h̄) = s(c ·Wc,h + d ·Wd,h + e ·We,h + βh)
6



backprop example

Goal: Compute the gradient ∇f(θ⃗, x⃗), which contains the partial
derivatives with respect to every parameter:

• ∂z/∂βz
• ∂z/∂Wf,z, ∂z/∂Wg,z, ∂z/∂Wh,z

• ∂z/∂Wc,f, ∂z/∂Wc,g, ∂z/∂Wc,h

• ∂z/∂Wd,f, ∂z/∂Wd,g, ∂z/∂Wd,h

•
...

• ∂z/∂Wa,c, ∂z/∂Wa,d, ∂z/∂Wa,e

Two steps: Forward pass to compute function value.
Backwards pass to compute gradients.

7



backprop example

Step 1: Forward pass.

• Using current parameters, compute the output z by
moving from left to right.

• Store all intermediate results:

c̄, d̄, ē, c,d, e, f̄, ḡ, h̄, f,g,h, z̄, z.

8



backprop example

Step 1: Forward pass.

c̄ = Wa,c · a+Wb,c · b+ βc c = s(c̄)
d̄ = Wa,d · a+Wb,d · b+ βd d = s(d̄)
ē = Wa,e · a+Wb,e · b+ βe e = s(ē)
f̄ = Wc,f · c+Wd,f · d+We,f · e+ βf f = s(̄f)
...

...
z̄ = Wf,z · f+Wg,z · g+Wh,z · h+ βz z = s(z̄)

9



backprop example

Step 2: Backward pass.

• Using current parameters and computed node values,
compute the partial derivatives of all parameters by
moving from right to left.

10



backprop example

Step 2: Backward pass. Deepest layer.

∂z
∂bz

=
∂z̄
∂bz

· ∂z
∂z̄ = 1 · s′(z̄)

∂z
∂Wf,z

=
∂z̄

∂Wf,z
· ∂z
∂z̄ = f · s′(z̄)

∂z
∂Wg,z

=
∂z̄

∂Wg,z
· ∂z
∂z̄ = g · s′(z̄)

∂z
∂Wh,z

=
∂z̄

∂Wh,z
· ∂z
∂z̄ = h · s′(z̄)

11



backprop example

Step 2: Backward pass.

∂z
∂f =

∂z̄
∂f ·

∂z
∂z̄ = Wf,z · s′(z̄)

∂z
∂g =

∂z̄
∂g · ∂z

∂z̄ = Wg,z · s′(z̄)

∂z
∂h =

∂z̄
∂h · ∂z

∂z̄ = Wh,z · s′(z̄)

Compute partials with respect to nodes, even though not needed
for gradient. 12



backprop example

Step 2: Backward pass.

∂z
∂ f̄

=
∂z
∂f ·

∂f
∂ f̄

=
∂z
∂f · s

′(̄f)

∂z
∂ḡ =

∂z
∂g · ∂g

∂ḡ =
∂z
∂g · s′(ḡ)

∂z
∂h̄

=
∂z
∂h · ∂h

∂h̄
=

∂z
∂h · s′(h̄)

And for nodes pre-nonlinearity
13



backprop example

Step 2: Backward pass. Next layer.

∂z
∂bf

=
∂z
∂ f̄

· ∂ f̄
∂bf

=
∂z
∂ f̄

· 1

∂z
∂Wc,f

=
∂z
∂ f̄

· ∂ f̄
∂Wc,f

=
∂z
∂ f̄

· c

∂z
∂Wd,f

=
∂z
∂ f̄

· ∂ f̄
∂Wd,f

=
∂z
∂ f̄

· d

∂z
∂We,f

=
∂z
∂ f̄

· ∂ f̄
∂We,f

=
∂z
∂ f̄

· e

...

14



backprop example

Step 2: Backward pass. Next set of nodes.

∂z
∂c =

∂z
∂ f̄

· ∂ f̄
∂c +

∂z
∂ḡ · ∂ḡ

∂c +
∂z
∂h̄

· ∂h̄
∂c

∂z
∂d =

∂z
∂ f̄

· ∂ f̄
∂d +

∂z
∂ḡ · ∂ḡ

∂d +
∂z
∂h̄

· ∂h̄
∂d

∂z
∂e =

∂z
∂ f̄

· ∂ f̄
∂e +

∂z
∂ḡ · ∂ḡ

∂e +
∂z
∂h̄

· ∂h̄
∂e

Multivariate chain rule: Need to sum up impact on gradient from all
variables effected in the next layer.

15



backprop linear algebra

Linear algebraic view.

Let vi be a vector containing the value of all nodes j in layer i.

v3 =
[
z
]

v2 =

 fg
h

 v1 =

cd
e


Let v̄i be a vector containing j̄ for all nodes j in layer i.

v̄3 =
[
z̄
]

v̄2 =

 f̄ḡ
h̄

 v̄1 =

c̄d̄
ē


Note: vi = s(v̄i) where s is applied entrywise.

16



backprop linear algebra

Linear algebraic view.

Let δi be a vector containing ∂z/∂j for all nodes j in layer i.

δ3 =
[
1
]

δ2 =

∂z/∂f
∂z/∂g
∂z/∂h

 δ1 =

∂z/∂c∂z/∂d
∂z/∂e


Let δ̄i be a vector containing ∂z/∂ j̄ for all nodes j in layer i.

δ̄3 =
[
∂z/∂z̄

]
δ̄2 =

∂z/∂ f̄
∂z/∂ḡ
∂z/∂h̄

 δ̄1 =

∂z/∂c̄∂z/∂d̄
∂z/∂ē


Note: δ̄i = s′(v̄i)× δi where s′ is the derivative of s and this function,
as well as the × are applied entrywise.

17



backprop linear algebra

Let Wi be a matrix containing all the weights for edges between layer
i and layer i+ 1.

W2 =
[
Wf,z Wg,z Wh,z

]
W1 =

Wc,f Wd,f We,f
Wc,g Wd,g We,g

Wc,h Wd,h We,h

 W0 =

Wa,c Wb,c
Wa,d Wb,d
Wa,e Wb,e



18



backprop linear algebra

Claim 1: Node derivative computation is matrix multiplication.

δ⃗i = WT
i δ̄i+1

19



backprop linear algebra

Let ∆i be a matrix contain the derivatives for all weights for edges
between layer i and layer i+ 1.

∆2 =
[
∂z/∂Wf,z ∂z/∂Wg,z ∂z/∂Wh,z

]
∆1 =

∂z/∂Wc,f ∂z/∂Wd,f ∂z/∂We,f
∂z/∂Wc,g ∂z/∂Wd,g ∂z/∂We,g

∂z/∂Wc,h ∂z/∂Wd,h ∂z/∂We,h


∆0 = . . .

20



backprop linear algebra

Claim 2: Weight derivative computation is an outer-product.

∆i = viδ̄Ti+1.

21



backprop

Takeaways:

• Backpropagation can be used to compute derivatives for
all weights and biases for any feedforward neural network.

• Final computation boils down to linear algebra operations
(matrix multiplication and vector operations) which can
be performed quickly on a GPU.

22



backprop

Backpropagation allows us to compute ∇L
(
yi, f(θ⃗, x⃗i)

)
for a

single training example (⃗xi, yi). Computing entire gradient
requires computing:

∇L(θ⃗) =
n∑
i=1

∇L
(
yi, f(θ⃗, x⃗i)

)

Computing the entire sum would be very expensive.
O ((time for backprop) · n) time.

23



training neural networks

Second tool: Stochastic Gradient Descent (SGD).

• Powerful randomized variant of gradient descent used to
train neural networks.

• Or any other model where computing gradients is
expensive.

Recall gradient descent update:

• For t = 1, . . . , T:
• θ⃗t+1 = θ⃗t − η∇L(θ⃗t)

where η is a learning rate parameter.

24



stochastic gradient descent

Let Lj(θ⃗) denote L
(
yj, f(θ⃗, x⃗j)

)
.

Claim: If j ∈ 1, . . . ,n is chosen uniformly at random. Then:

n · E
[
∇Lj(θ⃗)

]
= ∇L(θ⃗).

∇Lj(θ⃗) is called a stochastic gradient.

25



stochastic gradient descent

SGD iteration:

• Initialize θ⃗0 (typically randomly).
• For t = 1, . . . , T:

• Choose j uniformly at random.
• Compute stochastic gradient g⃗ = ∇Lj(θ⃗t).

• For neural networks this is done using backprop with
training example (⃗xj, yj).

• Update θ⃗t+1 = θ⃗t − ηg⃗

Move in direction of steepest descent in expectation.

26



stochastic gradient descent

Gradient descent: Fewer iterations to converge, higher cost
per iteration.

Stochastic Gradient descent: More iterations to converge,
lower cost per iteration.

27



stochastic gradient descent

Gradient descent: Fewer iterations to converge, higher cost
per iteration.

Stochastic Gradient descent: More iterations to converge,
lower cost per iteration.

28



convergence

Like standard gradient descent, stochastic gradient descent is only
guaranteed to converge to the minimizer of a convex loss function.

Definition (Convex)
A function L is convex iff for any β⃗1, β⃗2, λ ∈ [0, 1]:

(1− λ) · L(β⃗1) + λ · L(β⃗2) ≥ L
(
(1− λ) · β⃗1 + λ · β⃗2

)

29



convergence of gradient descent

Without convexity, we can only expect to converge to a local
minimum.

30



convergence

Least squares regression, logistic regression, SVMs, even all of
these with kernels lead to convex losses.

Neural networks very much do not...

31



convergence

But SGD still performs remarkably well in practice. Understanding
this phenomenon is a major open research question in machine
learning and soptimization. Current hypotheses include:

• Initialization seems important (random uniform vs. random
Gaussian vs. Xavier initialization vs. He initialization vs. etc.)

• Randomization helps in escaping local minima.

• All local minima are global minima?

• SGD finds “good” local minima?

32



stochastic gradient descent in practice

Practical Modification 1: Shuffled Gradient Descent.

Instead of choosing j randomly at each iteration, randomly
permute (shuffle) data and set j = 1, . . . ,n. After every n
iterations, reshuffle data and repeat.

Question: Why might we want to do this?

33



stochastic gradient descent in practice

Practical Modification 1: Shuffled Gradient Descent.

Instead of choosing j randomly at each iteration, randomly
permute (shuffle) data and set j = 1, . . . ,n. After every n
iterations, reshuffle data and repeat.

• Relatively similar convergence behavior to standard SGD.
• Important term: one epoch denotes one pass over all
training examples: j = 1, . . . , j = n.

• Convergence rates for training neural networks are often
discussed in terms of epochs instead of iterations.

34



stochastic gradient descent in practice

Practical Modification 2: Mini-batch Gradient Descent.

Observe that for any batch size s,

n · E

[
1
s

s∑
i=1

∇Lji(θ⃗)
]
= ∇L(θ⃗).

if j1, . . . , js are chosen independently and uniformly at random
from 1, . . . ,n.

Instead of computing a full stochastic gradient, compute the
average gradient of a small random set (a mini-batch) of
training data examples.

Question: Why might we want to do this?

35



mini-batch gradient descent

• For small batch size s, mini-batch gradients are nearly as
fast to compute as stochastic gradients (due to
parallelism).

• Overall faster convergence (fewer iterations needed).

36



stochastic gradient descent in practice

Practical Mod. 3: Per-parameter adaptive learning rate.

Let g⃗ =

g1...
gp

 be a stochastic or batch stochastic gradient. Our
typical parameter update looks like:

θ⃗t+1 = θ⃗t − ηg⃗.

We’ve already seen a simple method for adaptively choosing
the learning rate/step size η. Worked well for convex functions.

37



stochastic gradient descent in practice

Practical Mod. 3: Per-parameter adaptive learning rate.

In practice, neural networks can often be optimized much
faster by using “adaptive gradient methods” like Adagrad,
Adadelta, RMSProp, and ADAM. These methods make updates
of the form:

θ⃗t+1 = θ⃗t −

η1 · g1
...

ηp · gp


So we have a separate learning rate for each entry in the
gradient (e.g. parameter in the model). And each η1, . . . , ηp is
chosen adaptively.

38



neural network demos

Two demos uploaded on neural networks:

• keras_demo_synthetic.ipynb
• keras_demo_mnist.ipynb

Please spend some time working through these!

39



neural network software

Low-level libraries have built in optimizers (SGD and improvements)
and can automatically perform backpropagation for arbitrary
network structures. Also ptimize code for any available GPUs.

Keras has high level functions for defining and training a neural
network architecture. 40



neural network software

Define model:

Compile model:

Train model:

41



multiclass classification

The MNIST lab performs multiclass classification. Typically
approach to multiclass problems with neural networks is to
have one output neuron per class:

Classification rule: Place in input x⃗ in class i if zi is the neuron
with maximum value after running x⃗ through the network.

42



multiclass classification

Last layer typically uses a “softmax” nonlinearity to map all
values z̄1, . . . , z̄q to values between 0 and 1:

zi =
e−z̄i∑q
j=1 e

−z̄j
.

43



multiclass classification

Trained using multiclass cross-entropy loss. Let
z1(⃗x, θ), . . . , zq(⃗x, θ) be the outputs obtain when running the
network on input x⃗ with parameters (weights and baises) θ⃗.

L(y, x⃗, θ⃗) = −
q∑
i=1

1[y = i] log(zi(⃗x, θ)).

Overall loss for training data (⃗x1, y1), . . . , (⃗xn, yn) is:

L(θ⃗) =
n∑
i=1

L(yi, x⃗i, θ⃗)

Used in our demo and very standard for neural network
classification.

44


