CS-UY 4563: Lecture 16
Neural Networks cont.

NYU Tandon School of Engineering, Prof. Christopher Musco

LAB 6

Lab lab_mnist_partial.ipynb due next Thursday, 4/9.

- Covers kernel logistic regression and SVMs, which should
be useful in many projects.

- Requires Tensorflow (easiest way to load MNIST data).

u r\

Tensor

Keras

NEURAL NETWORKS

Key Concept

Approach in prior classes:

- Choose good features or a good kernel.

- Use optimization to find best model given those features.
Neural network approach:

- Learn good features and a good model simultaneously.

MODEL PARAMETERS

Input: X =Xq,...,Xn

Model: f(X, ©):

|

: zHERNH:WH)?—l-Bh.
. JH:[EH>O]
. ZoGR:WoJH+bo

* Up = [2o > 0]

Parameters: © = [Wy € RV>N b, € RV Wy € R™Nw by € R].

Wy, Wp are weight matrices and 5H, bo are bias terms that
account for the intercepts of our linear functions.

TWO-LAYER (SIGMOID) PERCEPTRON

Function f which maps X to a class label ug.

sigmoid)
Linean map / on- llnearlty
. sigmoid

® —'@ — . — linearjmap non-linearity

% —® — [—'8 I:l:l:l:lj —O0—UU—0
-0 —U — WU+ by Zy glz,) Yo

-] = —>® —_— E —_— 0

¥wRh)

(standard linear classifier)

(feature extraction) Vl L2 g 14 &f \re s
e _ _ .

depending on which side of a set of learned hyperplanes each

Features learned using step-function activation are binary,
point lies on.

=
=
T
O
<<
>
T
S
L
Ll
x
=
<
L
L

FEATURE EXTRACTION

Features learned using sigmoid activation are real valued in
[0,1]. Mimic binary features.

HYPERPARAMETERS

Things we can change in this basic classification network:

- More or less hidden variables.
- Different non-linearity/activation function.
- Different loss function (more on that next class).

- More hidden layers (allows for learning hierarchical
features).

Sigmoid ' tanh ‘ ReLU)
o(x) = H(;—z tanh(z) - max (0, z)

e —

——

NOTATION

Another common diagram for a 2-layered network:

NOTATION

Neural network math:

NOTATION

How to interpret: W Ve
hidden sismerd (24 01)
) layer P
input ¢y
layer y 114)
X4 Wol1,1]
0 output
%, > layer
W,11,3
O_DL.__. Ug
X3 Wolj Z, 5 (KR
4] S % uh(,ﬂ QL
[1,5] i<?
X,) > Vo (2

y X
20 = i\ ke Waly ‘\)Tﬂ,—cj—] Zy, Yw
Wy and Wo are our weight matrices from before.

Note: This diagram does not explicitly show the bias terms or
the non-linear activation functions. 1

NOTATION

How to interpret:

52t]
\/) [\ p]) &\'a in put Y — =
\ \u layer
(7AV VAR :
X
output
X, layer
\/O =) wt/’m X >
w . W 7
3 0
\oy (2,1) = °
X o[1,5] 1
4 \ v
= / SNyl v
/ = L=
b N> ZH

Wy and Wo are our weight matrices from before.

Note: This diagram depicts a network with “fully-connected” layers.
Every variable in layer i is connected to every variable in layer i + 1. "

ARCHITECTURE VISUALIZATION

Effective way of visualize “architecture” of a neural network:
‘("‘\\-b cemmecked
9 ;. \IIL*\" o(‘L&S
MI 0TS |

()

|
geeeeeoo00on

Made by Leon Eyrich Jessen, Twitter: @jessenieon

Q"'b\'“(n‘((p-\,mcbbb\
Visualize number of variables, types of connections, number of
layers and their relative sizes.

These are all feedforward neural networks. No backwards

13
(recurrent) connections.

SOME HISTORY AND MOTIVATION

CONNECTION TO BIOLOGY

Simplified model of the brain:
2 Dendrites: Input electrical

current from other neurons.
Axon: Output electrical current
to other neurons.

Synapse: Where these two
connect.

A neuron “fires” (outputs non-zero electric charge) if it receives
enough cumulative electrical input from all neurons connected to it.

ug/ o

2, /v)
oSG
@/% . .ﬁ::)“ - ee (d

3

Output charge can be positive or negative (excitatory vs. inhibitory).
14

CONNECTION TO BIOLOGY

Inspired early work on neural networks:

- 1940s Donald Hebb proposed a Hebbian learning rule for
how brains neurons change over time to allow learning.

- 1950s Frank Rosenblatt’'s Perceptron is one of the first
“artifical” neural networks.

- Continued work throughout the 1960s.

Main issue with neural network methods: They are hard to
train. Generally require a lot of computation power. Also pretty
finicky: user needs to be careful with initialization,
regularization, etc. when training. Often requires a lot of
experimentation to get right.

15

EARLY NEURAL NETWORK EXPLOSION

Around 1985 several groups (re)-discovered the
backpropagation algorithm which allows for efficient training
of neural nets via gradient descent. Along with increased
computational power this lead to a resurgence of interest in
neural network models.

Backpropagation Applied to Handwritten Zip Code
Recognition

B. Boser

J. S. Denker

D. Henderson

R. E. Howard

W. Hubbard

L. D. Jackel

AT&T Bell Laboratortes Holmdel, NJ 07733 USA

The ability of learning lize can be greatly

by providing constraints from e ok domain. This paper demon-
strates how such ints can be i d into a backp

network through the architecture of the network. This approach has
been successfully applied to the recognition of handwritten zip code
digits provided by the U.S. Postal Service. A single network learns the
entire recognition operation, going from the normalized image of the
character to the final classification.

Very good performance on problems like digit recognition. 16

NEURAL NETWORK DECLINE

In the 1990s and early 2000s, kernel methods, SVMs, and
probabilistic methods began to dominate the literature in
machine learning:

- Work well “out of the box”.
- Relatively easy to understand theoretically.
- Not too computationally expensive for moderately sized

datasets.

Fun blog post to check out from 2005:
http://yaroslavvb.blogspot.com/2005/12/
trends-in-machine-1learning-according.html

17

http://yaroslavvb.blogspot.com/2005/12/trends-in-machine-learning-according.html
http://yaroslavvb.blogspot.com/2005/12/trends-in-machine-learning-according.html

NEURAL NETWORK DECLINE

Finding trends in machine learning by search papers in Google Scholar that
match a certain keyword:

You can see a major upward trend starting around 1985 (that's when Yann LeCun and several others
ing in 1992, and going

:

30| 14

12
25|

19
20|

03|
15|

05|
1.0

04
s 02
% o5

dn 9% 1998 2000 2002 2004

1997 1994 1996 1998 2000 2002 2004

18

(1995 is when Vapnik and Cortez proposed the algorithm) I were to trust this, | would say that Naive Bayes research the hottest machine learning area right now

MODERN NEURAL NETWORK RESURGENCE

In recent years this trend completely turned around:

Un sourire coiite moins cher que
Télectricité, mais donne autant
de lumiére

A smile costs less expensive than ™
electricity, but gives as many light

(-] ® 0

Un sourire coiite moins cher que
Félectricité, mais donne autant
de lumiére

A smile costs less than electricity, ™
but gives as much light

@ 0

Recent state-of-the-art results in game playing, image

recognition, content generation, natural language processing,

machine translation, many other areas.

19

MODERN NEURAL NETWORKS

All changed with the introduction of AlexNet and the 2012
ImageNet Challenge...

I M ” G E | I 14,197,122 images, 21841 synsets indexed
‘e (C |

Explore Download Challenges Publications Updates About
ILSVRC 2017
ILSVRC 2016
ILSVRC 2015
ILSVRC 2014
ILSVRC 2013
ILSVRC 2012
ILSVRC 2011
ILSVRC 2010

Not logged in. Login | Signup

ImageNet is an image database organized according to
in which each node of the hierarchy is depicted by hundrj
an average of over five hundred images per node. We hd
researchers, educators, students and all of you who sha
Click here to learn more about ImageNet, Click here to jd

hierarchy (currently only the nouns),
sands of images. Currently we have
bt will become a useful resource for
bn for pictures.

geNet mailing list.

Very general image classification task.

20

MODERN NEURAL NETWORKS

All changed with AlexNet and the 2012 ImageNet Challenge...

/>

Ao name team members flename :llat cost >, |description
INEC: Yuanging Lin, lusing sift and
IFengjun Lv, Shenghuo Zhu, Ibp feature with
IMing Yang, Timothee Cour, ftwo non-linear

y [Kai Yu UIUC: LiangLiang ’

NEC-uIUC S Yy LIUD: Lengiang [fat_optaxt 0.28191). 1144
sai, Xi Zhou, Thomas
IHuang Rutgers: Tong (

Team name Filename Error (5 guesses) Description

g extra tai
test-preds-141-146.2009-131- Using extra training data

. . from I
SuperVision 137-145-146.2011-145f. AL rom ImageNet Fall 2011
release
e test-preds-131-137-145-135- 016422 Using only supplied
Artese 145t 1xt —_— training data

Weighted sum of scores
from each classifier with

&l pred_FVs_wLACs_weighted.txt | 026172 SIFT+FV, LBP+FV,
— GIST+FV, and
, CSIFT+FV, respectively.

¢
's
g veike 2012 Results

ww\/tf\b
21

2019 TURING AWARD WINNERS

“For conceptual and engineering breakthroughs that have made
deep neural networks a critical component of computing.”

‘ A T - .-:"\

Yann LeCun Yoshua Bengio

What were these breakthroughs? What made training large neural
networks computationally feasible?

22

GRAPHICS PROCESSING UNIT

Hardware innovation: Widely available, inexpensive GPUs
allowing for cheap, highly parallel linear algebra operations.

- 2007: Nvidia released CUDA platform, which allows GPUs to
be easily programmed for general purposed computation.

AlexNet architecture used 60 million parameters. Could not
have been trained using CPUs alone (except maybe on a

government super computer). .

TRAINING NEURAL NETWORKS

Two main algorithmic tools for training neural network
models:

1. Stochastic gradient descent.

2. Backpropogatiol.

24

TRAINING NEURAL NETWORKS

Let f(§@ be our neural network. A typical ¢-layer feed forward
model has the form:

48 x K)* g (We W3 é]z @ 1W1X+b1)+bz)+ by...) + be)

W; and b,~ are the weight matrix and bias vector for layer i and
g; is the non-linearity (e.g. sigmoid). § = [ﬂg,éo_, . ,W_g,Eg] is
a vector of all entries in these matrices. o

Goal: Given training data (X1, 1), - - -, (Xn, ¥n) minimize the loss
. 2] _ d —
Mé"l L{) @:Z£<X—’f(9’x,))
=1 -

Example: We might use the binary cross-entropy loss for
binary classification:

L(11:(8.%)) = v; log(f8,%)) + (1 - y) log(1 - 5. %)

LW EERY IR 25

GRADIENT OF THE LOSS

Most common approach: minimize the loss by using gradient
descent. Which requires us to compute the gradient of the loss
function, VL. Note that this gradient has an entry for every
value in Wy bo,.. W_g,bg

As usual, our loss function has finite sum structure, so:

n L X,
=> VL !y/',f(H,Xi))
=1
:' Lo sikogy for exawyp'e.
So we can focus on computing:

e

X, 4

for a single training example (X,).

26

GRADIENT OF THE LOSS

Applying chain rule to loss:

R yes=C
oy ‘-‘l'e‘ \ya
{,\,Q\\—\Qh" X{é K)

27

GRADIENT OF THE LOSS

We have reduced our goal to computinghere the
gradient is with respect to the parameters 6.

Back-propagation is a natural and efficient way to compute
Vf(&j X). It derives its name because we compute gradient
from back to front: starting with the parameters closest to the
output of the neural net.

28

BACKPROP EXAMPLE

Let’s understand how backprop works with a simple example.

layer 0 layer 1 layer 2 layer 3

Notation for next few slides:
- X=la,bl. (6.X) =2z
—— 7——
- W is the weight of edge from node i to node j.

—_

* s() : R — R is the non-linear activation function.
. _zl:_J_Lis the bias for node L

Example: h =s(c-Wep+d-Wyp+e-Wep + bp)
= = T = 29

BACKPROP EXAMPLE

For any node;, letldenote the value obtained before applying
the non-linearity #. <

layer 0 layer 1 layer 2 layer 3

Soifh=s(c-Wep+d-Wyp+e-Wep + bp) then we use h to
denote:

@:C'Wch+d'Wdh+e'We.h+bh

\/’ - S (.ﬁ) 30

BACKPROP EXAMPLE

Goal: Compute the gradient Vfgé%), which contains the partial
derivatives with respect to every parameter:

* 0z/0by

© 0z/OWs 4, 02/ OWg.z, 02/ OWp,

+ 0z/0by, 0z/0bg, 0z/0by,

- 0z/OWf, 02)OWc. g, 02/ OW, z
© 0z/OWqy 5, 02/OWy g, 02/OWy p

° 82/3Wa,c, aZ/awa?d, aZ/aW&e

Two steps: €orward compute function value.
Backwards pass tp compute gradients.

31

BACKPROP EXAMPLE

Step 1: Forward pass.

layer 0 layer 1 layer 2 layer 3

- Using current parameters, compute the output z by
moving from left to right.

- Store all intermediate results:

i’g?g? C’ d7 e?f’g’ F’?f?g7h)27z'

32

BACKPROP EXAMPLE

Step 1: Forward pass.

33

BACKPROP EXAMPLE

Step 2: Backward pass.

layer 0 layer 1 layer 2 layer 3

- Using current parameters and computed node values,
compute the partial derivatives of all parameters by

moving from right to left.

34

BACKPROP EXAMPLE

2= 5(Z2) Z:=Wy, -Fsvg-y
¥ \Wwu, 2 Y

s

Step 2: Backward pass.

layer 0 layer 1 layer 2 layer 3

:):’Z__ - é:_z ° é/z 6\ C2‘>
e Ve, &\D%’L 372 %

\.—‘K

£

M) el M) 1) w52

Vv
J oy, 2 o 3

BACKPROP EXAMPLE

Step 2: Backward pass.

layer 0 layer 1 layer 2 layer 3

36

BACKPROP LINEAR ALGEBRA

Linear algebraic view.

Let &; be a vector containing 9z/9j for all nodes j in layer i.

0z/0f 0z/0c
55 = M 5, = |0z/8g 5 = |az/0d
0z/0h 0z/0e

Let §; be a vector containing dz/dj for all nodes j in layer i.

0z/0f dz/0¢
5 = [az/az} 5 = |02/03 5, = |0z/6d
0z/0h 0z/0e

Note: & = 5'(3;) x &; where s’ is the derivative s’ and this function, as
well as the x are applied entrywise.

37

BACKPROP LINEAR ALGEBRA

Let W; be a matrix containing all the weights for edges between layer
Iand layer i+ 1.

layer 0 layer 1 layer 2 layer 3
Wer War Wey Wa,c Wh,c
W, = [Wf,z Wg,z Wh,z} Wy = Wc,g Wd,g We,g Wy = Wa,d Wb,d
Wen Wan Wep Wae Wpe

38

BACKPROP LINEAR ALGEBRA

layer 0 layer 1 layer 2 layer 3
Claim 1: Node derivative computation is matrix multiplication.

5;' = W,‘TS/'M

39

BACKPROP LINEAR ALGEBRA

Let A; be a matrix contain the derivatives for all weights for edges
between layer i and layer | + 1.

layer 0 layer 1 layer 2 layer 3

A, = {az/awﬁz 0z)OW,, 0z/OWh.,

62/8WC_f 82/8Wd7f 52/8We7f
D= |0z/OW g 0z/OWyq 0z/OWegq
az/c‘?WC’h 82/6Wd’h 82/8We,h

A

40

BACKPROP LINEAR ALGEBRA

layer 0 layer 1 layer 2 layer 3
Claim 2: Weight derivative computation is an outer-product.

— 5T
A =Vidj,

where V; contains the values of all nodes in layer i. E.g. Vo = [g}

41

BACKPROP EXAMPLE

Takeaways:

- Backpropogation can be used to compute derivatives for
all weights and biases for any feedforward neural network.

- Final computation boils down to linear algebra operations
(matrix multiplication and vector operations) which can
be performed quickly on a GPU.

We computed VL <yi,f(§,)?i)) for a single training example
(X;,y;). Computing entire gradient requires computing:

VL(6) = zn: VL (yi,f(), %f))

Computing the entire sum would be very expensive.

42

TRAINING NEURAL NETWORKS

Second tool: Stochastic Gradient Descent (SGD).

- Powerful randomized variant of GD used to train neural
networks (or any other model where computing gradients

IS expensive.

Recall gradient descent update:

- Fort=1,...,T:
* Geyr = 6 — VL)

where n is a learning rate parameter.

43

STOCHASTIC GRADIENT DESCENT

—

Let L;(6) denote L (yj,f(@)@))

Claim: If j €1,...,nis chosen uniformly at random. Then:

n-E [vg(é)} = v.L(6).

—

VL;(0) is called a stochastic gradient.

4

STOCHASTIC GRADIENT DESCENT

SGD iteration:

- Initialize 8, (typically randomly).
- Fort=1,...,T
- Choose j uniformly at random.
- Compute stochastic gradient g = VL;(6;).
- For neural networks this is done using backprop with
training example (X, ;).

- Update 841 = 6, — ng

Move in direction of steepest descent in expectation.

45

~_

)

Gradient descent: Fewer iterations to converge, higher cost
per iteration.

Stochastic Gradient descent: More iterations to converge,
lower cost per iteration.

Gradient Descent

Stochastic Gradient Descent

STOCHASTIC GRADIENT DESCENT

46

STOCHASTIC GRADIENT DESCENT

Gradient descent: Fewer iterations to converge, higher cost
per iteration.

Stochastic Gradient descent: More iterations to converge,
lower cost per iteration.

GD's smooth convergence SGD's stochastic convergence

608
606

604

Mean squared error
w
8
8

Mean squared error

602
600

0 10 20 30 40 50 0 10 20 30 40 50
GD iterations # SGD iterations

47

STOCHASTIC GRADIENT DESCENT IN PRACTICE

Practical Modification 1: Cyclic Gradient Descent.

Assume order of data is relatively random. Instead of choosing
j randomly at each iteration, choose
J=1j=2,....)=n,)=1,...,)=n,....

Question: Why might we want to do this?

- Relatively similar convergence behavior to standard SGD.

- Import term: one epoch denotes one pass over all
training examples: j=1,...,)=n.

- Convergence rates for training neural networks are often

discussed in terms of epochs instead of iterations.
48

STOCHASTIC GRADIENT DESCENT IN PRACTICE

Practical Modification 2: Mini-batch Gradient Descent.

Observe that for any batch size s,

n-E

g 3 wj/_(e“)] — V().
=1

if j1,...,Jjs are chosen independently and uniformly at random
from1,...,n.

Instead of computing a full stochastic gradient, compute the
average gradient of a small random set (a mini-batch) of
training data examples.

Question: Why might we want to do this?

49

MINI-BATCH GRADIENT DESCENT

— Batch gradient descent
— Mini-batch gradient Descent
— Stochastic gradient descent

- For small batch size s, mini-batch gradients are nearly as
fast to compute as stochastic gradients (due to
parallelism).

- Overall faster convergence (fewer iterations needed).

50

