
CS-UY 4563: Lecture 16
Neural Networks cont.

NYU Tandon School of Engineering, Prof. Christopher Musco

1



lab 6

Lab lab_mnist_partial.ipynb due next Thursday, 4/9.

• Covers kernel logistic regression and SVMs, which should
be useful in many projects.

• Requires Tensorflow (easiest way to load MNIST data).

2



neural networks

Key Concept

Approach in prior classes:

• Choose good features or a good kernel.
• Use optimization to find best model given those features.

Neural network approach:

• Learn good features and a good model simultaneously.

3



model parameters

Input: x⃗ = x1, . . . , xNI
Model: f(⃗x,Θ):

• z⃗H ∈ RNH = WHx⃗+ b⃗h.
• u⃗H = [⃗zH > 0]
• zO ∈ R = WOu⃗H + bO
• uO = [zO > 0]

Parameters: Θ = [WH ∈ RNH×NI , b⃗H ∈ RNH ,WO ∈ R1×NH ,bO ∈ R].

WH, WO are weight matrices and b⃗H, bO are bias terms that
account for the intercepts of our linear functions.

4



two-layer (sigmoid) perceptron

Function f which maps x⃗ to a class label uO.

5



feature extraction

Features learned using step-function activation are binary,
depending on which side of a set of learned hyperplanes each
point lies on.

6



feature extraction

Features learned using sigmoid activation are real valued in
[0, 1]. Mimic binary features.

7



hyperparameters

Things we can change in this basic classification network:

• More or less hidden variables.
• Different non-linearity/activation function.
• Different loss function (more on that next class).
• More hidden layers (allows for learning hierarchical
features).

8



notation

Another common diagram for a 2-layered network:

9



notation

Neural network math:

10



notation

How to interpret:

WH and WO are our weight matrices from before.

Note: This diagram does not explicitly show the bias terms or
the non-linear activation functions. 11



notation

How to interpret:

WH and WO are our weight matrices from before.

Note: This diagram depicts a network with “fully-connected” layers.
Every variable in layer i is connected to every variable in layer i+ 1. 12



architecture visualization

Effective way of visualize “architecture” of a neural network:

Visualize number of variables, types of connections, number of
layers and their relative sizes.

These are all feedforward neural networks. No backwards
(recurrent) connections.

13



some history and motivation

13



connection to biology

Simplified model of the brain:
Dendrites: Input electrical
current from other neurons.
Axon: Output electrical current
to other neurons.
Synapse: Where these two
connect.

A neuron “fires” (outputs non-zero electric charge) if it receives
enough cumulative electrical input from all neurons connected to it.

Output charge can be positive or negative (excitatory vs. inhibitory).
14



connection to biology

Inspired early work on neural networks:

• 1940s Donald Hebb proposed a Hebbian learning rule for
how brains neurons change over time to allow learning.

• 1950s Frank Rosenblatt’s Perceptron is one of the first
“artifical” neural networks.

• Continued work throughout the 1960s.

Main issue with neural network methods: They are hard to
train. Generally require a lot of computation power. Also pretty
finicky: user needs to be careful with initialization,
regularization, etc. when training. Often requires a lot of
experimentation to get right.

15



early neural network explosion

Around 1985 several groups (re)-discovered the
backpropagation algorithm which allows for efficient training
of neural nets via gradient descent. Along with increased
computational power this lead to a resurgence of interest in
neural network models.

Very good performance on problems like digit recognition. 16



neural network decline

In the 1990s and early 2000s, kernel methods, SVMs, and
probabilistic methods began to dominate the literature in
machine learning:

• Work well “out of the box”.
• Relatively easy to understand theoretically.
• Not too computationally expensive for moderately sized
datasets.

Fun blog post to check out from 2005:
http://yaroslavvb.blogspot.com/2005/12/
trends-in-machine-learning-according.html

17

http://yaroslavvb.blogspot.com/2005/12/trends-in-machine-learning-according.html
http://yaroslavvb.blogspot.com/2005/12/trends-in-machine-learning-according.html


neural network decline

Finding trends in machine learning by search papers in Google Scholar that
match a certain keyword:

18



modern neural network resurgence

In recent years this trend completely turned around:

Recent state-of-the-art results in game playing, image
recognition, content generation, natural language processing,
machine translation, many other areas.

19



modern neural networks

All changed with the introduction of AlexNet and the 2012
ImageNet Challenge...

Very general image classification task.
20



modern neural networks

All changed with AlexNet and the 2012 ImageNet Challenge...

2010 Results

2012 Results

21



2019 turing award winners

“For conceptual and engineering breakthroughs that have made
deep neural networks a critical component of computing.”

What were these breakthroughs? What made training large neural
networks computationally feasible?

22



graphics processing unit

Hardware innovation: Widely available, inexpensive GPUs
allowing for cheap, highly parallel linear algebra operations.

• 2007: Nvidia released CUDA platform, which allows GPUs to
be easily programmed for general purposed computation.

AlexNet architecture used 60 million parameters. Could not
have been trained using CPUs alone (except maybe on a
government super computer). 23



training neural networks

Two main algorithmic tools for training neural network
models:

1. Stochastic gradient descent.
2. Backpropogation.

24



training neural networks

Let f(θ⃗, x⃗) be our neural network. A typical ℓ-layer feed forward
model has the form:

gℓ
(
Wℓ

(
. . .W3 · g2

(
W2 · g1

(
W1⃗x+ b⃗1

)
+ b⃗2

)
+ b⃗3 . . .

)
+ bℓ

)
.

Wi and b⃗i are the weight matrix and bias vector for layer i and
gi is the non-linearity (e.g. sigmoid). θ⃗ = [W0, b⃗0, . . . ,Wℓ, b⃗ℓ] is
a vector of all entries in these matrices.

Goal: Given training data (⃗x1, y1), . . . , (⃗xn, yn) minimize the loss

L(θ⃗) =
n∑
i=1

L
(
yi, f(θ⃗, x⃗i)

)
Example: We might use the binary cross-entropy loss for
binary classification:

L
(
yi, f(θ⃗, x⃗i)

)
= yi log(f(θ⃗, x⃗i)) + (1− yi) log(1− f(θ⃗, x⃗i)) 25



gradient of the loss

Most common approach: minimize the loss by using gradient
descent. Which requires us to compute the gradient of the loss
function, ∇L. Note that this gradient has an entry for every
value in W0, b⃗0, . . . ,Wℓ, b⃗ℓ.

As usual, our loss function has finite sum structure, so:

∇L(θ⃗) =
n∑
i=1

∇L
(
yi, f(θ⃗, x⃗i)

)
So we can focus on computing:

∇L
(
y, f(θ⃗, x⃗)

)
for a single training example (⃗x, y).

26



gradient of the loss

Applying chain rule to loss:

∇L
(
y, f(θ⃗, x⃗)

)
=

∂L
∂f(θ⃗, x⃗)

· ∇f(θ⃗, x⃗)

Binary cross-entropy example:

L
(
y, f(⃗x)

)
= y log(f(θ⃗, x⃗)) + (1− y) log(1− f(θ⃗, x⃗))

27



gradient of the loss

We have reduced our goal to computing ∇f(θ⃗, x⃗), where the
gradient is with respect to the parameters θ⃗.

Back-propagation is a natural and efficient way to compute
∇f(θ⃗, x⃗). It derives its name because we compute gradient
from back to front: starting with the parameters closest to the
output of the neural net.

28



backprop example

Let’s understand how backprop works with a simple example.

Notation for next few slides:
• x⃗ = [a,b]. f(θ⃗, x⃗) = z.

• Wi,j is the weight of edge from node i to node j.

• s(·) : R → R is the non-linear activation function.

• bj is the bias for node j.

Example: h = s(c ·Wc,h + d ·Wd,h + e ·We,h + bh)
29



backprop example

For any node j, let j̄ denote the value obtained before applying
the non-linearity g.

So if h = s(c ·Wc,h + d ·Wd,h + e ·We,h + bh) then we use h̄ to
denote:

h̄ = c ·Wc,h + d ·Wd,h + e ·We,h + bh

30



backprop example

Goal: Compute the gradient ∇f(θ⃗, x⃗), which contains the partial
derivatives with respect to every parameter:

• ∂z/∂bz
• ∂z/∂Wf,z, ∂z/∂Wg,z, ∂z/∂Wh,z

• ∂z/∂bf, ∂z/∂bg, ∂z/∂bh
• ∂z/∂Wc,f, ∂z/∂Wc,g, ∂z/∂Wc,h

• ∂z/∂Wd,f, ∂z/∂Wd,g, ∂z/∂Wd,h

•
...

• ∂z/∂Wa,c, ∂z/∂Wa,d, ∂z/∂Wa,e

Two steps: Forward pass to compute function value.
Backwards pass to compute gradients.

31



backprop example

Step 1: Forward pass.

• Using current parameters, compute the output z by
moving from left to right.

• Store all intermediate results:

c̄, d̄, ē, c,d, e, f̄, ḡ, h̄, f,g,h, z̄, z.

32



backprop example

Step 1: Forward pass.

33



backprop example

Step 2: Backward pass.

• Using current parameters and computed node values,
compute the partial derivatives of all parameters by
moving from right to left.

34



backprop example

Step 2: Backward pass.

35



backprop example

Step 2: Backward pass.

36



backprop linear algebra

Linear algebraic view.

Let δ⃗i be a vector containing ∂z/∂j for all nodes j in layer i.

δ3 =
[
1
]

δ⃗2 =

∂z/∂f
∂z/∂g
∂z/∂h

 δ⃗1 =

∂z/∂c∂z/∂d
∂z/∂e


Let δ̄i be a vector containing ∂z/∂ j̄ for all nodes j in layer i.

δ̄3 =
[
∂z/∂z̄

]
δ2 =

∂z/∂ f̄
∂z/∂ḡ
∂z/∂h̄

 δ̄1 =

∂z/∂c̄∂z/∂d̄
∂z/∂ē


Note: δ̄i = s′(δ⃗i)× δ⃗i where s′ is the derivative s′ and this function, as
well as the × are applied entrywise.

37



backprop linear algebra

Let Wi be a matrix containing all the weights for edges between layer
i and layer i+ 1.

W2 =
[
Wf,z Wg,z Wh,z

]
W1 =

Wc,f Wd,f We,f
Wc,g Wd,g We,g

Wc,h Wd,h We,h

 W0 =

Wa,c Wb,c
Wa,d Wb,d
Wa,e Wb,e



38



backprop linear algebra

Claim 1: Node derivative computation is matrix multiplication.

δ⃗i = WT
i δ̄i+1

39



backprop linear algebra

Let ∆i be a matrix contain the derivatives for all weights for edges
between layer i and layer i+ 1.

∆2 =
[
∂z/∂Wf,z ∂z/∂Wg,z ∂z/∂Wh,z

]
∆1 =

∂z/∂Wc,f ∂z/∂Wd,f ∂z/∂We,f
∂z/∂Wc,g ∂z/∂Wd,g ∂z/∂We,g

∂z/∂Wc,h ∂z/∂Wd,h ∂z/∂We,h


∆0 = . . .

40



backprop linear algebra

Claim 2: Weight derivative computation is an outer-product.

∆i = v⃗iδ̄Ti+1

where v⃗i contains the values of all nodes in layer i. E.g. v⃗0 =
[
a
b

]
.

41



backprop example

Takeaways:

• Backpropogation can be used to compute derivatives for
all weights and biases for any feedforward neural network.

• Final computation boils down to linear algebra operations
(matrix multiplication and vector operations) which can
be performed quickly on a GPU.

We computed ∇L
(
yi, f(θ⃗, x⃗i)

)
for a single training example

(⃗xi, yi). Computing entire gradient requires computing:

∇L(θ⃗) =
n∑
i=1

∇L
(
yi, f(θ⃗, x⃗i)

)
Computing the entire sum would be very expensive.

42



training neural networks

Second tool: Stochastic Gradient Descent (SGD).

• Powerful randomized variant of GD used to train neural
networks (or any other model where computing gradients
is expensive.

Recall gradient descent update:

• For t = 1, . . . , T:
• θ⃗t+1 = θ⃗t − η∇L(θ⃗t)

where η is a learning rate parameter.

43



stochastic gradient descent

Let Lj(θ⃗) denote L
(
yj, f(θ⃗, x⃗j)

)
.

Claim: If j ∈ 1, . . . ,n is chosen uniformly at random. Then:

n · E
[
∇Lj(θ⃗)

]
= ∇L(θ⃗).

∇Lj(θ⃗) is called a stochastic gradient.

44



stochastic gradient descent

SGD iteration:

• Initialize θ⃗0 (typically randomly).
• For t = 1, . . . , T:

• Choose j uniformly at random.
• Compute stochastic gradient g⃗ = ∇Lj(θ⃗t).

• For neural networks this is done using backprop with
training example (⃗xj, yj).

• Update θ⃗t+1 = θ⃗t − ηg⃗

Move in direction of steepest descent in expectation.

45



stochastic gradient descent

Gradient descent: Fewer iterations to converge, higher cost
per iteration.

Stochastic Gradient descent: More iterations to converge,
lower cost per iteration.

46



stochastic gradient descent

Gradient descent: Fewer iterations to converge, higher cost
per iteration.

Stochastic Gradient descent: More iterations to converge,
lower cost per iteration.

47



stochastic gradient descent in practice

Practical Modification 1: Cyclic Gradient Descent.

Assume order of data is relatively random. Instead of choosing
j randomly at each iteration, choose
j = 1, j = 2, . . . , j = n, j = 1, . . . , j = n, . . ..

Question: Why might we want to do this?

• Relatively similar convergence behavior to standard SGD.
• Import term: one epoch denotes one pass over all
training examples: j = 1, . . . , j = n.

• Convergence rates for training neural networks are often
discussed in terms of epochs instead of iterations.

48



stochastic gradient descent in practice

Practical Modification 2: Mini-batch Gradient Descent.

Observe that for any batch size s,

n · E

[
1
s

s∑
i=1

∇Lji(θ⃗)
]
= ∇L(θ⃗).

if j1, . . . , js are chosen independently and uniformly at random
from 1, . . . ,n.

Instead of computing a full stochastic gradient, compute the
average gradient of a small random set (a mini-batch) of
training data examples.

Question: Why might we want to do this?

49



mini-batch gradient descent

• For small batch size s, mini-batch gradients are nearly as
fast to compute as stochastic gradients (due to
parallelism).

• Overall faster convergence (fewer iterations needed).

50


