
CS-UY 4563: Lecture 15
Neural Networks

NYU Tandon School of Engineering, Prof. Christopher Musco

1



course logistics

• Project topic/teams due on tonight via email.
• Sign up for a meeting time after you send me the email.

• Lab due Thursday night.
• My office hours from 1-3pm today.

2



lab 6

Lab lab_mnist_partial.ipynb due next Thursday, 4/9.

• Covers kernel logistic regression and SVMs, which should
be useful in many projects.

• Requires Tensorflow (easiest way to load MNIST data).
• Popular ML library focused on neural networks: first
released by Google in 2015. We will use along with the
high-level Keras library (included in Tensorflow) for
the next part of the class.

3



tensorflow

• Installation can be done directly in Anaconda navigator,
via pip, or comes pre-installed in Google Collab.

• Install Version 2 so we’re all on the same page.

4



tensorflow

Tensorflow 2 was only released in Fall 2019, so if you are
having issues and need Google for answers, make sure to
restrict the dates of your search.

5



neural networks

The hot-topic in machine learning right now.

Focus of investment at universities, government research labs
and funding agencies, and now large tech companies.

Studied since the 1940s/50s. Why the sudden attention? More
on history of neural networks at the end of lecture. 6



simple motivating example

Classification when data is not linearly separable:

Could use feature transformations or a non-linear kernel.

Alternative approach: Divide the space up into regions using
multiple linear classifiers.

7



simple motivating example

For each linear classifier β⃗, add a new 0, 1 feature for every
example x⃗ = [x0, x1] depending on the sign of ⟨⃗x, β⃗⟩.

8



simple motivating example


.2, .8,
.5, .5
...

.5, 1



x⃗1
x⃗2
...
x⃗n

 =⇒


u⃗1
u⃗2
...
u⃗n

 =


0, 0, 1, 0
0, 1, 1, 0

...
0, 0, 0, 0


Question: After data transformation, how should we map a
new vectors u⃗ to a class label?

0, 0, 1, 0
0, 1, 1, 0

...
0, 0, 0, 0

 ?−→


0
1
...
0


9



simple motivating example

Our machine learning algorithms needs to learn two things:

• The original linear functions which divide our data set
into regions (their slopes + intercepts).

• Another linear function which maps our new features to
an output label (typically by thresholding).

10



possible model

Input: x⃗ = x1, . . . , xNI
Model: f(⃗x,Θ):

• z⃗H ∈ RNH = WHx⃗+ b⃗h.
• u⃗H = [⃗zH > 0]
• zO ∈ R = WOu⃗H + bO
• uO = [zO > 0]

Parameters: Θ = [WH ∈ RNH×NI , b⃗H ∈ RNH ,WO ∈ R1×NH ,bO ∈ R].

WH, WO are weight matrices and b⃗H, bO are bias terms that
account for the intercepts of our linear functions.

11



possible model

Our model is function f which makes x⃗ to a class label uO.1

This is called a “multilayer perceptron”: one of the oldest
types of neural nets. Dates back to Frank Rosenblatt from 1958
• Number of input variables NI =
• Number of hidden variables NH =

• Number of hidden variables NO =

1For regression, would cut off at zO to get continuous output.
12



possible model

Our model is function f which maps x⃗ to a class label uO.

Training the model:

• Choose a loss function L(f(⃗x,Θ), y).
• Find optimal parameters: Θ∗ = argminΘ

∑n
i=1 L(f(⃗xi,Θ), yi)

How to find optimal parameters? 13



final model

A more typical model uses smoother activation functions, aka
non-linearities, which are more amenable to computing gradients.
E.g. we might use the sigmoid function g = 1

1+e−x .

• Use cross-entropy loss:

L(f(⃗xi,Θ), y) = −y log(f(⃗xi,Θ))− (1− y) log(1− f(⃗xi,Θ))

• We will discuss later exactly how to compute gradients.

• Will also discuss categorical cross-entropy/softmax loss for
multi-class problems. 14



final model

Intuitively switching to a sigmoid activation is not that
different from using the step function.2

2Sometimes called the “Heaviside step function” in machine learning.

15



hyperparameters

Things we can change in this basic classification network:

• More or less hidden variables.
• We could add more layers.
• Different non-linearity/activation function.
• Different loss function (more on that next class).

16



test your intuition

How many hidden variables (e.g. splitting hyperplanes) would
be needed to classify this dataset correctly?

https://playground.tensorflow.org/

17

https://playground.tensorflow.org/


test your intuition

18



notation

Another common diagram for a 2-layered network:

19



notation

Neural network math:

20



notation

How to interpret:

WH and WO are our weight matrices from before.

Note: This diagram does not explicitly show the bias terms or
the non-linearity. 21



notation

How to interpret:

WH and WO are our weight matrices from before.

Note: This diagram depicts a network with “fully-connected”
layers. 22



connection to biology

Simplified model of the brain:
Dendrites: Input electrical
current from other neurons.
Axon: Output electrical current
to other neurons.
Synapse: Where these two
connect.

A neuron “fires” (outputs a non-zero electric charge) if it receives
enough cumulative electrical input from the neurons connected to it.

Output charge can be positive or negative (excitatory vs. inhibitory).
23



connection to biology

Inspired early work on neural networks:

• 1940s Donald Hebb proposed a Hebbian learning rule for
how brains neurons change over time to allow learning.

• 1950s Frank Rosenblatt’s Perceptron is one of the first
“artifical” neural networks.

• Continued work throughout the 1960s.

Main issue with neural network methods: They are hard to
train. Generally require a lot of computation power. Also pretty
finicky: user needs to be careful with initialization,
regularization, etc. when training. Often requires a lot of
experimentation to get right.

24



early neural network explosion

Around 1985 a few groups (re)-discovered the backpropagation
algorithm which allows for efficient training of neural nets via
gradient descent. Along with increased computational power
this lead to a resurgence of interest in neural network models.

Good performance on problems like digit recognition.
25



neural network decline

In the 1990s and early 2000s, kernel methods, SVMs, and
probabilistic methods began to dominate the literature in
machine learning:

• Work well “out of the box”.
• Relatively easy to understand theoretically.
• Not too computationally expensive for moderately sized
datasets.

Fun blog post to check out from 2005:
http://yaroslavvb.blogspot.com/2005/12/
trends-in-machine-learning-according.html

26

http://yaroslavvb.blogspot.com/2005/12/trends-in-machine-learning-according.html
http://yaroslavvb.blogspot.com/2005/12/trends-in-machine-learning-according.html


neural network decline

Finding trends in machine learning by search papers in Google Scholar that
match a certain keyword:

27



modern neural networks

Recent state-of-the-art results in game playing, image
recognition, content generation, natural language processing,
machine translation, many other areas.

28



modern neural networks

All changed with the introduction of AlexNet and the 2012
ImageNet Challenge...

29



modern neural networks

All changed with the introduction of AlexNet and the 2012 ImageNet
Challenge...

2010 Results

2012 Results
30



modern neural networks

Why 2012?

• Clever ideas in changing neural network architectures.
• Wide-spread access to GPU computing power (CUDA and
publicly available Nvidia GPU first released in 2007).

31



2019 turing award winners

“For conceptual and engineering breakthroughs that have made
deep neural networks a critical component of computing.”

32



use outside of computer science

Neural networks are flexible and relatively easy to understand
conceptually, so they are also having impact in application areas
outside of computer science.

Researchers working in the medicine, natural sciences, engineering,
etc. are having a lot of luck implementing and applying these
models to their data problems. 33


