CS-UY 4563: Lecture 14
Support Vector Machines

NYU Tandon School of Engineering, Prof. Christopher Musco



COURSE LOGISTICS

- Project topic/teams due on Wednesday via email.
- Sign up for a meeting time after you send me the email.
- Lab lab_grad_descent_partial.ipynb due
Thursday night.

- We don't have enough time to do the topic of optimization
justice, so take my class next semester if you want to learn
more.



LAST LECTURE

How to use non-linear kernels with logistic regression.

- Often leads to better classification than basic linear
logistic regression.

- Equivalent to feature transformation, but often
computationally faster.



EXAMPLES OF NON-LINEAR KERNELS

Commonly used positive semidefinite (PSD) kernel functions:

- Linear (inner-product) kernel: R(X, V) = (X, V)
- Gaussian RBF Kernel: k(X, y) = e~ I¥F-¥l2/o*

- Laplace Kernel: R(X, V) = e~ IIK-Vl2/o

- Polynomial Kernel: R(X, V) = ((X,y) + 1)9.

Recall: Every PSD kernel has a corresponding feature
transformationﬁ: R™
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KERNEL FUNCTIONS AND FEATURE TRANSFORMATION

Sometimes ¢(X) is simple and explicit. More often, it is not.
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KERNEL MATRIX

Typically doesn’t matter because we only need to compute the
kernel Gram matrix K to retrofit algorithms like logistic or
linear regression to use non-linear kernels.
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(If this stuff interests you, understanding the kernel feature maps ¢ which

correspond to different kernels is a large part of my current research. This
understanding can lead to faster kernel methods.)



TODAY

Support Vector Machines (SVMs): Another algorithm for finding
linear classifiers which is as popular as logistic regression.

- Can also be combined with kernels.
- Developed from a pretty different perspective.
- But final algorithm is not that different.

- Invented in 1963 by Alexey
Chervonenkis and Vladimir
Vapnik. Also founders of

VC-theory.

- First combined with
non-linear kernels in 1993.




SVM’S VS. LOGISTIC REGRESSION

For some reason, SVMs are more commonly used with
non-linear kernels. For example, sklearn’s SVM classifier
(called SVC) has support for non-linear kernels built in by
default. Its logistic regression classifier does not.

- | believe this is mostly for historical reasons and
connections to theoretical machine learning.

- In the early 2000s SVMs where a “hot topic” in machine
learning and their popularity persists.

- Itis not clear to me if they are better than logistic
regression, but honestly I'm not sure...



SVM’S VS. LOGISTIC REGRESSION

Next lab: lab_mnist_partial.ipynb.

Machina-a-machina comparison of SVMs vs. logistic regression
for a MNIST digit classification problem. Which provides better
accuracy? Which is faster to train?

20% extra credit on lab if you can beat my simple baseline. 9



LINEARLY SEPARABLE DATA

We call a dataset with binary labels linearly separable if it can
be perfectly classified with a linear classifier:

: *, seperating
Q.O ® hyperplane



LINEARLY SEPARABLE DATA

Formally, there exists a parameter Esuch that (5,)?) > 0 for all
X in class 1and (3,X) < 0 for all X in class 0.

seperating
hyperplane

Note that if we multiply 3 by any constant c, ¢ gives the same
separating hyperplane because (c3,X) = c(3, X).
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LINEARLY SEPARABLE DATA

A data set might be linearly separable when using a
non-kernel/feature transformation even if it is not separable
in the original space.
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This data is separable when using a degree-2 polynomial
kernel. If suffices for ¢(X) to contain x? and x3.
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MARGIN

When data is linearly separable, there are typically multiple
valid separating hyperplanes.

Which hyperplane/classification rule is best?
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MARGIN

The margin m of a separating hyperplane is the minimum ¢,
(Euclidean) distance between a point in the dataset and the
hyperplane.
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SUPPORT VECTOR

A support vector is any data point X; such that '%—f” =m.
2
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HARD-MARGIN SVM

A gin Jupport vector machine (SVM) classifier finds
the maximum margin (MM) linear classifier.
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l.e. the separating hyperplane which maximizes the margin m.
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MARGIN

Denote the maximum margin by_m*.
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where y; = —1,1 depending on what class X;."

"Note that this is a different convention than the 0,1 class labels we
typically use.
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HARD-MARGIN SVM

Equivalent formulation:

min 181 subject to yi - (%, B) > 1forall .
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This is a constrained optimization problem. In particular, a
linearly constrained quadratic program, which is a type of
problem we have efficient optimization algorithms for.
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HARD-MARGIN SVM

While important in theory, hard-margin SVMs have a few critical
issues in practice:
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Data might not be linearly separable, in-which case the maximum
margin classifier is not even defined.

Less likely to be an issue when using a non-linear kernel. If Kis full
rank then perfect separation is always possible. And typically it is,
e.g. for an RBF kernel or moderate degree polynomial kernel.
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HARD-MARGIN SVM

While important in theory, hard-margin SVMs have a few critical
issues in practice:
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Hard-margin SVM classifiers are not robust.
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SOFT-MARGIN SVM

Solution: Allow the classifier to make some mistakes!

Hard margin objective:

—.

yi - {X;, B) > 1foralli.
_

min ||,8||; subject to
B

Soft margin objective:

subject to | y; - <x,,6) >1 orall /.

where ¢; > 0 is a non-negative “slack variable”. This is the
M = u n =2
magnitude of the “error” made on example X..

C > 0 is a non-negative tuning parameter.
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SOFT-MARGIN SVM

Example of a non-separable problem:
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SOFT-MARGIN SVM
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SOFT-MARGIN SVM

Any X; with a non-zero ¢; is a support vector.
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EFFECT OF C

Soft margin objective:

- Large C means penalties are punished more in objective
— smaller margin, less support vectors.

- Small C means penalties are punished less in objective
— larger margin, more support vectors.

When data is linearly separable, as C — oo we will always get a
separating hyperplane. A smaller value of C might lead to a
more robust solution.
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EFFECT OF C

Example dataset:




EFFECT OF C

large C smaller C

The classifier on the right is intuitively more robust. So for this
data, a smaller choice for C might make sense.
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DUAL FORMULATION

Reformulation of soft-margin objective: % & IR‘L
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Obtained by taking the Lagrangian dual of the objective. Beyond the
scope of this class, but important for a few reasons:

- Objective only depends on inner products (X;, X;), which makes
it clear how to combine the soft-margin SVM with a kernel.

- Dual formulation can be solved faster in low-dimensions.

- Possible to prove that «; is only non-zero for the support
vectors. When classifying a new data point, only need to
compute inner products (or the non-linear kernel inner
product) with this subset of training vectors. 28



COMPARISON TO LOGISTIC REGRESSION

Some basic transformations of the soft-margin objective:
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HINGE LOSS

Hinge-loss: max(0,1—y; - (X, 8)). Recall that y; € {—1,1}.
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COMPARISON TO LOGISTIC REGRESSION

Compare this to the logistic regression loss (slightly
reformulated for y € {~1,1}):

—— Hinge Loss
—— Logistic Regression Loss
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COMPARISON TO LOGISTIC REGRESSION

So, in the end, the function minimized when finding Bfor the
standard soft-margin SVM is very similar to the objective
function minimized when finding 3 using logistic regression
with ¢, regularization. Sort of...

Both functions can be optimized using first-order methods like
gradient descent. This is now a common choice for large

problems.
32



COMPARISON TO LOGISTIC REGRESSION

The jury is still out on how different these methods are...

- Work through demo_mnist_svm. ipynb.
- Then complete lab lab_mnist_partial.ipynb.
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