CS-UY 4563: Lecture 14
Support Vector Machines

NYU Tandon School of Engineering, Prof. Christopher Musco



COURSE LOGISTICS

- Project topic/teams due on Wednesday via email.
- Sign up for a meeting time after you send me the email.
- Lab lab_grad_descent_partial.ipynb due
Thursday night.

- We don't have enough time to do the topic of optimization
justice, so take my class next semester if you want to learn
more.



LAST LECTURE

How to use non-linear kernels with logistic regression.

- Often leads to better classification than basic linear
logistic regression.

- Equivalent to feature transformation, but often
computationally faster.



EXAMPLES OF NON-LINEAR KERNELS

Commonly used positive semidefinite (PSD) kernel functions:
- Linear (inner-product) kernel: R(X,y) = (X, V)
- Gaussian RBF Kernel: k(X, ) = e~ IX-Vli3/e’
- Laplace Kernel: R(X,y) = e~ IX-7l2/o

- Polynomial Kernel: kR(X, V) = ((X,¥) + 1)1.

Recall: Every PSD kernel has a corresponding feature
transformation ¢ : RY — R™.

R(%,9) = 6(X)6(7))



KERNEL FUNCTIONS AND FEATURE TRANSFORMATION

Sometimes ¢(X) is simple and explicit. More often, it is not.
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KERNEL MATRIX

Typically doesn’'t matter because we only need to compute the
kernel Gram matrix K to retrofit algorithms like logistic or
linear regression to use non-linear kernels.

o(X;)
¢(72) = k(i|r)_{j)
(X) p(X)T = .
o) S
K

(If this stuff interests you, understanding the kernel feature maps ¢ which

correspond to different kernels is a large part of my current research. This
understanding can lead to faster kernel methods.)



TODAY

Support Vector Machines (SVMs): Another algorithm for finding
linear classifiers which is as popular as logistic regression.

- Can also be combined with kernels.
- Developed from a pretty different perspective.
- But final algorithm is not that different.

- Invented in 1963 by Alexey
Chervonenkis and Vladimir
Vapnik. Also founders of
VC-theory.

- First combined with
non-linear kernels in 1993.




SVM'S VS. LOGISTIC REGRESSION

For some reason, SVMs are more commonly used with
non-linear kernels. For example, sklearn’s SVM classifier
(called SVC) has support for non-linear kernels built in by
default. Its logistic regression classifier does not.

- | believe this is mostly for historical reasons and
connections to theoretical machine learning.

- In the early 2000s SVMs where a “hot topic” in machine
learning and their popularity persists.

- It is not clear to me if they are better than logistic
regression, but honestly I'm not sure...



SVM'S VS. LOGISTIC REGRESSION

Next lab: lab_mnist_partial.ipynb.

Machina-a-machina comparison of SVMs vs. logistic regression
for a MNIST digit classification problem. Which provides better
accuracy? Which is faster to train?

20% extra credit on lab if you can beat my simple baseline. 9



LINEARLY SEPARABLE DATA

We call a dataset with binary labels linearly separable if it can
be perfectly classified with a linear classifier:
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LINEARLY SEPARABLE DATA

Formally, there exists a parameter Esuch that (5,)?} > 0 for all
% in class 1and (5,%) < 0 for all X in class 0.

B

:.p. seperating
‘.0 o hyperplane
(B, x)<0 (B,x)=0

Note that if we multiply 8 by any constant ¢, ¢ gives the same
separating hyperplane because (c3, %) = c(3, X).
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LINEARLY SEPARABLE DATA

A data set might be linearly separable when using a
non-kernel/feature transformation even if it is not separable
in the original space.

feature ‘

) |

transformation

This data is separable when using a degree-2 polynomial
kernel. If suffices for ¢(X) to contain x? and x3.
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MARGIN

When data is linearly separable, there are typically multiple
valid separating hyperplanes.

Which hyperplane/classification rule is best?
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MARGIN

The margin m of a separating hyperplane is the minimum /4,
(Euclidean) distance between a point in the dataset and the
hyperplane.

%, B)
1512 .

m = min A; where [y =
I



SUPPORT VECTOR

A support vector is any data point X; such that ‘jié—ﬁm =m.
2
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HARD-MARGIN SVM

A hard-margin support vector machine (SVM) classifier finds
the maximum margin (MM) linear classifier.

l.e. the separating hyperplane which maximizes the margin m.



MARGIN

Denote the maximum margin by m*.

K
m* = max | min M
g [i€hn [IBll2

[ : yi'<)?i>5>]

=max | min —=-"—
G lienn 18]
where y; = —1,1 depending on what class X;.!

"Note that this is a different convention than the 0,1 class labels we
typically use.



HARD-MARGIN SVM

Equivalent formulation:

—

min || 3]2 subject to yi - (X, 8) > 1forall .
B

Under this formulation m = TG

This is a constrained optimization problem. In particular, a
linearly constrained quadratic program, which is a type of
problem we have efficient optimization algorithms for.




HARD-MARGIN SVM

While important in theory, hard-margin SVMs have a few critical
issues in practice:

Data might not be linearly separable, in-which case the maximum
margin classifier is not even defined.

Less likely to be an issue when using a non-linear kernel. If K'is full
rank then perfect separation is always possible. And typically it is,
e.g. for an RBF kernel or moderate degree polynomial kernel.
19



HARD-MARGIN SVM

While important in theory, hard-margin SVMs have a few critical
issues in practice:

X
;

1
Xo

Hard-margin SVM classifiers are not robust.
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SOFT-MARGIN SVM

Solution: Allow the classifier to make some mistakes!

Hard margin objective:

min [|5]13 subject to yi - (X, 8) > 1forall .
B

Soft margin objective:

—

n
min B3 +C> ¢ subjectto y;- (%, 5) >1—¢ foralli.
s =1

where ¢; > 0 is a non-negative “slack variable”. This is the
magnitude of the “error” made on example X;.

C > 0 is a non-negative tuning parameter.
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SOFT-MARGIN SVM

Example of a non-separable problem:
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SOFT-MARGIN SVM

N

/1Bl

Soft margin objective:

- =

n
min||Bl3+C> ¢ subjectto ;- (X;,5) >1—¢foralli.
g i=1
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SOFT-MARGIN SVM

1/ 1Bl

Any X; with a non-zero ¢; is a support vector.
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EFFECT OF C

Soft margin objective:

n
mﬁiﬂ 1815+ € e

i=1

- Large C means penalties are punished more in objective
— smaller margin, less support vectors.

- Small C means penalties are punished less in objective
— larger margin, more support vectors.

When data is linearly separable, as C — oo we will always get a
separating hyperplane. A smaller value of C might lead to a
more robust solution.
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EFFECT OF C

Example dataset:
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EFFECT OF C

large C smaller C

The classifier on the right is intuitively more robust. So for this
data, a smaller choice for C might make sense.
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DUAL FORMULATION

Reformulation of soft-margin objective:

n
mnga,- Zy,y,aa, Xi, X;) — ZCZa
s

i

n
subjectto a; >0, Za,-y,- =0.
i=1
Obtained by taking the Lagrangian dual of the objective. Beyond the
scope of this class, but important for a few reasons:

- Objective only depends on inner products (X;, X;), which makes
it clear how to combine the soft-margin SVM with a kernel.

- Dual formulation can be solved faster in low-dimensions.

- Possible to prove that «; is only non-zero for the support
vectors. When classifying a new data point, only need to
compute inner products (or the non-linear kernel inner
product) with this subset of training vectors. 28



COMPARISON TO LOGISTIC REGRESSION

Some basic transformations of the soft-margin objective:

mlﬂl!BHz+CZe,

=1

—.

mlﬂl|5|\2+CZmaxo 1—y;- (%, B)).
=1

min A2 +3 max(0.1- ;- . B).

i=1

These are all equivalent. A = 1/C is just another scaling
parameter.
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HINGE LOSS

—.

Hinge-loss: max(0,1—y;- (X;, 8)). Recall thaty; € {—1,1}.
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Soft-margin SVM:
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COMPARISON TO LOGISTIC REGRESSION

Compare this to the logistic regression loss (slightly
reformulated for y; € {—1,1}):

n

1
—log(1 — ———
Z g 1— ey,--<?,ﬂ>>

i=1

—— Hinge Loss
—— Logistic Regression Loss
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COMPARISON TO LOGISTIC REGRESSION

So, in the end, the function minimized when finding Efor the
standard soft-margin SVM is very similar to the objective
function minimized when finding 3 using logistic regression
with /¢, regularization. Sort of...

i - (%, B)

Both functions can be optimized using first-order methods like
gradient descent. This is now a common choice for large

problems.
32



COMPARISON TO LOGISTIC REGRESSION

The jury is still out on how different these methods are...

- Work through demo_mnist_svm.1ipynb.
- Then complete lab lab_mnist_partial.ipynb.
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