
CS-UY 4563: Lecture 14
Support Vector Machines

NYU Tandon School of Engineering, Prof. Christopher Musco
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course logistics

• Project topic/teams due on Wednesday via email.
• Sign up for a meeting time after you send me the email.

• Lab lab_grad_descent_partial.ipynb due
Thursday night.

• We don’t have enough time to do the topic of optimization
justice, so take my class next semester if you want to learn
more.
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last lecture

How to use non-linear kernels with logistic regression.

• Often leads to better classification than basic linear
logistic regression.

• Equivalent to feature transformation, but often
computationally faster.
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examples of non-linear kernels

Commonly used positive semidefinite (PSD) kernel functions:

• Linear (inner-product) kernel: k(⃗x, y⃗) = ⟨⃗x, y⃗⟩
• Gaussian RBF Kernel: k(⃗x, y⃗) = e−∥⃗x−y⃗∥22/σ2

• Laplace Kernel: k(⃗x, y⃗) = e−∥⃗x−y⃗∥2/σ

• Polynomial Kernel: k(⃗x, y⃗) = (⟨⃗x, y⃗⟩+ 1)q.

Recall: Every PSD kernel has a corresponding feature
transformation ϕ : Rd → Rm.

k(⃗x, y⃗) = ϕ(⃗x)Tϕ(⃗y))
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kernel functions and feature transformation

Sometimes ϕ(⃗x) is simple and explicit. More often, it is not.

x⃗ =

x1x2
x3

 ϕ(⃗x) =



1√
2x1√
2x2√
2x3
x21
x22
x23√
2x1x2√
2x1x3√
2x2x3


Degree 2 polynomial kernel, k(⃗x, w⃗) = (⃗xTw⃗+ 1)2.
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kernel matrix

Typically doesn’t matter because we only need to compute the
kernel Gram matrix K to retrofit algorithms like logistic or
linear regression to use non-linear kernels.

(If this stuff interests you, understanding the kernel feature maps ϕ which
correspond to different kernels is a large part of my current research. This
understanding can lead to faster kernel methods.)
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today

Support Vector Machines (SVMs): Another algorithm for finding
linear classifiers which is as popular as logistic regression.

• Can also be combined with kernels.
• Developed from a pretty different perspective.
• But final algorithm is not that different.

• Invented in 1963 by Alexey
Chervonenkis and Vladimir
Vapnik. Also founders of
VC-theory.

• First combined with
non-linear kernels in 1993.
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svm’s vs. logistic regression

For some reason, SVMs are more commonly used with
non-linear kernels. For example, sklearn’s SVM classifier
(called SVC) has support for non-linear kernels built in by
default. Its logistic regression classifier does not.

• I believe this is mostly for historical reasons and
connections to theoretical machine learning.

• In the early 2000s SVMs where a “hot topic” in machine
learning and their popularity persists.

• It is not clear to me if they are better than logistic
regression, but honestly I’m not sure...
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svm’s vs. logistic regression

Next lab: lab_mnist_partial.ipynb.

Machina-a-machina comparison of SVMs vs. logistic regression
for a MNIST digit classification problem. Which provides better

accuracy? Which is faster to train?

20% extra credit on lab if you can beat my simple baseline. 9



linearly separable data

We call a dataset with binary labels linearly separable if it can
be perfectly classified with a linear classifier:
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linearly separable data

Formally, there exists a parameter β⃗ such that ⟨β⃗, x⃗⟩ > 0 for all
x⃗ in class 1 and ⟨β⃗, x⃗⟩ < 0 for all x⃗ in class 0.

Note that if we multiply β⃗ by any constant c, cβ⃗ gives the same
separating hyperplane because ⟨cβ⃗, x⃗⟩ = c⟨β⃗, x⃗⟩.
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linearly separable data

A data set might be linearly separable when using a
non-kernel/feature transformation even if it is not separable
in the original space.

This data is separable when using a degree-2 polynomial
kernel. If suffices for ϕ(⃗x) to contain x21 and x22.
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margin

When data is linearly separable, there are typically multiple
valid separating hyperplanes.

Which hyperplane/classification rule is best?
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margin

The margin m of a separating hyperplane is the minimum ℓ2
(Euclidean) distance between a point in the dataset and the
hyperplane.

m = min
i

∆i where ∆i =
|⟨⃗xi, β⃗⟩|
∥β⃗∥2 14



support vector

A support vector is any data point x⃗i such that |⟨⃗xi,β⃗⟩|
∥β⃗∥2

= m.
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hard-margin svm

A hard-margin support vector machine (SVM) classifier finds
the maximum margin (MM) linear classifier.

I.e. the separating hyperplane which maximizes the margin m.
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margin

Denote the maximum margin by m∗.

m∗ = max
β⃗

[
min
i∈1,...,n

|⟨|⃗xi, β⟩|
∥β⃗∥2

]

= max
β⃗

[
min
i∈1,...,n

yi · ⟨⃗xi, β⃗⟩
∥β⃗∥2

]

where yi = −1, 1 depending on what class x⃗i.1

1Note that this is a different convention than the 0, 1 class labels we
typically use.
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hard-margin svm

Equivalent formulation:

min
β⃗

∥β⃗∥22 subject to yi · ⟨⃗xi, β⃗⟩ ≥ 1 for all i.

Under this formulation m = 1
∥β∥2 .

This is a constrained optimization problem. In particular, a
linearly constrained quadratic program, which is a type of
problem we have efficient optimization algorithms for.
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hard-margin svm

While important in theory, hard-margin SVMs have a few critical
issues in practice:

Data might not be linearly separable, in-which case the maximum
margin classifier is not even defined.

Less likely to be an issue when using a non-linear kernel. If K is full
rank then perfect separation is always possible. And typically it is,
e.g. for an RBF kernel or moderate degree polynomial kernel.
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hard-margin svm

While important in theory, hard-margin SVMs have a few critical
issues in practice:

Hard-margin SVM classifiers are not robust.
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soft-margin svm

Solution: Allow the classifier to make some mistakes!

Hard margin objective:

min
β⃗

∥β⃗∥22 subject to yi · ⟨⃗xi, β⃗⟩ ≥ 1 for all i.

Soft margin objective:

min
β⃗

∥β⃗∥22 + C
n∑
i=1

ϵi subject to yi · ⟨⃗xi, β⃗⟩ ≥ 1− ϵi for all i.

where ϵi ≥ 0 is a non-negative “slack variable”. This is the
magnitude of the “error” made on example x⃗i.

C ≥ 0 is a non-negative tuning parameter.
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soft-margin svm

Example of a non-separable problem:
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soft-margin svm

Soft margin objective:

min
β⃗

∥β⃗∥22 + C
n∑
i=1

ϵi subject to yi · ⟨⃗xi, β⃗⟩ ≥ 1− ϵi for all i.
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soft-margin svm

Any x⃗i with a non-zero ϵi is a support vector.
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effect of c

Soft margin objective:

min
β⃗

∥β⃗∥22 + C
n∑
i=1

ϵi.

• Large C means penalties are punished more in objective
=⇒ smaller margin, less support vectors.

• Small C means penalties are punished less in objective
=⇒ larger margin, more support vectors.

When data is linearly separable, as C→ ∞ we will always get a
separating hyperplane. A smaller value of C might lead to a
more robust solution.
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effect of c

Example dataset:
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effect of c

The classifier on the right is intuitively more robust. So for this
data, a smaller choice for C might make sense.

27



dual formulation

Reformulation of soft-margin objective:

max
α⃗

n∑
i=1

αi −
1
2
∑
i,j

yiyjαiαi⟨⃗xi, x⃗j⟩ −
1
2C

n∑
i=1

α2i

subject to αi ≥ 0,
n∑
i=1

αiyi = 0.

Obtained by taking the Lagrangian dual of the objective. Beyond the
scope of this class, but important for a few reasons:

• Objective only depends on inner products ⟨⃗xi, x⃗j⟩, which makes
it clear how to combine the soft-margin SVM with a kernel.

• Dual formulation can be solved faster in low-dimensions.

• Possible to prove that αi is only non-zero for the support
vectors. When classifying a new data point, only need to
compute inner products (or the non-linear kernel inner
product) with this subset of training vectors. 28



comparison to logistic regression

Some basic transformations of the soft-margin objective:

min
β⃗

∥β⃗∥22 + C
n∑
i=1

ϵi.

min
β⃗

∥β⃗∥22 + C
n∑
i=1

max(0, 1− yi · ⟨⃗xi, β⃗⟩).

min
β⃗

λ∥β⃗∥222+
n∑
i=1

max(0, 1− yi · ⟨⃗xi, β⃗⟩).

These are all equivalent. λ = 1/C is just another scaling
parameter.
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hinge loss

Hinge-loss: max(0, 1− yi · ⟨⃗xi, β⃗⟩). Recall that yi ∈ {−1, 1}.

Soft-margin SVM:

min
β⃗

[ n∑
i=1

max(0, 1− yi · ⟨⃗xi, β⃗⟩) + λ∥β⃗∥22

]
. (1)
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comparison to logistic regression

Compare this to the logistic regression loss (slightly
reformulated for yi ∈ {−1, 1}):

n∑
i=1

− log(1− 1
1− eyi·⟨⃗xi,β⃗⟩

⟩
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comparison to logistic regression

So, in the end, the function minimized when finding β⃗ for the
standard soft-margin SVM is very similar to the objective
function minimized when finding β⃗ using logistic regression
with ℓ2 regularization. Sort of...

Both functions can be optimized using first-order methods like
gradient descent. This is now a common choice for large
problems.
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comparison to logistic regression

The jury is still out on how different these methods are...

• Work through demo_mnist_svm.ipynb.
• Then complete lab lab_mnist_partial.ipynb.

33


