CS-UY 4563: Lecture 13 Kernel Methods

NYU Tandon School of Engineering, Prof. Christopher Musco

COURSE ADMIN

My new office: https://nyu.zoom.us/my/cmusco

- Visit this URL during my office hours or any individual meetings.
- You can also "drop in" even if I'm not in the chat. I will receive an email notification (might take me a few minutes to notice) and can then let you in if I'm free.
- For lectures still use the links on NYU Classes (which allows for automatic recording, transcription, etc.)

COURSE PROJECT

By 4/1 (next Wednesday) choose a partner and topic.

- Email me team members, project topic, and a sentence or two about your idea. If you have any data sets in mind, let me know that as well.
- Then set up a meeting at: https://docs.google.com/ spreadsheets/d/1DsR7ia4VfYb5joIavsG8_ T1JBgAufkVbdT7bLfPGGQ0/edit?usp=sharing.

LETS EASE BACK INTO THINGS

k-**NN** algorithm: a simple but powerful baseline for classification.

Training data: $(\vec{x}_1, y_1), \dots, (\vec{x}_n, y_n)$ where $y_1, \dots, y_n \in \{1, \dots, q\}$.

Classification algorithm:

Given new input \vec{x}_{new} ,

- Compute $sim(\vec{x}_{new}, \vec{x}_1), \dots, sim(\vec{x}_{new}, \vec{x}_n)$.
- Let $\vec{x}_{j_1}, \dots, \vec{x}_{j_k}$ be the raining data vectors with highest similarity to \vec{x}_{new} .
- Predict y_{new} as $majority(y_{j_1}, \ldots, y_{j_k})$.

INNER PRODUCT SIMILARITY

Given data vectors $\vec{x}, \vec{w} \in \mathbb{R}^d$, the <u>inner product $\langle \vec{x}, \vec{w} \rangle$ </u> is a natural similarity measure.

$$\langle \vec{x}, \vec{w} \rangle = \sum_{i=1}^{d} \vec{x}[i] \vec{w}[i] = \cos(\theta) ||\vec{x}||_{2} ||\vec{w}||_{2}.$$

MNIST IMAGE DATA

Each pixel is number from [0,1]. 0 is black, 1 is white. Represent 28×28 matrix of pixel values as a flattened vector.

INNER PRODUCT FOR MNIST

Inner product similarity is higher when the images have large pixel values (close to 1) in the same locations. I.e. when they have a lot of overlapping white/light gray pixels.

INNER PRODUCT FOR MNIST

Visualizing the inner product between two images:

Images with high inner product have a lot of overlap.

VIEW OF LOGISTIC REGRESSION

9:10

One-vs.-all Classification with Logistic Regression:

- · Learn q classifiers with parameters $\vec{\beta}_0, \vec{\beta}_1, \dots, \vec{\beta}_{q-1}$.
- Given \vec{x}_{new} compute $\langle \vec{x}_{new} (\vec{\beta}_0) , ..., \langle \vec{x}_{new}, \vec{\beta}_{q-1} \rangle$
- Predict class $\underline{y_{new}} = \arg\max_i \langle \vec{x}_{new}, \vec{\beta}_i \rangle$.

If each \vec{x} is a vector with $28 \times 28 = 784$ entries than each $\vec{\beta_i}$ also has 784 entries. Each parameter vector can be viewed as a 28×28 image.

MATCHED FILTER

Visualizing $\vec{\beta}_0, \dots, \vec{\beta}_9$:

For an input image , compute <u>inner product</u> similarity with all weight matrices and choose most similar one.

In contrast to *k*-NN, only need to compute similarity with *q* items instead of *n*.

VIEW OF LOGISTIC REGRESSION

Select class for \vec{x}_{new} which achieves highest "score", as measured by the inner product similarity.

ALTERNATIVE VIEW

Logistic Regression Model:

Given data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ (here d = 784) and binary label vector $\vec{y} \in \{0,1\}^n$ for class i (1 if in class i, 0 if not), find $\vec{\beta_i} \in \mathbb{R}^d$ to minimize the log loss between:

$$\vec{Z}$$
 and $h(X\vec{\beta})$

where $h(\mathbf{X}\vec{\beta_i}) = \frac{1}{1+e^{-\mathbf{X}\vec{\beta_i}}}$ applies the logistic function entrywise to the vector $\mathbf{X}\vec{\beta}$.

Loss =
$$-\sum_{j=1}^{n} y_j \log(h(\mathbf{X}\vec{\beta}_i)[j]) + (1 - y_j) \log(1 - h(\mathbf{X}\vec{\beta}_i)[j])$$

ALTERNATIVE VIEW

Logistic Regression Model:

Given data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ (here d = 784) and binary label vector $\vec{y} \in \{0,1\}^n$ for class i (1 if in class i, 0 if not), find $\vec{\beta} \in \mathbb{R}^d$ to minimize the log loss between:

$$\underline{\underline{y}}$$
 and $h(X\overline{\beta})$ logistic function

Reminder from linear algebra: Without loss of generality, can assume that $\vec{\beta}$ lies in the <u>row span</u> of X.

So for any $\vec{\beta} \in \mathbb{R}^d$, there exists a vector $\vec{\alpha} \in \mathbb{R}^n$ such that:

$$\vec{\beta} = X^{T} \vec{\alpha}. \qquad \vec{\beta} : | \vec{x}^{T} \vec{x} |$$

$$\vec{\lambda} \vec{\beta} = X^{T} \vec{\alpha}. \qquad \vec{\beta} \vec{\alpha} \vec{\alpha}$$

ALTERNATIVE VIEW

Logistic Regression Equivalent Formulation:

Given data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ (here d = 784) and binary label vector $\vec{y} \in \{0,1\}^n$ for class i (1 if in class i, 0 if not), find $\vec{\alpha} \in \mathbb{R}^n$ to minimize the log loss between:

$$\vec{y}$$
 and $h(XX^T\vec{\alpha})$.

Can still be minimized via gradient descent:

$$\nabla L(\vec{\alpha}) = XX^{T}(h(XX^{T}\vec{\alpha}) - \vec{y}).$$

REFORMULATED VIEW

What does classification for a new point \vec{x}_{new} look like? Recall that for a given one-vs-all classification i, the original parameter vector $\vec{\beta}_i = \vec{X}^T \vec{\alpha}_i$.

- Learn q classifiers with parameters $\vec{\alpha}_1, \vec{\alpha}_2, \dots, \vec{\alpha}_q$.
- Given \vec{x}_{new} compute $\langle \vec{x}_{new}, \underline{X}^T \vec{\alpha} \underline{\boldsymbol{q}} \rangle, \dots, \langle \vec{x}_{new}, X^T \vec{\alpha}_{q} \rangle$,
- Predict class $y_{new} = \arg\max_i \langle \vec{x}_{new}, \mathbf{X}^T \vec{\alpha}_i \rangle$.

REFORMULATED VIEW

ORIGINAL VIEW OF LOGISTIC REGRESSION

NEW VIEW OF LOGISTIC REGRESSION

Learn *n* length parameter vectors $\vec{\alpha}_0, \dots, \vec{\alpha}_9$, one for each class.

NEW VIEW OF LOGISTIC REGRESSION

Classification looks similar to k-NN: we compute the <u>similarity</u> between \vec{x}_{new} and every other vector in our training data set. A weighted sum of the similarities leads to scores for each class.

Assign \vec{x}_{new} to the class with highest score.

DIVING INTO SIMILARITY

Often the inner product does not make sense as a <u>similarity</u> measure between data vectors. Here's an example (recall that smaller inner product means less similar):

But clearly the first image is more similar.

$$\langle \mathbf{q}, \mathbf{\bar{q}} \rangle \langle \mathbf{q}, \mathbf{\bar{q}} \rangle$$

Here's a more realistic scenario.

KERNEL FUNCTIONS: PERSPECTIVE ONE

A <u>kernel function</u> $k(\vec{x}, \vec{y})$ is simply a similarity measure between data points.

$$k(\vec{x}, \vec{y}) = \begin{cases} \frac{\text{large if } \vec{x} \text{ and } \vec{y} \text{ are similar.} \\ \text{close to 0 if } \vec{x} \text{ and } \vec{y} \text{ are different.} \end{cases}$$
2: The Padial Pagis Function (RRF) kernel aks

Example: The Radial Basis Function (RBF) kernel, aka the Gaussian kernel:

$$e^{-||x-y||_{2}^{2}} \ge e^{-||x-y||_{2}^{2}/\sigma^{2}} = e^{$$

KERNEL FUNCTIONS: PERSPECTIVE ONE

Lots of kernel functions functions involve transformations of $\langle \vec{x}, \vec{v} \rangle$ or $||\vec{x} - \vec{v}||_2$:

- Gaussian RBF Kernel: $k(\vec{x}, \vec{y}) = e^{-\|\vec{x} \vec{y}\|_2^2/\sigma^2}$
- La<u>place Kernel</u>: $k(\vec{x}, \vec{y}) = e^{-\|\vec{x} \vec{y}\|_2/\sigma}$
- Polynomial Kernel: $k(\vec{x}, \vec{y}) = (\langle \vec{x}, \vec{y} \rangle + 1)^q$

But you can imagine much more complex similarity metrics.

KERNEL FUNCTIONS: PERSPECTIVE TWO

For a simple algorithm like *k*-NN you can swap our the inner product similarity with <u>any similarity function you could possibly imagine</u>.

For a methods like logistic regression, this is not the case...

Recall: We learned a parameter vector $\vec{\alpha}$ to minimize $LL(\vec{y}, X^T\vec{\alpha})$ where LL() denotes the logistic loss. Then we classified via:

where LL() denotes the logistic loss. Then we classify
$$\chi \vec{b} : \chi(\chi^{1}\alpha)$$
 $\langle \vec{x}_{new}, \mathbf{X}^{T} \vec{\alpha} \rangle = \vec{x}_{new}^{T} \mathbf{X}^{T} \vec{\alpha} = \sum_{j=1}^{n} \vec{\alpha}[j] \langle \vec{x}_{new}, \vec{x}_{j} \rangle.$

The <u>inner product</u> similarity came from the fact that our predictions were based on the <u>linear function</u> $\mathbf{X}^T \alpha$.

KERNEL FUNCTIONS AS FEATURE TRANSFORMATION

A <u>positive semidefinite</u> (PSD) kernel is any similarity function with the following form:

$$\underline{\underline{k}}(\vec{x}, \vec{w}) = \phi(\vec{x})^{\mathsf{T}} \phi(\vec{w})$$

where $\phi: \mathbb{R}^d \to \mathbb{R}^m$ is a some feature transformation function.

KERNEL FUNCTIONS AND FEATURE TRANSFORMATION

Example: Degree 2 polynomial kernel, $k(\vec{x}, \vec{w}) = (\vec{x}^T \vec{w} + 1)^2$.

$$\vec{X} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad \qquad \vec{\phi}(\vec{X}) = \begin{bmatrix} 1 \\ \sqrt{2}x_1 \\ \sqrt{2}x_2 \\ \sqrt{2}x_3 \\ x_1^2 \\ x_2^2 \\ x_3^2 \\ \sqrt{2}x_1x_2 \\ \sqrt{2}x_1x_3 \\ \sqrt{2}x_2x_3 \end{bmatrix}$$

$$\omega = \begin{bmatrix} x_1 \\ x_2 \\ x_3^2 \\ \sqrt{2}x_1x_2 \\ \sqrt{2}x_1x_3 \\ \sqrt{2}x_2x_3 \end{bmatrix}$$

$$(\vec{x}^T \vec{w} + 1)^2 = (x_1 \vec{w}_1 + x_2 \vec{w}_2 + x_3 \vec{v}_3 + 1)^2$$

$$= 1 + 2x_1 w_1 + 2x_2 \underline{w}_2 + 2x_3 w_3 + \underline{x}_1^2 w_1^2 + x_2^2 w_2^2 + x_3^2 w_3^2$$

$$+ 2x_1 w_1 x_2 w_2 + 2x_1 w_1 \underline{x}_3 w_3 + 2x_2 w_2 x_3 w_3$$

$$= \phi(\vec{x})^T \phi(\vec{w}).$$

KERNEL FUNCTIONS AND FEATURE TRANSFORMATION

Not all similarity metrics you are positive semidefinite (PSD), but all of the ones we saw earlier are:

- Gaussian RBF_Kernel: $k(\vec{x}, \vec{y}) = e^{-||\vec{x} \vec{y}||_2^2/\sigma^2}$
- Laplace Kernel: $k(\vec{x}, \vec{y}) = e^{-\|\vec{x} \vec{y}\|_2/\sigma}$
- Polynomial Kernel: $k(\vec{x}, \vec{y}) = (\langle \vec{x}, \vec{y} \rangle + 1)$

And there are many more...

KERNEL FUNCTIONS AND FEATURE TRANSFORMATION

Feature transformations \iff new similarity metrics.

Using $k(\cdot, \cdot)$ in place of the inner product $\langle \cdot, \cdot \rangle$ is **equivalent** to replacing every data point $\vec{x}_1, \dots, \vec{x}_n$ in our data set with $\phi(\vec{x}_1), \dots, \phi(\vec{x}_n)$.

TAKEAWAY ONE

We can improve performance by replacing the inner product with another kernel $k(\cdot, \cdot)$ for the same reason that feature transformations improved performance.

When you add features, it becomes possible to learn more complex decision boundaries (in this case a circle) with a linear classifier.

TAKEAWAY TWO

PSD kernel functions give a principled way of "swapping out" the inner product with a new similarity metric for linear algorithms like multiple linear regression or logistic regression.

For non-PSD kernels it is not clear how to do this.

KERNEL LOGISTIC REGRESSION

Standard logisitic regression

Loss function:
$$L(\vec{\alpha}) = LL(\vec{y}) \mathbf{X}^{\mathsf{T}} \vec{\alpha}.$$

$$L(\alpha) = LL(y, \alpha, \alpha).$$

Gradient:

$$\nabla L(\vec{\alpha}) = XX^{\mathsf{T}}(h(XX^{\mathsf{T}}\vec{\alpha}) - \vec{y}).$$

Prediction: (B, Xnev)

$$Z = \sum_{j=1}^{n} \vec{\alpha}[j] \langle \vec{X}_{new}, \vec{X}_{j} \rangle.$$

 $y_{new} = 1[z > 0]$

Kernel logisitic regression b(x) b(x)T Loss function:

L(
$$\vec{\alpha}$$
) = LL(\vec{y} , $\phi(X)^T \vec{\alpha}$).

Gradient:

$$\nabla L(\vec{\alpha}) = \phi(\mathbf{X})\phi(\mathbf{X})^{\mathsf{T}}(h(\phi(\mathbf{X})\phi(\mathbf{X})^{\mathsf{T}}\vec{\alpha}) - \vec{y}).$$

Prediction:

rediction:
$$z = \sum_{j=1}^{n} \vec{\alpha}[j] \langle \phi(\vec{x}_{new}), \phi(\vec{x}_{j}) \rangle$$

$$y_{new} = \mathbb{I}[z > 0]$$

$$e^{-||x_{ue}| - x_j|}$$

KERNEL REGRESSION

Standard linear regression

Loss function:

$$L(\vec{lpha}) = \|\vec{y} - XX^T \vec{lpha}\|_2$$
Gradient: $\vec{\chi}^T \alpha = \vec{b}$

$$\nabla L(\vec{\alpha}) = 2XX^{T}(XX(\vec{\alpha}) - 1)$$

$$\nabla L(\vec{\alpha}) = 2XX^{T}(XX\cancel{\alpha} - \vec{y}).$$

Loss function:

Gradient:

Kernel linear regression

 $L(\vec{\alpha}) = \|\vec{y} - \phi(\mathbf{X})\phi(\mathbf{X})^{\mathsf{T}}\vec{\alpha}\|_{2}$

$$\nabla L(\vec{\alpha}) = 2\phi(\mathbf{X})\phi(\mathbf{X})^{\mathsf{T}}(\phi(\mathbf{X})\phi(\mathbf{X})^{\mathsf{T}}\alpha - \vec{y}).$$

Prediction:
$$y_{new} = \sum_{j=1}^{n} \vec{\alpha}[j] \langle \phi(\vec{x}_{new}), \phi(\vec{x}_{j}) \rangle.$$

31

 $y_{new} = \sum_{j=1}^{n} \vec{\alpha}[j](\vec{x}_{new}, \vec{x}_{j}).$ $: \chi \chi^{1} \vec{o}'$

KERNEL REGRESSION

We won't study kernel <u>regression</u> in detail, but it's a very important statistical tool, especially when dealing with spatial or temporal data.

Also known as Gaussian Process (GP) Regression or Kriging.

KERNEL MATRIX

KERNEL TRICK

We never need to actually compute $\phi(\vec{x}_1), \dots, \phi(\vec{x}_n)$ explicitly:

- For training we just need the kernel matrix K, which requires computing $k(\vec{x_i}, \vec{x_i})$ for all i, j.
- For testing we just need to compute $k(\vec{x}_{new}, \vec{x}_i)$ for all i.

KERNEL TRICK

This can lead to significant computational savings!

- Transform dimension m is often very large: e.g. $m + O(d^q)$ for a degree q polynomial kernel.
- For many kernels (e.g. the Gaussian kernel) *m* is actually *infinite*.

BEYOND THE KERNEL TRICK

The kernel matrix K is still $n \times n$ though which is huge when the number of data examples n is large. Has made the kernel trick less appealing in some modern ML applications.

Many algorithmic advances in recent years partially address this computational challenge (random Fourier features methods, Nystrom methods, etc.)