
CS-UY 4563: Lecture 13
Kernel Methods

NYU Tandon School of Engineering, Prof. Christopher Musco

1



course admin

My new office: https://nyu.zoom.us/my/cmusco

• Visit this URL during my office hours or any individual
meetings.

• You can also “drop in” even if I’m not in the chat. I will
receive an email notification (might take me a few
minutes to notice) and can then let you in if I’m free.

• For lectures still use the links on NYU Classes (which
allows for automatic recording, transcription, etc.)

2

https://nyu.zoom.us/my/cmusco


course project

By 4/1 (next Wednesday) choose a partner and topic.

• Email me team members, project topic, and a sentence or
two about your idea. If you have any data sets in mind, let
me know that as well.

• Then set up a meeting at: https://docs.google.com/
spreadsheets/d/1DsR7ia4VfYb5joIavsG8_
T1JBgAufkVbdT7bLfPGGQ0/edit?usp=sharing.

3

https://docs.google.com/spreadsheets/d/1DsR7ia4VfYb5joIavsG8_T1JBgAufkVbdT7bLfPGGQ0/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DsR7ia4VfYb5joIavsG8_T1JBgAufkVbdT7bLfPGGQ0/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1DsR7ia4VfYb5joIavsG8_T1JBgAufkVbdT7bLfPGGQ0/edit?usp=sharing


lets ease back into things

k-NN algorithm: a simple but powerful baseline for
classification.

Training data: (⃗x1, y1), . . . , (⃗xn, yn) where y1, . . . , yn ∈ {1, . . . ,q}.

Classification algorithm:

Given new input x⃗new,

• Compute sim(⃗xnew, x⃗1), . . . , sim(⃗xnew, x⃗n).
• Let x⃗j1 , . . . , x⃗jk be the k training data vectors with highest
similarity to x⃗new.

• Predict ynew as majority(yj1 , . . . , yjk).

4



inner product similarity

Given data vectors x⃗, w⃗ ∈ Rd, the inner product ⟨⃗x, w⃗⟩ is a
natural similarity measure.

⟨⃗x, w⃗⟩ =
d∑
i=1

x⃗[i]w⃗[i] = cos(θ)∥⃗x∥2∥w⃗∥2.

5



mnist image data

Each pixel is number from [0, 1]. 0 is black, 1 is white.
Represent 28× 28 matrix of pixel values as a flattened vector.

6



inner product for mnist

Inner product between MNIST digits:

⟨⃗x, w⃗⟩ =
28∑
i=1

28∑
j=1

matx[i, j]matw[i, j].

Inner product similarity is higher when the images have large
pixel values (close to 1) in the same locations. I.e. when they
have a lot of overlapping white/light gray pixels.

7



inner product for mnist

Visualizing the inner product between two images:

Images with high inner product have a lot of overlap.

8



view of logistic regression

One-vs.-all Classification with Logistic Regression:

• Learn q classifiers with parameters β⃗0, β⃗1, . . . , β⃗q−1.
• Given x⃗new compute ⟨⃗xnew, β⃗0⟩, . . . , ⟨⃗xnew, β⃗q−1⟩
• Predict class ynew = argmaxi⟨⃗xnew, β⃗i⟩.

If each x⃗ is a vector with 28× 28 = 784 entries than each β⃗i
also has 784 entries. Each parameter vector can be viewed as a
28× 28 image.

9



matched filter

Visualizing β⃗0, . . . , β⃗9:

For an input image , compute inner product similarity
with all weight matrices and choose most similar one.

In contrast to k-NN, only need to compute similarity with q
items instead of n.

10



view of logistic regression

Select class for x⃗new which achieves highest “score”, as
measured by the inner product similarity.

11



alternative view

Logistic Regression Model:

Given data matrix X ∈ Rn×d (here d = 784) and binary label
vector y⃗ ∈ {0, 1}n for class i (1 if in class i, 0 if not), find β⃗i ∈ Rd

to minimize the log loss between:

y⃗ and h(Xβ⃗)

where h(Xβ⃗i) = 1
1+e−Xβ⃗i

applies the logistic function entrywise

to the vector Xβ⃗.

Loss = −
∑n

j=1 yj log(h(Xβ⃗i)[j]) + (1− yj) log(1− h(Xβ⃗i)[j])

12



alternative view

Logistic Regression Model:

Given data matrix X ∈ Rn×d (here d = 784) and binary label
vector y⃗ ∈ {0, 1}n for class i (1 if in class i, 0 if not), find β⃗ ∈ Rd

to minimize the log loss between:

y⃗ and h(Xβ⃗)

Reminder from linear algebra: Without loss of generality, can
assume that β⃗ lies in the row span of X.

So for any β⃗ ∈ Rd, there exists a vector α⃗ ∈ Rn such that:

β⃗ = XTα⃗.

13



alternative view

Logistic Regression Equivalent Formulation:

Given data matrix X ∈ Rn×d (here d = 784) and binary label
vector y⃗ ∈ {0, 1}n for class i (1 if in class i, 0 if not), find α⃗ ∈ Rn

to minimize the log loss between:

y⃗ and h(XXTα⃗).

Can still be minimized via gradient descent:

∇L(α⃗) = XXT(h(XXTα⃗)− y⃗).

14



reformulated view

What does classification for a new point x⃗new look like? Recall
that for a given one-vs-all classification i, the original
parameter vector β⃗i = XTα⃗i.

• Learn q classifiers with parameters α⃗1, α⃗2, . . . , α⃗q.
• Given x⃗new compute ⟨⃗xnew, XTα⃗1⟩, . . . , ⟨⃗xnew, XTα⃗q⟩
• Predict class ynew = argmaxi⟨⃗xnew, XTα⃗i⟩.

15



reformulated view

Score for class i:

⟨⃗xnew, XTα⃗i⟩ = x⃗TnewXTα⃗i
= ⟨X⃗xnew, α⃗i⟩

=
n∑
j=1

α⃗i[j]⟨⃗xnew, x⃗j⟩.

16



original view of logistic regression

17



new view of logistic regression

Learn n length parameter vectors α⃗0, . . . , α⃗9, one for each class.

18



new view of logistic regression

Classification looks similar to k-NN: we compute the similarity
between x⃗new and every other vector in our training data set. A
weighted sum of the similarities leads to scores for each class.

Assign x⃗new to the class with highest score.

19



diving into similarity

Often the inner product does not make sense as a similarity
measure between data vectors. Here’s an example (recall that
smaller inner product means less similar):

But clearly the first image is more similar.

Here’s a more realistic scenario. 20



kernel functions: perspective one

A kernel function k(⃗x, y⃗) is simply a similarity measure
between data points.

k(⃗x, y⃗) =

large if x⃗ and y⃗ are similar.close to 0 if x⃗ and y⃗ are different.

Example: The Radial Basis Function (RBF) kernel, aka the
Gaussian kernel:

k(⃗x, y⃗) = e−∥⃗x−y⃗∥22/σ2

for some scaling factor σ.

21



kernel functions: perspective one

Lots of kernel functions functions involve transformations of
⟨⃗x, y⃗⟩ or ∥⃗x− y⃗∥2:

• Gaussian RBF Kernel: k(⃗x, y⃗) = e−∥⃗x−y⃗∥22/σ2

• Laplace Kernel: k(⃗x, y⃗) = e−∥⃗x−y⃗∥2/σ

• Polynomial Kernel: k(⃗x, y⃗) = (⟨⃗x, y⃗⟩+ 1)q.

But you can imagine much more complex similarity metrics.

22



kernel functions: perspective two

For a simple algorithm like k-NN you can swap our the inner
product similarity with any similarity function you could
possibly imagine.

For a methods like logistic regression, this is not the case...

Recall: We learned a parameter vector α⃗ to minimize LL(⃗y, XTα⃗)
where LL() denotes the logistic loss. Then we classified via:

⟨⃗xnew, XTα⃗⟩ = x⃗TnewXTα⃗ =
n∑
j=1

α⃗[j]⟨⃗xnew, x⃗j⟩.

The inner product similarity came from the fact that our
predictions were based on the linear function XTα.

23



kernel functions as feature transformation

A positive semidefinite (PSD) kernel is any similarity function
with the following form:

k(⃗x, w⃗) = ϕ(⃗x)Tϕ(w⃗)

where ϕ : Rd → Rm is a some feature transformation function.

24



kernel functions and feature transformation

Example: Degree 2 polynomial kernel, k(⃗x, w⃗) = (⃗xTw⃗+ 1)2.

x⃗ =

x1x2
x3

 ϕ(⃗x) =



1√
2x1√
2x2√
2x3
x21
x22
x23√
2x1x2√
2x1x3√
2x2x3


(⃗xTw⃗+ 1)2 = (x1y1 + x2y2 + x3y3 + 1)2

= 1+ 2x1w1 + 2x2w2 + 2x3w3 + x21w21 + x22w22 + x23w23
+ 2x1w1x2w2 + 2x1w1x3w3 + 2x2w2x3w3

= ϕ(⃗x)Tϕ(w⃗). 25



kernel functions and feature transformation

Not all similarity metrics you are positive semidefinite (PSD),
but all of the ones we saw earlier are:

• Gaussian RBF Kernel: k(⃗x, y⃗) = e−∥⃗x−y⃗∥22/σ2

• Laplace Kernel: k(⃗x, y⃗) = e−∥⃗x−y⃗∥2/σ

• Polynomial Kernel: k(⃗x, y⃗) = (⟨⃗x, y⃗⟩+ 1)q.

And there are many more...

26



kernel functions and feature transformation

Feature transformations⇐⇒ new similarity metrics.

Using k(·, ·) in place of the inner product ⟨·, ·⟩ is equivalent to
replacing every data point x⃗1, . . . , x⃗n in our data set with
ϕ(⃗x1), . . . , ϕ(⃗xn).

27



takeaway one

We can improve performance by replacing the inner product
with another kernel k(·, ·) for the same reason that feature
transformations improved performance.

When you add features, it becomes possible to learn more
complex decision boundaries (in this case a circle) with a
linear classifier.

28



takeaway two

PSD kernel functions give a principled way of “swapping out”
the inner product with a new similarity metric for linear
algorithms like multiple linear regression or logistic regression.

For non-PSD kernels it is not clear how to do this.

29



kernel logistic regression

Standard logisitic regression

Loss function:

L(α⃗) = LL(⃗y, XTα⃗).

Gradient:

∇L(α⃗) = XXT(h(XXTα⃗)− y⃗).

Prediction:

z =
n∑
j=1

α⃗[j]⟨⃗xnew, x⃗j⟩.

ynew = 1[z > 0]

Kernel logisitic regression

Loss function:

L(α⃗) = LL(⃗y, ϕ(X)Tα⃗).

Gradient:

∇L(α⃗) = ϕ(X)ϕ(X)T(h(ϕ(X)ϕ(X)Tα⃗)− y⃗).

Prediction:

z =
n∑
j=1

α⃗[j]⟨ϕ(⃗xnew), ϕ(⃗xj)⟩

ynew = 1[z > 0]

30



kernel regression

Standard linear regression

Loss function:

L(α⃗) = ∥⃗y− XXTα⃗∥2

Gradient:

∇L(α⃗) = 2XXT(XXTα− y⃗).

Prediction:

ynew =
n∑
j=1

α⃗[j]⟨⃗xnew, x⃗j⟩.

Kernel linear regression

Loss function:

L(α⃗) = ∥⃗y− ϕ(X)ϕ(X)Tα⃗∥2

Gradient:

∇L(α⃗) = 2ϕ(X)ϕ(X)T(ϕ(X)ϕ(X)Tα− y⃗).

Prediction:

ynew =
n∑
j=1

α⃗[j]⟨ϕ(⃗xnew), ϕ(⃗xj)⟩.

31



kernel regression

We won’t study kernel regression in detail, but it’s a very
important statistical tool, especially when dealing with spatial
or temporal data.

Also known as Gaussian Process (GP) Regression or Kriging.

32



kernel matrix

K = ϕ(X)ϕ(X)T is called the kernel Gram matrix.

33



kernel trick

We never need to actually compute ϕ(⃗x1), . . . , ϕ(⃗xn) explicitly:

• For training we just need the kernel matrix K, which
requires computing k(⃗xi, x⃗j) for all i, j.

• For testing we just need to compute k(⃗xnew, x⃗i) for all i.

34



kernel trick

This can lead to significant computational savings!

• Transform dimension m is often very large: e.g. m = O(dq)
for a degree q polynomial kernel.

• For many kernels (e.g. the Gaussian kernel) m is actually
infinite.

35



beyond the kernel trick

The kernel matrix K is still n× n though which is huge when
the number of data examples n is large. Has made the kernel
trick less appealing in some modern ML applications.

Many algorithmic advances in recent years partially address
this computational challenge (random Fourier features
methods, Nystrom methods, etc.)

36


