# CS-UY 4563: Lecture 12 k-Nearest Neighbors, Kernel Methods

NYU Tandon School of Engineering, Prof. Christopher Musco

#### **COURSE ADMIN**

- Lab 4 due on **Friday, at 11:59pm**. Requires correct solution to HW3, Problem 2. I will post this after class.
- Short lab on Gradient Descent will be released soon and due after break.
- Upcoming labs involve image data and require more programming. Made up with lighter written homework.

# **COURSE PROJECT**

Break is a great time to start mulling over ideas for your course project! Details in project\_guidelines.pdf.

- 1. Find or collect a data set.
- 2. Ask a question (or two) about the data set which can possibly be answered with machine learning.
- 3. Apply tools and techniques learned in the class to answering that question.

# COURSE PROJECT

- Must work in **groups of 2**. Coordinate over Piazza if looking for a partner.
- Any data set or topic is allowed, but youo should not reproduce an analysis that has already been done! Ask a new question or take a new approach.
- Talk to me or the TA's <u>early</u> if you are stuck on coming up with an idea, or need help narrowing down options.

### **COURSE PROJECT**

- 4/1, Choose Project Partner and Topic. Email me.
- 4/2,4/6-4/8, Schedule Mandatory Meeting. Claim a time-slot in the Google Doc linked in the project information document.
- **4/13, Project Proposal Due.** 2 Pages. Need to have dataset finalized!
- 5/6, 5/11, Project Presentations in Class. 5 Minutes.
- 5/11, Final Report Due 4+ Pages.

# **PROJECT TIPS**

**Look at your data!** Plot features, examine full examples, look for missing data or inconsistencies.

**Start small.** Test and debug code on a <u>small subset</u> of your data before running on the whole thing.

**Start simple.** Try the simplest methods first. Linear regression, naive Bayes, etc. Even simpler: for regression, predict using mean( $\vec{y}$ ). For classification predict using max  $\vec{y}$  (the most common label). You need to develop a baseline to compare your methods against.

### k-nearest neighbor method

*k***-NN algorithm:** a simple but powerful baseline for classification.

**Training data:**  $(\vec{x}_1, y_1), \dots, (\vec{x}_n, y_n)$  where  $y_1, \dots, y_n \in \{1, \dots, q\}$ .

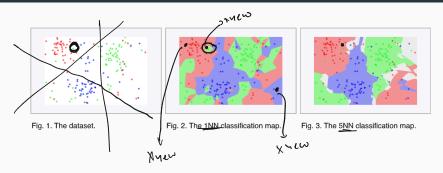
Classification algorithm:

Given new input  $\vec{x}_{new}$ ,

- Compute  $sim(\vec{x}_{new}, \vec{x}_1), \dots, sim(\vec{x}_{new}, \vec{x}_n).^1$
- Let  $\vec{x}_{j_1}, \dots, \vec{x}_{j_n}$  be the training data vectors with highest similarity to  $\vec{x}_{new}$ .
- Predict  $y_{new}$  as  $majority(\underline{y_{j_1}}, \dots, \underline{y_{j_k}})$ .

 $<sup>^1</sup>$ sim $(\vec{x}_{new}, \vec{x}_i)$  is any chosen similarity function, like  $1 - ||\vec{x}_{new} - \vec{x}_i||_2$ .

# k-nearest neighbor method



- · Smaller k, more complex classification function.
- Larger k, more robust to noisy labels.

Works remarkably well for many datasets.

#### MNIST IMAGE DATA

Especially good for large datasets with lots of repetition. Works well on MNIST for example:

 $\approx 95\%$  Accuracy out-of-the-box.<sup>2</sup>

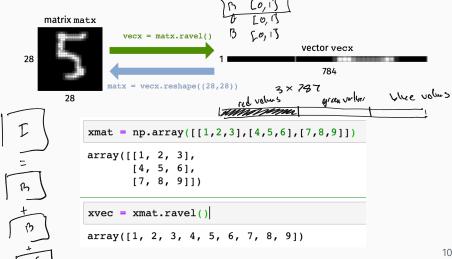
Let's look into this example a bit more...

<sup>&</sup>lt;sup>2</sup>Can be improved to 99.5% with some simple tricks!

#### MNIST IMAGE DATA

Each pixel is number from [0,1]. 0 is black, 1 is white.

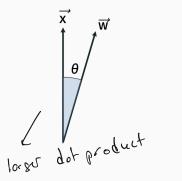
Represent 28 × 28 matrix of pixel values as a flattened vector.

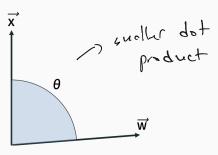


# INNER PRODUCT SIMILARITY

Given data vectors  $\vec{x}, \vec{w} \in \mathbb{R}^d$ , the inner product  $\langle \vec{x}, \vec{w} \rangle$  is a natural similarity measure.

$$\langle \vec{x}, \vec{w} \rangle = \sum_{i=1}^{d} \vec{x}[i] \vec{w}[i] = \cos(\theta) ||\vec{x}||_{2} ||\vec{w}||_{2}.$$





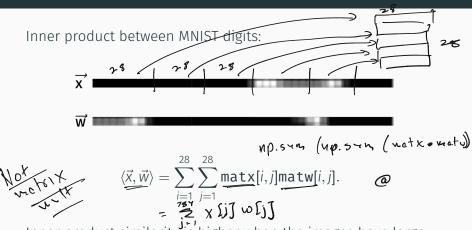
#### INNER PRODUCT SIMILARITY

Connection to Euclidean ( $\ell_2$ ) Distance:

$$\|\vec{x} - \vec{w}\|_2^2 = \|\vec{x}\|_2^2 + \|\vec{w}\|_2^2 - 2\langle \vec{x}, \vec{w} \rangle$$

For a set of vectors with the same norm, the pair of vectors with <u>largest inner product</u> is the pair with <u>smallest Euclidean</u> <u>distance</u>.

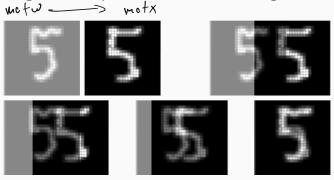
#### INNER PRODUCT FOR MNIST



Inner product similarity is higher when the images have large pixel values (close to 1) in the same locations. I.e. when they have a lot of overlapping white/light gray pixels.

#### INNER PRODUCT FOR MNIST

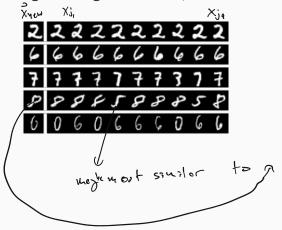
Visualizing the inner product between two images:



Images with high inner product have a lot of overlap.

#### K-NN ALGORITHM ON MNIST

Most similar images during k-nn search, k = 9:



#### K-NN FOR OTHER IMAGES

Does not work as well for less standardized classes of images:



CIFAR 10 Images

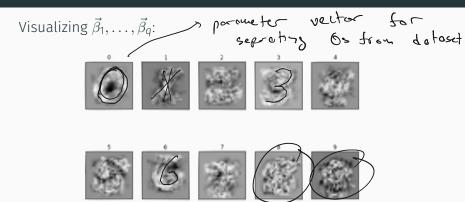
Even after scaling to have same size, converting to separate RGB channels, etc. something as simple as k-nn won't work.

#### ANOTHER VIEW ON LOGISTIC REGRESSION

- One-vs.-all Classification with Logistic Regression:  $(\circ)$  is the constant of  $(\circ)$  is the cons
  - Given  $\vec{x}_{new}$  compute  $\langle \vec{x}_{new}, \vec{\beta}_1 \rangle, \dots, \langle \vec{x}_{new}, \vec{\beta}_a \rangle$
  - Predict class  $y_{new} = \arg\max_i \langle \vec{x}_{new}, \vec{\beta}_i \rangle$ .

If each  $\vec{x}$  is a vector with  $28 \times 28 = 784$  entries than each  $\vec{\beta}_i$ also has 784 entries. Each parameter vector can be viewed as a  $28 \times 28$  image.

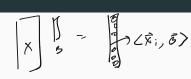
### MATCHED FILTER



For an input image 5, compute inner product similarity with all weight matrices and choose most similar one.

In contrast to *k*-NN, only need to compute similarity with *q* items instead of *n*.

### **ALTERNATIVE VIEW**



# Logistic Regression Model:

Given data matrix  $\mathbf{X} \in \mathbb{R}^{n \times d}$  (here d = 784) and binary label vector  $\vec{y} \in \{0,1\}^n$  for class i (1 if in class i, 0 if not), find  $\vec{\beta} \in \mathbb{R}^d$  to minimize the log loss between:

$$\vec{y}$$
 and  $h(\mathbf{X}\vec{\beta})$ 

where  $h(z) = \frac{1}{1+e^{-z}}$  applies the logistic function entrywise to  $X\vec{\beta}$ .

Loss = 
$$-\sum_{j=1}^{n} y_j \log(h(\mathbf{X}\vec{\beta})_j) + (1 - y_j) \log(1 - h(\mathbf{X}\vec{\beta})_j)$$

### **ALTERNATIVE VIEW**

# Logistic Regression Model:

Given data matrix  $\mathbf{X} \in \mathbb{R}^{n \times d}$  (here d = 784) and binary label vector  $\vec{y} \in \{0,1\}^n$  for class i (1 if in class i, 0 if not), find  $\vec{\beta} \in \mathbb{R}^d$  to minimize the log loss between:

$$\vec{y}$$
 and

Reminder from linear algebra: Without loss of generality, can assume that  $\vec{\beta}$  lies in the <u>row span</u> of X.

So for any  $\vec{\beta} \in \mathbb{R}^d$  there exists a vector  $\vec{\alpha} \in \mathbb{R}^n$  such that:



### **ALTERNATIVE VIEW**

# Logistic Regression Equivalent Formulation:

Given data matrix  $\mathbf{X} \in \mathbb{R}^{n \times d}$  (here d = 784) and binary label vector  $\vec{y} \in \{0,1\}^n$  for class i (1 if in class i, 0 if not), find  $\vec{\alpha} \in \mathbb{R}^n$  to minimize the log loss between:

$$\underline{\underline{y}}$$
 and  $\underline{\underline{h}(XX^T\vec{\alpha})}$ .

Can still be minimized via gradient descent:

$$\nabla L(\vec{\alpha}) = XX^{T}(h(XX^{T}\vec{\alpha}) - \vec{y}).$$

$$\nabla V(\vec{b}) = \chi^{T} \left( V(x) - \vec{b} \right)$$

#### **REFORMULATED VIEW**

What does classification for a new point  $\vec{x}_{new}$  look like?

- Learn q classifiers with parameters  $\vec{\alpha}_1, \vec{\alpha}_2, \dots, \vec{\alpha}_q$ .  $\epsilon \ \mathcal{R}^{\mathsf{q}}$
- Given  $\vec{x}_{new}$  compute  $\langle \vec{x}_{new}, \mathbf{X}^T \vec{\alpha}_1 \rangle, \dots, \langle \vec{x}_{new}, \mathbf{X}^T \vec{\alpha}_q \rangle$
- Predict class  $y_{new} = \arg\max_i \langle \vec{x}_{new}, \mathbf{X}^T \vec{\alpha}_i \rangle$ .

#### **REFORMULATED VIEW**

$$\begin{array}{ll} \chi_{\text{New}} \left( \begin{matrix} \chi^{\intercal} \alpha \end{matrix} \right) &=& \left\langle \chi_{\text{New}} , \chi^{\intercal} \alpha \right\rangle \\ &=& \left\langle \chi_{\text{New}} , \chi^{\intercal} \right\rangle \\ &=& \left\langle \chi_{\text{New}} , \chi^{\intercal} \alpha \right\rangle \\ &=& \left\langle \chi_{\text{New}} , \chi^{\intercal} \alpha \right\rangle = \sum_{j=1}^{n} \alpha_{j} \langle \chi_{\text{new}} , \chi_{j} \rangle. \end{array}$$

Similar to k - NN classifier but we learn a weight  $\alpha_i$  for every  $\vec{x}_i$  in our training set – can be positive or negative.

# KERNEL FUNCTIONS

# **KERNEL FUNCTIONS**

# **KERNEL FUNCTIONS**