
CS-UY 4563: Lecture 12
k-Nearest Neighbors, Kernel Methods

NYU Tandon School of Engineering, Prof. Christopher Musco

1



course admin

• Lab 4 due on Friday, at 11:59pm. Requires correct solution
to HW3, Problem 2. I will post this after class.

• Short lab on Gradient Descent will be released soon and
due after break.

• Upcoming labs involve image data and require more
programming. Made up with lighter written homework.

2



course project

Break is a great time to start mulling over ideas for your
course project! Details in project_guidelines.pdf.

1. Find or collect a data set.
2. Ask a question (or two) about the data set which can
possibly be answered with machine learning.

3. Apply tools and techniques learned in the class to
answering that question.

3



course project

• Must work in groups of 2. Coordinate over Piazza if looking
for a partner.

• Any data set or topic is allowed, but youo should not
reproduce an analysis that has already been done! Ask a
new question or take a new approach.

• Talk to me or the TA’s early if you are stuck on coming up
with an idea, or need help narrowing down options.

4



course project

4/1, Choose Project Partner and Topic. Email me.

4/2,4/6-4/8, Schedule Mandatory Meeting. Claim a time-slot
in the Google Doc linked in the project information document.

4/13, Project Proposal Due. 2 Pages. Need to have dataset
finalized!

5/6, 5/11, Project Presentations in Class. 5 Minutes.

5/11, Final Report Due 4+ Pages.

5



project tips

Look at your data! Plot features, examine full examples, look
for missing data or inconsistencies.

Start small. Test and debug code on a small subset of your
data before running on the whole thing.

Start simple. Try the simplest methods first. Linear regression,
naive Bayes, etc. Even simpler: for regression, predict using
mean(⃗y). For classification predict using max y⃗ (the most
common label). You need to develop a baseline to compare
your methods against.

6



k-nearest neighbor method

k-NN algorithm: a simple but powerful baseline for
classification.

Training data: (⃗x1, y1), . . . , (⃗xn, yn) where y1, . . . , yn ∈ {1, . . . ,q}.

Classification algorithm:

Given new input x⃗new,

• Compute sim(⃗xnew, x⃗1), . . . , sim(⃗xnew, x⃗n).1

• Let x⃗j1 , . . . , x⃗jk be the training data vectors with highest
similarity to x⃗new.

• Predict ynew as majority(yj1 , . . . , yjk).

1sim(⃗xnew, x⃗i) is any chosen similarity function, like 1− ∥⃗xnew − x⃗i∥2.

7



k-nearest neighbor method

• Smaller k, more complex classification function.
• Larger k, more robust to noisy labels.

Works remarkably well for many datasets.

8



mnist image data

Especially good for large datasets with lots of repetition.
Works well on MNIST for example:

≈ 95% Accuracy out-of-the-box.2

Let’s look into this example a bit more...

2Can be improved to 99.5% with some simple tricks! 9



mnist image data

Each pixel is number from [0, 1]. 0 is black, 1 is white.
Represent 28× 28 matrix of pixel values as a flattened vector.

10



inner product similarity

Given data vectors x⃗, w⃗ ∈ Rd, the inner product ⟨⃗x, w⃗⟩ is a
natural similarity measure.

⟨⃗x, w⃗⟩ =
d∑
i=1

x⃗[i]w⃗[i] = cos(θ)∥⃗x∥2∥w⃗∥2.

11



inner product similarity

Connection to Euclidean (ℓ2) Distance:

∥⃗x− w⃗∥22 = ∥⃗x∥22 + ∥w⃗∥22 − 2⟨⃗x, w⃗⟩

For a set of vectors with the same norm, the pair of vectors
with largest inner product is the pair with smallest Euclidean
distance.

12



inner product for mnist

Inner product between MNIST digits:

⟨⃗x, w⃗⟩ =
28∑
i=1

28∑
j=1

matx[i, j]matw[i, j].

Inner product similarity is higher when the images have large
pixel values (close to 1) in the same locations. I.e. when they
have a lot of overlapping white/light gray pixels.

13



inner product for mnist

Visualizing the inner product between two images:

Images with high inner product have a lot of overlap.

14



k-nn algorithm on mnist

Most similar images during k-nn search, k = 9:

15



k-nn for other images

Does not work as well for less standardized classes of images:

CIFAR 10 Images

Even after scaling to have same size, converting to separate
RGB channels, etc. something as simple as k-nn won’t work.

16



another view on logistic regression

One-vs.-all Classification with Logistic Regression:

• Learn q classifiers with parameters β⃗1, β⃗2, . . . , β⃗q.
• Given x⃗new compute ⟨⃗xnew, β⃗1⟩, . . . , ⟨⃗xnew, β⃗q⟩
• Predict class ynew = argmaxi⟨⃗xnew, β⃗i⟩.

If each x⃗ is a vector with 28× 28 = 784 entries than each β⃗i
also has 784 entries. Each parameter vector can be viewed as a
28× 28 image.

17



matched filter

Visualizing β⃗1, . . . , β⃗q:

For an input image , compute inner product similarity
with all weight matrices and choose most similar one.

In contrast to k-NN, only need to compute similarity with q
items instead of n. 18



alternative view

Logistic Regression Model:

Given data matrix X ∈ Rn×d (here d = 784) and binary label
vector y⃗ ∈ {0, 1}n for class i (1 if in class i, 0 if not), find β⃗ ∈ Rd

to minimize the log loss between:

y⃗ and h(Xβ⃗)

where h(z) = 1
1+e−z applies the logistic function entrywise to

Xβ⃗.

Loss = −
∑n

j=1 yj log(h(Xβ⃗)j) + (1− yj) log(1− h(Xβ⃗)j)

19



alternative view

Logistic Regression Model:

Given data matrix X ∈ Rn×d (here d = 784) and binary label
vector y⃗ ∈ {0, 1}n for class i (1 if in class i, 0 if not), find β⃗ ∈ Rd

to minimize the log loss between:

y⃗ and h(Xβ⃗)

Reminder from linear algebra: Without loss of generality, can
assume that β⃗ lies in the row span of X.

So for any β⃗ ∈ Rd, there exists a vector α⃗ ∈ Rn such that:

β⃗ = XTα⃗.

20



alternative view

Logistic Regression Equivalent Formulation:

Given data matrix X ∈ Rn×d (here d = 784) and binary label
vector y⃗ ∈ {0, 1}n for class i (1 if in class i, 0 if not), find α⃗ ∈ Rn

to minimize the log loss between:

y⃗ and h(XXTα⃗).

Can still be minimized via gradient descent:

∇L(α⃗) = XXT(h(XXTα⃗)− y⃗).

21



reformulated view

What does classification for a new point x⃗new look like?

• Learn q classifiers with parameters α⃗1, α⃗2, . . . , α⃗q.
• Given x⃗new compute ⟨⃗xnew, XTα⃗1⟩, . . . , ⟨⃗xnew, XTα⃗q⟩
• Predict class ynew = argmaxi⟨⃗xnew, XTα⃗i⟩.

22



reformulated view

⟨⃗xnew, XTα⃗⟩ =
n∑
j=1

αj⟨⃗xnew, x⃗j⟩.

Similar to k− NN classifier but we learn a weight αi for every x⃗i
in our training set – can be positive or negative.

23



kernel functions

24



kernel functions

25



kernel functions

26


