
CS-UY 4563: Lecture 12
k-Nearest Neighbors, Kernel Methods

NYU Tandon School of Engineering, Prof. Christopher Musco
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course admin

• Lab 4 due on Friday, at 11:59pm. Requires correct solution
to HW3, Problem 2. I will post this after class.

• Short lab on Gradient Descent will be released soon and
due after break.

• Upcoming labs involve image data and require more
programming. Made up with lighter written homework.
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course project

Break is a great time to start mulling over ideas for your
course project! Details in project_guidelines.pdf.

1. Find or collect a data set.
2. Ask a question (or two) about the data set which can
possibly be answered with machine learning.

3. Apply tools and techniques learned in the class to
answering that question.
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course project

• Must work in groups of 2. Coordinate over Piazza if looking
for a partner.

• Any data set or topic is allowed, but youo should not
reproduce an analysis that has already been done! Ask a
new question or take a new approach.

• Talk to me or the TA’s early if you are stuck on coming up
with an idea, or need help narrowing down options.
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course project

4/1, Choose Project Partner and Topic. Email me.

4/2,4/6-4/8, Schedule Mandatory Meeting. Claim a time-slot
in the Google Doc linked in the project information document.

4/13, Project Proposal Due. 2 Pages. Need to have dataset
finalized!

5/6, 5/11, Project Presentations in Class. 5 Minutes.

5/11, Final Report Due 4+ Pages.
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project tips

Look at your data! Plot features, examine full examples, look
for missing data or inconsistencies.

Start small. Test and debug code on a small subset of your
data before running on the whole thing.

Start simple. Try the simplest methods first. Linear regression,
naive Bayes, etc. Even simpler: for regression, predict using
mean(⃗y). For classification predict using max y⃗ (the most
common label). You need to develop a baseline to compare
your methods against.
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k-nearest neighbor method

k-NN algorithm: a simple but powerful baseline for
classification.

Training data: (⃗x1, y1), . . . , (⃗xn, yn) where y1, . . . , yn ∈ {1, . . . ,q}.

Classification algorithm:

Given new input x⃗new,

• Compute sim(⃗xnew, x⃗1), . . . , sim(⃗xnew, x⃗n).1

• Let x⃗j1 , . . . , x⃗jk be the training data vectors with highest
similarity to x⃗new.

• Predict ynew as majority(yj1 , . . . , yjk).

1sim(⃗xnew, x⃗i) is any chosen similarity function, like 1− ∥⃗xnew − x⃗i∥2.
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k-nearest neighbor method

• Smaller k, more complex classification function.
• Larger k, more robust to noisy labels.

Works remarkably well for many datasets.
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mnist image data

Especially good for large datasets with lots of repetition.
Works well on MNIST for example:

≈ 95% Accuracy out-of-the-box.2

Let’s look into this example a bit more...

2Can be improved to 99.5% with some simple tricks! 9



mnist image data

Each pixel is number from [0, 1]. 0 is black, 1 is white.
Represent 28× 28 matrix of pixel values as a flattened vector.
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inner product similarity

Given data vectors x⃗, w⃗ ∈ Rd, the inner product ⟨⃗x, w⃗⟩ is a
natural similarity measure.

⟨⃗x, w⃗⟩ =
d∑
i=1

x⃗[i]w⃗[i] = cos(θ)∥⃗x∥2∥w⃗∥2.
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inner product similarity

Connection to Euclidean (ℓ2) Distance:

∥⃗x− w⃗∥22 = ∥⃗x∥22 + ∥w⃗∥22 − 2⟨⃗x, w⃗⟩

For a set of vectors with the same norm, the pair of vectors
with largest inner product is the pair with smallest Euclidean
distance.
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inner product for mnist

Inner product between MNIST digits:

⟨⃗x, w⃗⟩ =
28∑
i=1

28∑
j=1

matx[i, j]matw[i, j].

Inner product similarity is higher when the images have large
pixel values (close to 1) in the same locations. I.e. when they
have a lot of overlapping white/light gray pixels.
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inner product for mnist

Visualizing the inner product between two images:

Images with high inner product have a lot of overlap.
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k-nn algorithm on mnist

Most similar images during k-nn search, k = 9:
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k-nn for other images

Does not work as well for less standardized classes of images:

CIFAR 10 Images

Even after scaling to have same size, converting to separate
RGB channels, etc. something as simple as k-nn won’t work.
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another view on logistic regression

One-vs.-all Classification with Logistic Regression:

• Learn q classifiers with parameters β⃗1, β⃗2, . . . , β⃗q.
• Given x⃗new compute ⟨⃗xnew, β⃗1⟩, . . . , ⟨⃗xnew, β⃗q⟩
• Predict class ynew = argmaxi⟨⃗xnew, β⃗i⟩.

If each x⃗ is a vector with 28× 28 = 784 entries than each β⃗i
also has 784 entries. Each parameter vector can be viewed as a
28× 28 image.
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matched filter

Visualizing β⃗1, . . . , β⃗q:

For an input image , compute inner product similarity
with all weight matrices and choose most similar one.

In contrast to k-NN, only need to compute similarity with q
items instead of n. 18



alternative view

Logistic Regression Model:

Given data matrix X ∈ Rn×d (here d = 784) and binary label
vector y⃗ ∈ {0, 1}n for class i (1 if in class i, 0 if not), find β⃗ ∈ Rd

to minimize the log loss between:

y⃗ and h(Xβ⃗)

where h(z) = 1
1+e−z applies the logistic function entrywise to

Xβ⃗.

Loss = −
∑n

j=1 yj log(h(Xβ⃗)j) + (1− yj) log(1− h(Xβ⃗)j)
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alternative view

Logistic Regression Model:

Given data matrix X ∈ Rn×d (here d = 784) and binary label
vector y⃗ ∈ {0, 1}n for class i (1 if in class i, 0 if not), find β⃗ ∈ Rd

to minimize the log loss between:

y⃗ and h(Xβ⃗)

Reminder from linear algebra: Without loss of generality, can
assume that β⃗ lies in the row span of X.

So for any β⃗ ∈ Rd, there exists a vector α⃗ ∈ Rn such that:

β⃗ = XTα⃗.
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alternative view

Logistic Regression Equivalent Formulation:

Given data matrix X ∈ Rn×d (here d = 784) and binary label
vector y⃗ ∈ {0, 1}n for class i (1 if in class i, 0 if not), find α⃗ ∈ Rn

to minimize the log loss between:

y⃗ and h(XXTα⃗).

Can still be minimized via gradient descent:

∇L(α⃗) = XXT(h(XXTα⃗)− y⃗).
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reformulated view

What does classification for a new point x⃗new look like?

• Learn q classifiers with parameters α⃗1, α⃗2, . . . , α⃗q.
• Given x⃗new compute ⟨⃗xnew, XTα⃗1⟩, . . . , ⟨⃗xnew, XTα⃗q⟩
• Predict class ynew = argmaxi⟨⃗xnew, XTα⃗i⟩.
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reformulated view

⟨⃗xnew, XTα⃗⟩ =
n∑
j=1

αj⟨⃗xnew, x⃗j⟩.

Similar to k− NN classifier but we learn a weight αi for every x⃗i
in our training set – can be positive or negative.
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kernel functions
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kernel functions
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kernel functions

26


