
CS-UY 4563: Lecture 11
Finish-Up Gradient Descent, Midterm Review

NYU Tandon School of Engineering, Prof. Christopher Musco
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gradient descent

• We want to choose β⃗ to minimize a loss function L(β⃗).
• Often we can compute ∇L(β⃗) for any β⃗, but can’t explicitly
find a β⃗∗ for which ∇L(β⃗) = 0⃗.

• Instead, we iteratively search a near optimal β⃗.
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gradient descent

Gradient descent algorithm for minimizing L(β⃗):

• Choose arbitrary starting point β⃗(0).
• For i = 1, . . . , T:

• β⃗(i+1) = β⃗(i) − η∇L(β⃗(i))

• Return β⃗(t).

Or stop after L(β(i)) stops decreasing.

η is a step-size parameter. Also called the learning rate. Needs
to be chosen sufficiently small for gradient descent to
converge, but too small will slow down the algorithm.
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learning rate

Precision in choosing the learning rate η is not super
important, but we do need to get it to the right order of
magnitude.
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learning rate

“Overshooting” can be a problem if you choose the step-size
too high.

Often a good idea to plot the entire optimization curve for
diagnosing what’s going on.

We will have a mini-lab on gradient descent optimization after
the midterm we’re you’ll get practice doing this.
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exponential grid search

Just as in regularization, search over a grid of possible
parameters:

η = [2−5, 2−4, 2−3, . . . , 29, 210].

Or tune by hand based on the optimization curve.
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backtracking line search/armijo rule

Recall: If we set ⃗β(i+1) ← β⃗(i) − η∇L(β⃗(i)) then:

L( ⃗β(i+1)) ≈ L(β⃗(i))− η⟨∇L(β⃗(i)),∇L(β⃗(i))⟩

= L(β⃗(i))− η∥∇L(β⃗(i))∥22.

Approximation holds true for small η. When it does not, we
might be overshooting.
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backtracking line search/armijo rule

Gradient descent with backtracking line search:

• Choose arbitrary starting point β⃗.

• Choose starting step size η.

• Choose τ, c < 1 (typically both c = 1/2 and τ = 1/2)

• For i = 1, . . . , T:

• β⃗(new) = β⃗ − η∇L(β⃗)
• If L(β⃗(new)) ≤ L(β⃗)− cη∥∇L(β⃗)∥22

• β⃗ ← β⃗(new)

• η ← τ−1η

• Else
• η ← τη

Always decreases objective value, works very well in practice.
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convergence of gradient descent

In general GD only converges to a local minimum.
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convex function

Definition (Convex)
A function L is convex iff for any β⃗1, β⃗2, λ ∈ [0, 1]:

(1− λ) · L(β⃗1) + λ · L(β⃗2) ≥ L
(
(1− λ) · β⃗1 + λ · β⃗2

)
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convex function

In words: A function is convex if a line between any two points
on the function lies above the function. Captures the notion
that a function looks like a bowl.

This function is not convex.

11



convex function

Claim (Convex Function Minimizers.)
Every local minimum of a convex function is also a global
minimum.
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convergence of gradient descent

Claim (GD Convergence for Convex Functions.)
For sufficiently small step-size η, Gradient Descent converges
to an approximate global minimum of any convex function L.

What functions are convex?

• Least squares loss for linear regression.
• ℓ1 loss for linear regression.
• Either of these with and ℓ1 or ℓ2 regularization penalty.
• Logistic regression! Logistic regression with regularization.
• Many other models in machine leaning!

This is not a coincidence: often it makes sense to reformulate
your problem so that the loss function is convex, simply so you

can minimize it with GD.
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midterm review
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data transformations
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mean centering has no effect on linear regression
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mean centering has no effect on linear regression
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column scaling has no effect on linear regression
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column scaling has no effect on linear regression
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data transformations for temporal data

Electrocorticography ECoG lab:

• Implant grid of electrodes on surface of monkey’s brain to
measure electrical activity in different regions.

• Predict hand motion based on 53 ECoG measurements.
• Model order: predict movement at time t using brain
signals at time t, t− 1, . . . , t− q for varying values of q. 19



data transformations for temporal data

20



data transformations for temporal data
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