
CS-UY 4563: Lecture 10
Gradient Descent

NYU Tandon School of Engineering, Prof. Christopher Musco

1



logistics

• Homework due Wednesday, lab Thursday.
• My office hours moved to 4-6pm on Wednesday.
• Midterm exam next Monday.

• I will post a list of topics and sample questions shortly.
• Questions will be similar to written homework, but shorter.

• Wednesday’s class is going to be a review day. We’ve
already learned a lot!

• We will go through sample problems, and problems that
were sticking points on the homework.

2



a few comments on classification

Last class we learned about linear classification and logistic
regression which is a specific model/loss function combo
which works particularly well for finding good linear classifiers.

And for learning non-linear classifiers when combined with
feature transformations!

Point mentioned at end of last class:

• In classification problem, minimizing error rate doesn’t
always make the most sense.

• Sometimes false positives have a different (real world)
cost than false negatives.

• Instead consider metrics like precision and recall.

3



multiclass

What about when y ∈ {1, . . . ,q} instead of y ∈ {0, 1}

Two options for multiclass data:

• One-vs.-all (most common, also called one-vs.-rest)
• One-vs.-one (slower, but can be more effective)

In both cases, we convert to multiple binary classification
problems.

4



one vs. rest

• For q classes train q classifiers. Obtain parameters β⃗1, . . . , β⃗q.

• Assign y to class i with maximum ⟨β⃗i, x⃗⟩.

5



one vs. rest

• For q classes train q(q−1)
2 classifiers.

• Assign y to class which i which wins in the most number of
head-to-head comparisons.

6



one vs. one

Hard case for one-vs.-all.

• One-vs.-one would be a better choice here.
• Also tends to work better when there is class in balance.

7



error in (multiclass) classification

Confusion matrix for k classes:

• Entry i, j is the fraction of class i items classified as class j.
• Overall accuracy is the average of the diagonals.
• Useful to see whole matrix to visualize where errors occur.

8



logistic regression

Let h
β⃗
(⃗x) be the logistic function:

h
β⃗
(⃗x) = 1

1+ e−⟨β⃗,⃗x⟩

9



logistic regression

• Model: Let h
β⃗
(⃗x) = 1

1+e−⟨β⃗,⃗x⟩

f
β⃗
(⃗x) = 1

[
h
β⃗
(⃗x) > 1/2

]
• Loss function: “Logistic loss” aka “Cross-entropy loss”

L(β⃗) = −
n∑
i=1

yi log(hβ⃗ (⃗x)) + (1− yi) log(1− hβ⃗ (⃗x))

How do we find β⃗ which minimizes L(β⃗)?

10



logistic regression gradient

L(β⃗) = −
n∑
i=1

yi log(hβ⃗ (⃗x)) + (1− yi) log(1− hβ⃗ (⃗x))

Let X ∈ Rd×n be our data matrix with x⃗1, . . . , x⃗n ∈ Rd as rows.
Let y⃗ = [y1, . . . , yn]T. A calculation gives (see notes on
webpage):

∇L(β⃗) = XT
(
h
β⃗
(X)− y⃗

)
where h

β⃗
(X) = 1

1+e−Xβ⃗ . Here all operations are entrywise. I.e in
Python you would compute:

11



logistic regression gradient

To find β⃗ minimizing L(β⃗) we need to find a β⃗ where:

∇L(β⃗) = XT
(
h
β⃗
(X)− y⃗

)
= 0⃗

• In contrast to what we saw when minimizing the squared
loss for linear regression, there’s no simple closed form
expression for such a β⃗!

• This is the typical situation when minimizing loss in
machine learning: linear regression was a lucky exception.

• Main question: How do we minimize a loss function L(β⃗)
when we can’t explicitly compute where it’s gradient is 0⃗?

12



minimizing loss functions

First idea. Brute-force search. Test our many possible values
for β⃗ and just see which gives the smallest value of L(β⃗).

• As we saw on Lab 1, this actually works okay for
low-dimensional problems (e.g. when β⃗ has 1 or 2 entries).

• Problem: Super computationally expensive in
high-dimension. For β⃗ ∈ Rd, run time grows as:

13



minimizing loss functions

Much Better idea. Some sort of guided search for a good of β⃗.

• Start with some β⃗0, and at each step try to change β⃗

slightly to reduce L(β⃗).
• Hopefully find an approximate minimizer for L(β⃗) much
more quickly than brute-force search.

• Concrete goal: Find β⃗ with L(β⃗) < min
β⃗
L(β⃗) + ϵ for some

small error term ϵ.

14



gradient descent

Gradient descent: A greedy search algorithm for minimizing
functions of multiple variables (including loss functions) that
often works amazingly well.

The single most important computational tool in machine
learning. And it’s remarkable simple + easy to implement.

15



optimization algorithms

Just one method in a huge class of algorithms for numerical
optimization. All of these methods are important in ML: take
my class in the fall (CS-GY 9223I) if you want to learn more. 16



first order optimization

First order oracle model: Given a function L to minimize,
assume we can:

• Function oracle: Evaluate L(β⃗) for any β⃗.
• Gradient oracle: Evaluate ∇L(β⃗) for any β⃗.

These are very general assumptions. Gradient descent will not
use any other information about the loss function L when
trying to find a β⃗ which minimizes L.

17



intuition

Consider a 1-dimensional loss function. I.e. where β has just
one entry:

18



intuition

Consider a 1-dimensional loss function. I.e. where β has just
one entry:

19



gradient descent in 1d

Recap:

• Consider an algorithm which incrementally adjusts β. I.e.
at each step β ← β + η for some small η. Our goal is to
“make progress” towards minimizing L, which means we
want L(β + η) < L(β).

• For a 1D function, ∇L(β) = L′(β).
• So, for small η, L(β + η)− L(β) ≈ ∇L(β) · η.
• Want right hand side ∇L(β) · η to be negative.
• So choose η to be positive if ∇L(β) is negative, and
negative if ∇L(β) is positive.

This is Gradient Descent (in 1D)!

20



directional derivatives

For high dimensional functions (β⃗ ∈ Rd), our update involves a
vector v⃗ ∈ Rd. At each step:

β⃗ ← β⃗ + v⃗.

Question: When v⃗ is small, what’s an approximation for
L(β⃗ + v⃗)− L(β⃗)?

L(β⃗ + v⃗)− L(β⃗) ≈

21



directional derivatives

L(β⃗ + v⃗)− L(β⃗) ≈ ∂L
∂β1

v1 +
∂L
∂β2

v2 + . . .+
∂L
∂βd

vd

= ⟨∇L(β⃗), v⃗⟩.

How should we choose v⃗ so that L(β⃗ + v⃗) < L(β⃗)?

22



steepest descent

Claim (Gradient descent = Steepest descent1)
−∇L(β⃗)
∥∇L(β⃗)∥2

= argminv⃗,∥⃗v∥2≤1∇⟨L(β⃗), v⃗⟩

1We could have restricted v⃗ using a different norm. E.g. ∥⃗v∥1 ≤ 1 or
∥⃗v∥∞ ≤ 1. These choices lead to variants of generalized steepest descent..

23



steepest descent

24



gradient descent

Gradient algorithm:

• Choose arbitrary starting point β⃗(0).
• For i = 1, . . . , T:

• β⃗(i+1) = β⃗(i) − η∇L(β⃗(i))

• Return β⃗(t).

η is a step-size parameter. Also called the learning rate. Needs
to be chosen sufficiently small for gradient descent to
converge, but too small will slow down the algorithm. Often
“tuned” by trying out many different values.

25



convergence of gradient descent

Does gradient descent converge for all loss functions L?

26



convergence of gradient descent

In general GD only converges to a local minimum.

27



convex function

Definition (Convex)
A function L is convex iff for any β⃗1, β⃗2, λ ∈ [0, 1]:

(1− λ) · L(β⃗1) + λ · L(β⃗2) ≥ L
(
(1− λ) · β⃗1 + λ · β⃗2

)

28



convex function

In words: A function is convex if a line between any two points
on the function lies above the function. Captures the notion
that a function looks like a bowl.

This function is not convex.

29



convex function

Claim (Convex Function Minimizers.)
Every local minimum of a convex function is also a global
minimum.

30



convergence of gradient descent

Claim (GD Convergence for Convex Functions.)
For sufficiently small step-size η, Gradient Descent converges
to the global minimum of any convex function L.

What functions are convex?

• Least squares loss for linear regression.
• ℓ1 loss for linear regression.
• Either of these with and ℓ1 or ℓ2 regularization penalty.
• Logistic regression! Logistic regression with regularization.
• Many other models in machine leaning!

This is not a coincidence: often it makes sense to reformulate
your problem so that the loss function is convex, simply so you

can minimize it with GD.
31



convergence of gradient descent

Thing we will talk about after the midterm + spring break:

• Even though GD always converges for a convex function,
it’s rate of convergence can vary widely. There are lots of
methods to speed up the algorithm.

• To implement GD, we need to compute ∇L(β⃗) at every
iteration. Typically pretty cheap, but not always for huge
datasets. We will see an alternative approach called
stochastic gradient descent (SGD) to address this issue.

• What happens when we apply GD to non-convex
functions?

32


