
Lecture 6 
Linear Classification & 
Logistic Regression
EE-UY 4563/EL-GY 9123:  INTRODUCTION TO MACHINE LEARNING

PROF. SUNDEEP RANGAN (WITH MODIFICATION BY YAO WANG)
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Learning Objectives
Formulate a machine learning problem as a classification problem

◦ Identify features, class variable, training data

Visualize classification data using a scatter plot.  

Describe a linear classifier as an equation and on a plot.
◦ Determine visually if data is perfect linearly separable.

Formulate a classification problem using logistic regression
◦ Binary and multi-class
◦ Describe the logistic and soft-max function
◦ Logistic function to approximate the probability

Derive the loss function for ML estimation of the weights in logistic regression

Use sklearn packages to fit logistic regression models

Measure the accuracy of classification

Adjust threshold of classifiers for trading off types of classification errors.  Draw a ROC curve.

Perform LASSO regularization for feature selection
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Outline
Motivating Example:  Classifying a breast cancer test

Linear classifiers

Logistic regression

Fitting logistic regression models 

Measuring accuracy in classification
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Diagnosing Breast Cancer
Fine needle aspiration of suspicious lumps

Cytopathologist visually inspects cells 
◦ Sample is stained and viewed under microscope

Determines if cells are benign or malignant and 
furthermore provides grading if malignant 

Uses many features:
◦ Size and shape of cells, degree of mitosis, differentiation, …

Diagnosis is not exact

If uncertain, use a more comprehensive biopsy
◦ Additional cost and time
◦ Stress to patient

Can machine learning provide better rules?
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Grades of carcinoma cells
http://breast-cancer.ca/5a-types/



Demo on Github
Github:  https://github.com/sdrangan/introml/blob/master/logistic/breast_cancer.ipynb

5

https://github.com/sdrangan/introml/blob/master/logistic/breast_cancer.ipynb


Data
Univ. Wisconsin study, 1994

569 samples

10 visual features for each sample

Ground truth determined by biopsy

First publication:  O.L. Mangasarian, W.N. 
Street and W.H. Wolberg. Breast cancer 
diagnosis and prognosis via linear 
programming. Operations Research, 43(4), 
pages 570-577, July-August 1995. 
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Loading The Data
Follow standard pandas routine

All code in Lect06_Demo.ipynb
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Class = 2 => benign
Class = 4 => malignant 

Drops missing samples

See following for explanation of attributes
https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.names



Visualizing the Data
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Scatter plot of points from each class

Plot not informative
◦ Many points overlap
◦ Relative frequency at each point not visible



Improving the Plot
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Make circle size proportional to count

Many gymnastics to make this plot in python



In-Class Exercise
Get into groups
◦ At least one must have a laptop with jupyter notebook

Determine a classification rule
◦ Predict class label from the two features

Test in python
◦ Make the predictions
◦ Measure the accuracy

10



A Possible Classification Rule
From inspection, benign if:

marg +
2
3

(size_unif) < 4

Classification rule from linear constraint

What are other possible classification rules?

Every rule misclassifies some points

What is optimal?
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Mangasarian’s Original Paper
Proposes Multisurface method – Tree (MSM-T)
◦ Decision tree based on linear rules in each step

Fig to left from 
◦ Pantel, “Breast Cancer Diagnosis and Prognosis,” 1995

Best methods today use neural networks

This lecture will look at linear classifiers
◦ These are much simpler
◦ Do not provide same level of accuracy

But, building block to more complex classifiers
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Classification
Given features 𝒙𝒙, determine its class label, 𝑦𝑦 = 1, … ,𝐾𝐾

Binary classification:  𝑦𝑦 = 0 or 1

Many applications:
◦ Face detection:  Is a face present or not?
◦ Reading a digit:  Is the digit 0,1,…,9?
◦ Are the cells cancerous or not?
◦ Is the email spam?

Equivalently, determine classification function:
�𝑦𝑦 = 𝑓𝑓 𝒙𝒙 ∈ {1, … ,𝐾𝐾}

◦ Like regression, but with a discrete response
◦ May index {1, … ,𝐾𝐾} or {0, … ,𝐾𝐾 − 1}
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Outline
Motivating Example:  Classifying a breast cancer test

Linear classifiers

Logistic regression

Fitting logistic regression models 

Measuring accuracy in classification
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Linear Classifier
General binary classification rule:

�𝑦𝑦 = 𝑓𝑓 𝑥𝑥 = 0 or 1

Linear classification rule:
◦ Take linear combination  𝑧𝑧 = 𝑤𝑤0 + ∑𝑗𝑗=1𝑑𝑑 𝑤𝑤𝑑𝑑𝑥𝑥𝑑𝑑
◦ Predict class from 𝑧𝑧

�𝑦𝑦 = �1 𝑧𝑧 ≥ 0
0 𝑧𝑧 < 0

Decision regions described by a half-space.

𝒘𝒘 = (𝑤𝑤0, … ,𝑤𝑤𝑑𝑑) is called the weight vector
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Breast Cancer example
From inspection, benign if:

marg +
2
3

(size_unif) < 4

Classification rule from linear constraint

What are other possible classification rules?

Every rule misclassifies some points

What is optimal?
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Using Linear Regression on Two Features
Bad idea:  Use linear regression
◦ Labels are 𝑦𝑦 ∈ {0,1}
◦ Use linear model:  𝑧𝑧 = 𝑤𝑤0 + 𝑤𝑤1𝑥𝑥1 +𝑤𝑤2 𝑥𝑥2
◦ Find linear fit so that ∑𝑖𝑖 𝑦𝑦𝑖𝑖 − 𝑧𝑧𝑖𝑖 2 is minimized
◦ Then threshold the linear fit:

�𝑦𝑦 = �1 𝑧𝑧 > 0.5
0 𝑧𝑧 < 0.5

This yields the line:
𝑤𝑤0 + 𝑤𝑤1𝑥𝑥1 +𝑤𝑤2 𝑥𝑥2 = 0.5

Why the line is not as expected?

Should not use MSE as the optimization criterion!
◦ Squared error is not related to classifier accuracy

17



Using linear classifier on all features
Hard to visualize, but by setting 𝑧𝑧 = 0.5, we get a hyper plane in high dimension
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Go through the demo
Up to linear regression
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Linear vs. Non-Linear
Linear boundaries are limited

Can only describe very simple regions

But, serves as building block
◦ Many classifiers use linear rules as first step
◦ Neural networks, decision trees, …

Breast cancer example:
◦ Is the region linear or non-linear?
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Perfect Linear Separability
Given training data 𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑁𝑁

Binary class label:  𝑦𝑦𝑖𝑖 = ±1

Perfectly linearly separable if there exists a 𝒘𝒘 = (𝑤𝑤0,𝑤𝑤1, … ,𝑤𝑤𝑑𝑑) s.t.:
◦ 𝑤𝑤0 + 𝑤𝑤1𝑥𝑥𝑖𝑖1 + ⋯𝑤𝑤𝑑𝑑𝑥𝑥𝑖𝑖𝑑𝑑 > 𝛾𝛾 when 𝑦𝑦𝑖𝑖 = 1
◦ 𝑤𝑤0 + 𝑤𝑤1𝑥𝑥𝑖𝑖1 + ⋯𝑤𝑤𝑑𝑑𝑥𝑥𝑖𝑖𝑑𝑑 < −𝛾𝛾 when 𝑦𝑦𝑖𝑖 = −1

𝒘𝒘 is the separating hyperplane, 𝛾𝛾 is the margin

Single equation form:
𝑦𝑦𝑖𝑖 𝑤𝑤0 + 𝑤𝑤1𝑥𝑥𝑖𝑖1 + ⋯𝑤𝑤𝑑𝑑𝑥𝑥𝑖𝑖𝑑𝑑 > 𝛾𝛾 for all 𝑖𝑖 = 1, … ,𝑁𝑁
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Most Data not Perfectly Separable
Generally cannot find a separating hyperplane

Always, some points that will be mis-classified

Algorithms attempt to find “good” hyper-planes
◦ Reduce the number of mis-classified points
◦ Or, some similar metric

Example:  Look again at breast cancer data
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Non-Uniqueness
When one exists, separating hyper-plane is not unique

Example:  
◦ If 𝒘𝒘 is separating, then so is 𝛼𝛼𝒘𝒘 for all 𝛼𝛼 > 0

Fig. on right:  Many separating planes

Which one is optimal?
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Outline
Motivating Example:  Classifying a breast cancer test

Linear classifiers

Logistic regression

Fitting logistic regression models 

Measuring accuracy in classification
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Logistic Model for Binary Classification
Binary classification problem:  𝑦𝑦 = 0, 1

Consider probabilistic model

𝑃𝑃 𝑦𝑦 = 1 𝒙𝒙 =
1

1 + 𝑒𝑒−𝑧𝑧
, 𝑃𝑃 𝑦𝑦 = 0 𝒙𝒙 =

𝑒𝑒−𝑧𝑧

1 + 𝑒𝑒−𝑧𝑧
◦ 𝑧𝑧 = 𝑤𝑤0 + ∑𝑗𝑗=1𝑘𝑘 𝑤𝑤𝑘𝑘𝑥𝑥𝑘𝑘

Logistic function: 𝑓𝑓 𝑧𝑧 = 1/(1 + 𝑒𝑒−𝑧𝑧)
◦ Classical “S”-shape.  Also called sigmoidal

Value of f(𝒙𝒙) does not perfectly predict class 𝑦𝑦.
◦ Only a probability of 𝑦𝑦
◦ Allows for linear classification to be imperfect.
◦ Training will not require perfect separability
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Logistic Model as a “Soft” Classifier
Plot of 

𝑃𝑃 𝑦𝑦 = 1 𝑥𝑥 =
1

1 + 𝑒𝑒−𝑧𝑧
, 𝑧𝑧 = 𝑤𝑤1𝑥𝑥

◦ Markers are random samples

Higher  𝑤𝑤1:  prob transition becomes sharper
◦ Fewer samples occur across boundary

As 𝑤𝑤1 → ∞ logistic becomes “hard” rule

𝑃𝑃 𝑦𝑦 = 1 𝑥𝑥 ≈ �1 𝑥𝑥 > 0
0 𝑥𝑥 < 0
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𝑧𝑧 = 0.5𝑥𝑥 𝑧𝑧 = 𝑥𝑥 𝑧𝑧 = 2𝑥𝑥 𝑧𝑧 = 100𝑥𝑥



Multi-Class Logistic Regression
Suppose 𝑦𝑦 ∈ 1, … ,𝐾𝐾
◦ 𝐾𝐾 possible classes (e.g. digits, letters, spoken words, …)

Multi-class regression:
◦ 𝑾𝑾 ∈ 𝑅𝑅𝐾𝐾×𝑑𝑑,𝒘𝒘0 ∈ 𝑅𝑅𝐾𝐾 Slope matrix and bias
◦ 𝒛𝒛 = 𝑾𝑾𝒙𝒙 + 𝒘𝒘0:  Creates 𝐾𝐾 linear functions

Then, class probabilities given by:

𝑃𝑃 𝑦𝑦 = 𝑘𝑘 𝒙𝒙 =
e𝑧𝑧𝑘𝑘

∑ℓ=1𝐾𝐾 𝑒𝑒𝑧𝑧ℓ
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Softmax Operation
Consider soft-max function:  

𝑔𝑔𝑘𝑘 𝒛𝒛 =
e𝑧𝑧𝑘𝑘

∑ℓ=1𝐾𝐾 𝑒𝑒𝑧𝑧ℓ
◦ 𝐾𝐾 inputs 𝒛𝒛 = z1, … , 𝑧𝑧𝐾𝐾 , 𝐾𝐾 outputs 𝑓𝑓(𝒛𝒛) = (𝑓𝑓(𝐳𝐳)1, … , 𝑓𝑓(𝐳𝐳)𝐾𝐾)

Properties:  𝑓𝑓 𝒛𝒛 is like a PMF on the labels [0,1, … ,𝐾𝐾 − 1]
◦ 𝑔𝑔𝑘𝑘 𝒛𝒛 ∈ [0,1] for each component 𝑘𝑘
◦ ∑𝑘𝑘=1𝐾𝐾 𝑔𝑔𝑘𝑘 𝒛𝒛 = 1

Softmax property:  When 𝑧𝑧𝑘𝑘 ≫ 𝑧𝑧ℓ for all ℓ ≠ 𝑘𝑘:
◦ 𝑔𝑔𝑘𝑘 𝒛𝒛 ≈ 1
◦ 𝑔𝑔ℓ 𝒛𝒛 ≈ 0 for all ℓ ≠ 𝑘𝑘

Multi-class logistic regression:  Assigns highest probability to class 𝑘𝑘 when 𝑧𝑧𝑘𝑘 is largest
𝑧𝑧𝑘𝑘 = 𝒘𝒘𝑘𝑘

𝑇𝑇𝒙𝒙 + 𝑤𝑤0𝑘𝑘
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Multi-Class Logistic Regression
Decision Regions

Each decision region defined by set of hyperplanes

Intersection of linear constraints

Sometimes called a polytope
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Transform Linear Models
As in regression, logistic models can be applied to transform features

Step 1:  Map 𝒙𝒙 to some transform features, 𝜙𝜙 𝒙𝒙 = 𝜙𝜙1 𝒙𝒙 , … ,𝜙𝜙𝑝𝑝 𝒙𝒙 𝑇𝑇

Step 2:  Linear weights:     𝑧𝑧𝑘𝑘 = ∑𝑗𝑗=1
𝑝𝑝 𝑊𝑊𝑘𝑘𝑗𝑗𝜙𝜙𝑗𝑗 𝒙𝒙

Step 3:  Soft-max  𝑃𝑃 𝑦𝑦 = 𝑘𝑘 𝒛𝒛 = 𝑔𝑔𝑘𝑘 𝒛𝒛 , 𝑔𝑔𝑘𝑘 𝒛𝒛 = 𝑒𝑒𝑧𝑧𝑘𝑘
∑ℓ 𝑒𝑒

𝑧𝑧ℓ

Example transforms:
◦ Standard regression 𝜙𝜙 𝒙𝒙 = 1, 𝑥𝑥1, … , 𝑥𝑥𝑗𝑗

𝑇𝑇
(𝑗𝑗 original features, j+1 transformed features)

◦ Polynomial regression:  𝜙𝜙 𝒙𝒙 = 1, 𝑥𝑥, … , 𝑥𝑥𝑑𝑑 𝑇𝑇 (1 original feature, 𝑑𝑑 + 1 transformed features)
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Using Transformed Features
Enables richer class boundaries

Example: Fig B is not linearly separable

But, consider nonlinear features
◦ 𝜙𝜙 𝒙𝒙 = 1, 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥12, 𝑥𝑥22 𝑇𝑇

Then can discriminate classes with linear function
◦ 𝑧𝑧 = −𝑟𝑟2, 0,0,1,1 𝜙𝜙 𝑥𝑥 = 𝑥𝑥12 + 𝑥𝑥22 − 𝑟𝑟2

Blue when 𝑧𝑧 ≤ 0 and Green when 𝑧𝑧 > 0
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Outline
Motivating Example:  Classifying a breast cancer test

Linear classifiers

Logistic regression

Fitting logistic regression models 

Measuring accuracy in classification
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Learning the Logistic Model Parameters
Consider general three part logistic model:  
◦ Transform to features:  𝒙𝒙 ↦ 𝜙𝜙(𝒙𝒙)
◦ Linear weights:  𝒛𝒛 = 𝑾𝑾𝜙𝜙 𝒙𝒙 , 𝑾𝑾 ∈ 𝑅𝑅𝐾𝐾×𝑝𝑝

◦ Softmax:  𝑃𝑃 𝑦𝑦 = 𝑘𝑘 𝒙𝒙 = 𝑔𝑔𝑘𝑘 𝒛𝒛 = 𝑔𝑔𝑘𝑘 𝑾𝑾𝜙𝜙 𝒙𝒙

Weight matrix 𝑾𝑾 represents unknown model parameters

Learning problem:  
◦ Given training data, 𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑁𝑁
◦ Learn weight matrix 𝑾𝑾
◦ What loss function to minimize?
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Likelihood Function
Represent training data in vector form: 
◦ Data matrix:  𝑿𝑿 = 𝒙𝒙1, … ,𝒙𝒙𝑁𝑁 𝑇𝑇

◦ Class label vector:  𝒚𝒚 = (𝑦𝑦1, … ,𝑦𝑦𝑁𝑁)𝑇𝑇

◦ One component for each training sample

Likelihood function:   
◦ 𝑃𝑃 𝒚𝒚 𝑿𝑿,𝑾𝑾 = Likelihood (i.e. probability) of class labels given inputs 𝑿𝑿 and weights
◦ Function of training data (𝑿𝑿, 𝒚𝒚) and parameters 𝑾𝑾
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Min and Argmin
Given a function 𝑓𝑓(𝑥𝑥)

min
𝑥𝑥
𝑓𝑓 𝑥𝑥

◦ Minimum value of the 𝑓𝑓(𝑥𝑥)
◦ Point on the 𝑦𝑦-axis

arg min
𝑥𝑥

𝑓𝑓 𝑥𝑥

◦ Value of 𝑥𝑥 where 𝑓𝑓(𝑥𝑥) is a minimum
◦ Point on the 𝑥𝑥-axis 

Similarly, define max
𝑥𝑥

𝑓𝑓 𝑥𝑥 and arg max
𝑥𝑥

𝑓𝑓 𝑥𝑥
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𝑓𝑓 𝑥𝑥 = 𝑥𝑥 − 1 2 + 2
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arg min
𝑥𝑥
𝑓𝑓 𝑥𝑥 = 1

min
𝑥𝑥
𝑓𝑓 𝑥𝑥 = 2



Maximum Likelihood Estimation
Given training data (𝑿𝑿, 𝒚𝒚) 

Likelihood function:  𝑃𝑃 𝒚𝒚 𝑿𝑿,𝑾𝑾

Maximum likelihood estimation
�𝑾𝑾 = arg max

𝑾𝑾
𝑃𝑃 𝒚𝒚 𝑿𝑿,𝑾𝑾

◦ Finds parameters for which observations are most likely
◦ Very general method in estimation
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Log Likelihood
Assume outputs 𝑦𝑦𝑖𝑖 are independent, depending only on 𝒙𝒙𝑖𝑖
Then, likelihood factors:

𝑃𝑃 𝒚𝒚 𝑿𝑿,𝑾𝑾 = �
𝑖𝑖=1

𝑁𝑁
𝑃𝑃(𝑦𝑦𝑖𝑖|𝒙𝒙𝑖𝑖 ,𝑾𝑾)

Define negative log likelihood:  

𝐿𝐿 𝑾𝑾 = − ln𝑃𝑃 𝒚𝒚 𝑿𝑿,𝑾𝑾 = −�
𝑖𝑖=1

𝑁𝑁
ln𝑃𝑃 𝑦𝑦𝑖𝑖 𝒙𝒙𝑖𝑖 ,𝑾𝑾

Maximum likelihood estimator can be re-written as:

�𝑾𝑾 = arg max
𝑾𝑾

𝑃𝑃 𝒚𝒚 𝑿𝑿,𝑾𝑾 = arg min
𝑾𝑾

𝐿𝐿 𝑾𝑾
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Logistic Loss Function for binary classification
 Negative log likelihood function: 𝐽𝐽 𝑤𝑤 = −∑𝑖𝑖=1𝑛𝑛 ln𝑃𝑃 𝑦𝑦𝑖𝑖 𝒙𝒙𝑖𝑖 ,𝒘𝒘

𝑃𝑃 𝑦𝑦𝑖𝑖 = 1 𝒙𝒙𝑖𝑖 ,𝒘𝒘 =
1

1 + 𝑒𝑒−𝑧𝑧𝑖𝑖
, 𝑧𝑧𝑖𝑖 = 𝒘𝒘1:𝑝𝑝

𝑇𝑇 𝒙𝒙𝑖𝑖 + 𝑤𝑤0

Therefore,

𝑃𝑃 𝑦𝑦𝑖𝑖 = 1 𝒙𝒙𝑖𝑖 ,𝒘𝒘 =
𝑒𝑒𝑧𝑧𝑖𝑖

1 + 𝑒𝑒𝑧𝑧𝑖𝑖
, 𝑃𝑃 𝑦𝑦𝑖𝑖 = 0 𝒙𝒙𝑖𝑖 ,𝒘𝒘 =

1
1 + 𝑒𝑒𝑧𝑧𝑖𝑖

Hence,

ln𝑃𝑃(𝑦𝑦𝑖𝑖|𝒙𝒙𝑖𝑖 ,𝒘𝒘) = 𝑦𝑦𝑖𝑖 ln𝑃𝑃(𝑦𝑦𝑖𝑖 = 1|𝒙𝒙𝑖𝑖 ,𝒘𝒘) + 1 − 𝑦𝑦𝑖𝑖 ln𝑃𝑃 𝑦𝑦𝑖𝑖 = 0 𝒙𝒙𝑖𝑖 ,𝒘𝒘 = 𝑦𝑦𝑖𝑖𝑧𝑧𝑖𝑖 − ln 1 + 𝑒𝑒𝑧𝑧𝑖𝑖

Loss function = binary cross entropy:

𝐽𝐽 𝒘𝒘 = �
𝑖𝑖=1

𝑛𝑛

ln 1 + 𝑒𝑒𝑧𝑧𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑧𝑧𝑖𝑖
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One-Hot Log Likelihood for Multi-Class 
Classification
To find MLE, we re-write the negative log likelihood

Define the “one-hot” vector:

𝑟𝑟𝑖𝑖𝑘𝑘 = �1 𝑦𝑦𝑖𝑖 = 𝑘𝑘
0 𝑦𝑦𝑖𝑖 ≠ 𝑘𝑘 , 𝑖𝑖 = 1, … ,𝑁𝑁, 𝑘𝑘 = 1, … ,𝐾𝐾

Then, ln𝑃𝑃 𝑦𝑦𝑖𝑖 𝒙𝒙𝑖𝑖 ,𝑾𝑾 = ∑𝑘𝑘=1𝐾𝐾 𝑟𝑟𝑖𝑖𝑘𝑘 ln𝑃𝑃 𝑦𝑦𝑖𝑖 = 𝑘𝑘 𝒙𝒙𝑖𝑖 ,𝑾𝑾

Hence, negative log likelihood is (proof on board):

𝐿𝐿 𝑾𝑾 = �
𝑖𝑖=1

𝑁𝑁
ln �

𝑘𝑘
𝑒𝑒𝑧𝑧𝑖𝑖𝑘𝑘 −�

𝑘𝑘
𝑧𝑧𝑖𝑖𝑘𝑘𝑟𝑟𝑖𝑖𝑘𝑘

◦ Sometimes called the cross-entropy

39



Gradient Calculations
To minimize take partial derivatives:   𝜕𝜕𝜕𝜕 𝑊𝑊

𝜕𝜕𝑊𝑊𝑘𝑘𝑘𝑘
= 0 for all 𝑊𝑊𝑘𝑘𝑗𝑗

Define transform matrix:  𝐴𝐴𝑖𝑖𝑗𝑗 = 𝜙𝜙𝑗𝑗(𝒙𝒙𝑖𝑖)

Hence,  𝑧𝑧𝑖𝑖𝑘𝑘 = ∑𝑗𝑗=1
𝑝𝑝 𝐴𝐴𝑖𝑖𝑗𝑗𝑊𝑊𝑘𝑘𝑗𝑗

Estimated class probabilities:     𝑝𝑝𝑖𝑖𝑘𝑘 = 𝑒𝑒𝑧𝑧𝑖𝑖𝑘𝑘
∑ℓ 𝑒𝑒

𝑧𝑧𝑖𝑖ℓ

Gradient components are (proof on board):  𝜕𝜕𝜕𝜕 𝑾𝑾
𝜕𝜕𝑊𝑊𝑘𝑘𝑘𝑘

= ∑𝑖𝑖=1𝑁𝑁 𝑝𝑝𝑖𝑖𝑘𝑘 − 𝑟𝑟𝑖𝑖𝑘𝑘 𝐴𝐴𝑖𝑖𝑗𝑗 = 0
◦ 𝐾𝐾 × 𝑝𝑝 equations and 𝐾𝐾 × 𝑝𝑝 unknowns

Unfortunately, no closed-form solution to these equations 
◦ Nonlinear dependence of 𝑝𝑝𝑖𝑖𝑘𝑘 on terms in 𝑊𝑊
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Numerical Optimization

41

We saw that we can find minima by setting 𝛻𝛻𝑓𝑓 𝑥𝑥 = 0
◦ 𝑀𝑀 equations and 𝑀𝑀 unknowns.  
◦ May not have closed-form solution

Numerical methods:  Finds a sequence of estimates 𝑥𝑥𝑡𝑡
𝑥𝑥𝑡𝑡 → 𝑥𝑥∗

◦ Under some conditions, it converges to some other “good” minima
◦ Run on a computer program, like python

Next lecture:  Will discuss numerical methods to perform optimization

This lecture:  Use built-in python routine



Logistic Regression in Python

Sklearn uses very efficient numerical optimization.

Mostly internal to user
◦ Don’t need to compute gradients

42
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http://scikit-learn.org/stable/modules/linear_model.html#logistic-regression



Outline
Motivating Example:  Classifying a breast cancer test

Linear classifiers

Logistic regression

Fitting logistic regression models 

Measuring accuracy in classification
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Errors in Binary Classification
Two types of errors:
◦ Type I error (False positive / false alarm):  Decide �𝑦𝑦 = 1 when 𝑦𝑦 = 0
◦ Type II error (False negative / missed detection):  Decide �𝑦𝑦 = 0 when 𝑦𝑦 = 1

Implication of these errors may be different
◦ Think of breast cancer diagnosis

Accuracy of classifier can be measured by:
◦ 𝑇𝑇𝑃𝑃𝑅𝑅 = 𝑃𝑃( �𝑦𝑦 = 1|𝑦𝑦 = 1)
◦ 𝐹𝐹𝑃𝑃𝑅𝑅 = 𝑃𝑃 �𝑦𝑦 = 1 𝑦𝑦 = 0
◦ Accuracy=𝑃𝑃( �𝑦𝑦 = 1|𝑦𝑦 = 1)+ 𝑃𝑃 �𝑦𝑦 = 0 𝑦𝑦 = 0

◦ (percentage of correct classification)

44



Many Other Metrics
From previous slide
◦ 𝑇𝑇𝑃𝑃𝑅𝑅 = 𝑃𝑃( �𝑦𝑦 = 1|𝑦𝑦 = 1)=sensitivity
◦ 𝐹𝐹𝑃𝑃𝑅𝑅 = 𝑃𝑃 �𝑦𝑦 = 1 𝑦𝑦 = 0 =1-specificity

Machine learning often uses (positive=items of interests in retrieval applications)
◦ Recall = Sensitivity =TP/(TP+FN) (How many positives are detected among all positive?)
◦ Precision =TP/(TP+FP) (How many detected positive is actually positive?)
◦ F1-score = 𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑛𝑛 ∗𝑅𝑅𝑒𝑒𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅

(𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑛𝑛+𝑅𝑅𝑒𝑒𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅)/2
= 2𝑇𝑇𝑃𝑃

2𝑇𝑇𝑃𝑃+𝐹𝐹𝑁𝑁+𝐹𝐹𝑃𝑃
= 𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹2
◦ Accuracy=(TP+TF)/(TP+FP+TN+FN) (percentage of correct classification)

Medical tests:
◦ Sensitivity = 𝑃𝑃 �𝑦𝑦 = 1 𝑦𝑦 = 1 = 𝑇𝑇𝑃𝑃𝑅𝑅
◦ Specificity = 𝑃𝑃 �𝑦𝑦 = 0 𝑦𝑦 = 0 = 1 − 𝐹𝐹𝑃𝑃𝑅𝑅 =True negative rate
◦ Need a good tradeoff between sensitivity and specificity 
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Breast Cancer
Measure accuracy on test data 

Use 4-fold cross-validation

Sklearn has built-in functions for CV
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Go through the demo
Up to binary classification with cross validation
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Hard Decisions
Logistic classifier outputs a soft label:  𝑃𝑃 𝑦𝑦 = 1 𝑥𝑥 ∈ [0,1]
◦ 𝑃𝑃 𝑦𝑦 = 1 𝑥𝑥 ≈ 1 ⇒ 𝑦𝑦 = 1 more likely
◦ 𝑃𝑃 𝑦𝑦 = 0 𝑥𝑥 ≈ 1 ⇒ 𝑦𝑦 = 0 more likely

Can obtain a hard label by thresholding:
◦ Set �𝑦𝑦 = 1 𝑖𝑖𝑓𝑓 𝑃𝑃 𝑦𝑦 = 1 𝑥𝑥 > 𝑡𝑡
◦ 𝑡𝑡 = Threshold

How to set threshold?
◦ Set 𝑡𝑡 = 1

2
⇒ Minimizes overall error rate 

◦ Increasing 𝑡𝑡 ⇒ Decreases false positives, but also reduces sensitivity
◦ Decreasing 𝑡𝑡 ⇒ Increases sensitivity, but also increases false positive
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ROC Curve
Varying threshold obtains a set of classifier

Trades off FPR (1-specificity) and TPR (sensitivity)

Can visualize with ROC curve
◦ Receiver operating curve
◦ Term from digital communications
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Area Under the Curve (AUC)
As one may choose a particular threshold based on 
the desired trade-off between the TPR and FPR, it 
may not be appropriate to evaluate the performance 
of a classifier for a fixed threshold.

AUC is a measure of goodness for a classifier that is 
independent of the threshold. 

A method with a higher AUC means that under the 
same FPR, it has higher PPR.

What is the highest AUC?

Should report average AUC over cross validation 
folds
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Go through the demo
Up to binary classification evaluation using ROC
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Multi-Class Classification in Python
Two options

One vs Rest (OVR)
◦ Solve a binary classification problem for each class 𝑘𝑘
◦ For each class 𝑘𝑘, train on modified binary labels (indicates if sample is in class or not)

�𝑦𝑦𝑖𝑖 = �1 if 𝑦𝑦𝑖𝑖 = 𝑘𝑘
0 if 𝑦𝑦𝑖𝑖 ≠ 𝑘𝑘

◦ Predict based on classifier that yields highest score

Multinomial
◦ Directly solve weights for all classes using the multi-class cross entropy
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Metrics for Multiclass Classification
Using a 𝐾𝐾 × 𝐾𝐾 confusion matrix  

Should normalize the matrix:
◦ Sum over each row =1

Can compute accuracy:
◦ Per class:  This is the diagonal entry
◦ Average: The average of the diagonal entries
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LASSO Regularization for Logistic Regression
Similar to linear regression, we can use LASSO regularization with logistic regression
◦ Forces the weighting coefficients to be sparse. 

Add L1 penalty 𝐿𝐿 𝑾𝑾 = ∑𝑖𝑖=1𝑁𝑁 ln ∑𝑘𝑘 𝑒𝑒𝑧𝑧𝑖𝑖𝑘𝑘 − 𝑧𝑧𝑖𝑖𝑘𝑘𝑟𝑟𝑖𝑖𝑘𝑘 + 𝜆𝜆 𝑊𝑊 1

The regularization level 𝜆𝜆 should be chosen via cross validation as before

Sklearn implementation:

◦ Default use l2 penalty, to reduce the magnitude of weights

C is the inverse of regularization strength (C = 1/𝜆𝜆); must be a positive float. 
◦ Should use a large C is you do not want to apply regularization

Go through the LASSO part of the demo
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Go through the demo
Go though the last part with LASSO regression
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What You Should Know
Formulate a machine learning problem as a classification problem

◦ Identify features, class variable, training data

Visualize classification data using a scatter plot.  

Describe a linear classifier as an equation and on a plot.
◦ Determine visually if data is perfect linearly separable.

Formulate a classification problem using logistic regression
◦ Binary and multi-class
◦ Describe the logistic and soft-max function
◦ Understand the idea of using the logistic function to approximate the probability

Derive the loss function for ML estimation of the weights in logistic regression

Use sklearn packages to fit logistic regression models

Measure the accuracy of classification: precision, recall, accuracy

Adjust threshold of classifiers for trading off types of classification errors.  Draw a ROC curve and determine AUC

Perform LASSO regularization for feature selection
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