Single Pass Spectral Sparsification
in Dynamic Streams

1-Pass Spectral Sparsification in Dynamic Streams
4|

Overview

O In b(n) space, maintain a graph compression from which we
can always return a spectral sparsifier.

1-Pass Spectral Sparsification in Dynamic Streams
|

Overview

01 In O(n) space, maintain a graph compression from which we
can always return a spectral sparsifier.

Main technique

[Use £» heavy hitter sketches to sample by effective resistance
in the streaming model.

Outline
I I ——

Graph Sparsification

Semi-Streaming Computational Model

Prior Work Review

Our Algorithm
m Sampling in the Streaming Model
» Recursive Sparsification [Li, Miller, Peng '12]

Overview
S

Graph Sparsification

Semi-Streaming Computational Model

Prior Work Review

Our Algorithm
Sampling in the Streaming Model
Recursive Sparsification [Li, Miller, Peng '12]

Graph Sparsification
N I —
General Idea

[Approximate a dense graph with a much sparser graph.
1 Reduce O(n?) edges — O(nlog n) edges

Graph Sparsification
N I —

General Idea
[Approximate a dense graph with a much sparser graph.
1 Reduce O(n?) edges — O(nlog n) edges

W-

Graph Sparsification
N I —

Cut Sparsification (Benczir, Karger '96)

I Preserve every cut value to within (1 £ ¢) factor

¥ v

Applications: Minimum cut, sparsest cut, etc.

Graph Sparsification
N I —

Cut Sparsification (Benczir, Karger '96)

I Preserve every cut value to within (1 £ ¢) factor

o

Applications: Minimum cut, sparsest cut, etc.

Graph Sparsification
N I —

Cut Sparsification (Benczir, Karger '96)

I Preserve every cut value to within (1 £ ¢) factor

¥ o

Applications: Minimum cut, sparsest cut, etc.

Graph Sparsification
N I —

Cut Sparsification (Benczir, Karger '96)

I Preserve every cut value to within (1 £ ¢) factor

¥ o

Applications: Minimum cut, sparsest cut, etc.

Graph Sparsification
N I —

Cut Sparsification (Benczir, Karger '96)

1 Preserve every cut value to within (1 + ¢) factor

g - % &) Cy

Applications: Minimum cut, sparsest cut, etc.

Graph Sparsification
N I —

Cut Sparsification (Benczir, Karger '96)

I Preserve every cut value to within (1 £ ¢) factor

C2
% % £) C1

Applications: Minimum cut, sparsest cut, etc.

Graph Sparsification
N I —

Cut Sparsification (Benczir, Karger '96)

I Preserve every cut value to within (1 £ ¢) factor

C2
% % £) C1

Applications: Minimum cut, sparsest cut, etc.

Graph Sparsification
N I —

Cut Sparsification (Benczir, Karger '96)

I Preserve every cut value to within (1 £ ¢) factor

C
% %8) Ci

Applications: Minimum cut, sparsest cut, etc.

Graph Sparsification
N I —

Cut Sparsification (Benczir, Karger '96)

I Preserve every cut value to within (1 £ ¢) factor

Cs (1+¢)C,

Applications: Minimum cut, sparsest cut, etc.

Graph Sparsification

Cut Sparsification (Benczir, Karger '96)
Let B € R()*" be the vertex-edge incidence matrix for a
graph G.

Let x € {0,1}" be an “indicator vector” for some cut.

1 2 _V1 %) V3 V4_
[L €12 1 -1 0 0
€13 1 0 -1 0
es (O 0O 0 O
.4_ €23 0 1 -1 0
] e [0 1 0 -1
ess [0 0 0 0

Graph Sparsification

Cut Sparsification (Benczir, Karger '96)

Let B € R()*" be the vertex-edge incidence matrix for a
graph G.

Let x € {0,1}" be an “indicator vector” for some cut.

1 2 _V1 %) V3 V4_
*> L4 €12
ez |1 0 -1 0
e;s |0 0 0 O
e, e3 [0 1 -1 0
e ey (0 1 0 -1
e |lO 0 0 0]

B

Graph Sparsification

Cut Sparsification (Benczir, Karger '96)

Let B € R()*" be the vertex-edge incidence matrix for a
graph G.

Let x € {0,1}" be an “indicator vector” for some cut.

1 2 _V1 Vo V3 V4_
® ° €12 1 -1 0 0
€13
es (O 0 0 O
e, e3 [0 1 -1 0
® eq (0 1 0 -1
es [0 0 0 0]

Graph Sparsification

Cut Sparsification (Benczir, Karger '96)
Let B € R()*" be the vertex-edge incidence matrix for a
graph G.

Let x € {0,1}" be an “indicator vector” for some cut.

1 2 _V1 %) V3 V4_
[L €12 1 -1 0 0
€13 1 0 -1 0
€14
.4_ €23 0 1 -1 0
e e [0 1 0 -1
3 e |0 0 0 0]

B

Graph Sparsification

Cut Sparsification (Benczir, Karger '96)

Let B € R()*" be the vertex-edge incidence matrix for a
graph G.

Let x € {0,1}" be an “indicator vector” for some cut.

1 2 _V1 Vo V3 V4_
[2 L] €12 1 -1 0 0
ez |1 0 -1 0
es |0 0 0 O
®, e
e eq (0 1 0 -1
3 e |0 0 0 0]

Graph Sparsification

Cut Sparsification (Benczir, Karger '96)
Let B € R()*" be the vertex-edge incidence matrix for a
graph G.
Let x € {0,1}" be an “indicator vector” for some cut.

1 2 _V1 Vo V3 V4_
[2 ’ €12 1 -1 0 0
e3 |1 0 -1 0
es (O 0 0 O
e, e3 |01 -1 0
] €24
es [0 0 0 0

Graph Sparsification

Cut Sparsification (Benczir, Karger '96)
Let B € R()*" be the vertex-edge incidence matrix for a
graph G.

Let x € {0,1}" be an “indicator vector” for some cut.

1 2 _V1 Vo V3 V4_
[L €12 1 -1 0 0
€13 1 0 -1 0
es (O 0 0 O
.4_ €23 0 1 -1 0
] e [0 1 0 -1
ess [0 0 0 0

Graph Sparsification

Cut Sparsification (Benczir, Karger '96)
Let B € R()*" be the vertex-edge incidence matrix for a
graph G.

Let x € {0,1}" be an “indicator vector” for some cut.

1 2 _V1 Vo V3 V4_
[L €12 1 -1 0 0 1
€13 1 0 -1 0 1
es (O 0 0 O 0
.4_ e3 |0 1 -1 0]X 0
e e [0 1 0 -1
s |0 0 0 o] *

Graph Sparsification

Cut Sparsification (Benczir, Karger '96)
Let B € R()*" be the vertex-edge incidence matrix for a
graph G.

Let x € {0,1}" be an “indicator vector” for some cut.

1 2 _V1 Vo V3 V4_
[L €12 1 -1 0 0 1
€13 1 0 -1 0 1
es (O 0 0 O 0
.4_ e3 |0 1 -1 0]X 0 =
e e [0 1 0 -1
s |0 0 0 o] *

O =M= O = O

Graph Sparsification

Cut Sparsification (Benczir, Karger '96)
Let B € R()*" be the vertex-edge incidence matrix for a
graph G.

Let x € {0,1}" be an “indicator vector” for some cut.

1 2 _V1 Vo V3 V4_
L €12 1 -1 0 0 1
T y \ €13 1 0 -1 0 1
es (O 0 0 O 0
l .4_ e3 |0 1 -1 0]X 0 =
€24 0 1 0 -1 X
ess [0 0 0 0

O =M= O = O

Graph Sparsification

Cut Sparsification (Benczir, Karger '96)
Let B € R()*" be the vertex-edge incidence matrix for a
graph G.

Let x € {0,1}" be an “indicator vector” for some cut.

1 2 _V1 Vo V3 V4_
[/ €12 1 -1 0 0 1
\ €13 1 0 -1 0 1
s €14 0 0 0 0 0
/ .4_ e3 |0 1 -1 0]X 0 =
€24 0 1 0 -1
s |0 0 0 o] *

O =M= O = O

Graph Sparsification

Cut Sparsification (Benczir, Karger '96)
Let B € R()*" be the vertex-edge incidence matrix for a
graph G.

Let x € {0,1}" be an “indicator vector” for some cut.

1 2 _V1 Vo V3 V4_
[] \ €12 1 -1 0 0 1
y €13 1 0 -1 0 1
\. es |0 0 0 O 0
4 e3 |0 1 -1 0]X 0 =
[] e [0 1 0 -1 «
ess [0 0 0 0

O =M= O = O

Graph Sparsification

Cut Sparsification (Benczir, Karger '96)
Let B € R()*" be the vertex-edge incidence matrix for a
graph G.

Let x € {0,1}" be an “indicator vector” for some cut.

1 2 _V1 %) V3 V4_
[L €12 1 -1 0 0 1
€13 1 0 -1 0 1
es (O 0O 0 O 0
.4_ e3 |0 1 -1 0]X 0 =
e e [0 1 0 -1
es |0 0 0 o] *

O =M= O = O

Graph Sparsification
N I —

Cut Sparsification (Benczir, Karger '96) So, ||Bx||3 = cut value.

Find some B such that, for all x € {0,1}",

(1—e)lIBx|3 < [|Bx|3 < (1 +¢)[Bx[|3

Graph Sparsification
N I —

Cut Sparsification (Benczir, Karger '96) So, ||Bx||3 = cut value.

Find some B such that, for all x € {0,1}",

(1—e)lIBx|3 < [|Bx|3 < (1 +¢)[Bx[|3

1 x"BTBx ~ x' BT Bx.

0 L=B'B is the graph Laplacian.

Graph Sparsification
N I —

Spectral Sparsification (Spielman, Teng '04)

Find some B such that, for all x € {672 R”,

(1—e)lIBx|3 < [|Bx|3 < (1 +¢)[Bx[|3

Graph Sparsification
N I —

Spectral Sparsification (Spielman, Teng '04)

Goal
Find some B such that, for all x € {672 R”,

(1—e)lIBx|3 < [|Bx|3 < (1 +¢)[Bx[|3

Applications: Anything cut sparsifiers can do, Laplacian system
solves, computing effective resistances, spectral clustering,
calculating random walk properties, etc.

Graph Sparsification
N I —

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):

Graph Sparsification
|

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):

Graph Sparsification
|

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):

Graph Sparsification
|

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):

-0

Graph Sparsification
N I —

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):

-

Graph Sparsification
N I —

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):

iz o

Graph Sparsification
N I —

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):

-

Graph Sparsification
N I —

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):

-

Graph Sparsification
N I —

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):

-

Graph Sparsification

How are sparsifiers constructed?

Sampling probabilities:

Connectivity for cut sparsifiers [Benczir, Karger '96], [Fung,
Hariharan, Harvey, Panigrahi '11].

Graph Sparsification

How are sparsifiers constructed?

Sampling probabilities:

Connectivity for cut sparsifiers [Benczir, Karger '96], [Fung,
Hariharan, Harvey, Panigrahi '11].

Effective resistances (i.e statistical leverage scores) for
spectral sparsifiers [Spielman, Srivastava '08].

Graph Sparsification

How are sparsifiers constructed?

Sampling probabilities:

Connectivity for cut sparsifiers [Benczir, Karger '96], [Fung,
Hariharan, Harvey, Panigrahi '11].

Effective resistances (i.e statistical leverage scores) for
spectral sparsifiers [Spielman, Srivastava '08].

Actually oversample: by
Gives sparsifiers with O(nlog n) edges — reducing from O(2).

Motivation

Makes sense to compress a graph, but what if we cannot
afford to store it in the first place?

Is it possible to “sketch” a graph in small space by
maintaining a sparsifier or some other representation?

Overview
S

Graph Sparsification

Semi-Streaming Computational Model

Prior Work Review

Our Algorithm
Sampling in the Streaming Model
Recursive Sparsification [Li, Miller, Peng '12]

Semi-Streaming Model
4|
Introduced by Feigenbaum, Kannan, McGregor, Suri, Zhang '05.
] Space allowance nlog©(n).

1 Receive data via edge updates.

Semi-Streaming Model
4|
Introduced by Feigenbaum, Kannan, McGregor, Suri, Zhang '05.
] Space allowance nlog©(n).

1 Receive data via edge updates.

Semi-Streaming Model
4|
Introduced by Feigenbaum, Kannan, McGregor, Suri, Zhang '05.
] Space allowance nlog©(n).

1 Receive data via edge updates.

Semi-Streaming Model
|

Introduced by Feigenbaum, Kannan, McGregor, Suri, Zhang '05.
] Space allowance nlog©(n).

1 Receive data via edge updates.

Semi-Streaming Model
|

Introduced by Feigenbaum, Kannan, McGregor, Suri, Zhang '05.
] Space allowance nlog©(n).

1 Receive data via edge updates.

Semi-Streaming Model
|

Introduced by Feigenbaum, Kannan, McGregor, Suri, Zhang '05.
] Space allowance nlog©(n).

1 Receive data via edge updates.

Semi-Streaming Model
|

Introduced by Feigenbaum, Kannan, McGregor, Suri, Zhang '05.
] Space allowance nlog©(n).

1 Receive data via edge updates.

Semi-Streaming Model
|

Introduced by Feigenbaum, Kannan, McGregor, Suri, Zhang '05.
] Space allowance nlog©(n).

1 Receive data via edge updates.

Semi-Streaming Model
|

Introduced by Feigenbaum, Kannan, McGregor, Suri, Zhang '05.
] Space allowance nlog©(n).

1 Receive data via edge updates.

Semi-Streaming Model
|

Introduced by Feigenbaum, Kannan, McGregor, Suri, Zhang '05.
] Space allowance nlog©(n).

1 Receive data via edge updates.

Semi-Streaming Model

Introduced by Feigenbaum, Kannan, McGregor, Suri, Zhang '05.
Space allowance nlog®(n).
Receive data via edge updates.

Minimum spanning tree, maximal matching, graph
connectivity, etc.

Overview
S

Graph Sparsification

Semi-Streaming Computational Model

Prior Work Review

Our Algorithm
Sampling in the Streaming Model
Recursive Sparsification [Li, Miller, Peng '12]

Prior Work
N I ——

[[Ahn, Guha '09], [Kelner, Levin '11]: Cut and spectral
sparsifiers in insertion only streams.

Prior Work

[Ahn, Guha ’09], [Kelner, Levin "11]: Cut and spectral
sparsifiers in insertion only streams.

[Ahn, Guha, McGregor '12a]: Introduced linear sketching
for graphs. This breakthrough work is the first to handle edge
deletions for graph problems. Connectivity, MST, multi-pass
sparsifiers.

Prior Work

[Ahn, Guha ’09], [Kelner, Levin "11]: Cut and spectral
sparsifiers in insertion only streams.
[Ahn, Guha, McGregor '12a]: Introduced linear sketching
for graphs. This breakthrough work is the first to handle edge
deletions for graph problems. Connectivity, MST, multi-pass
sparsifiers.
[Ahn, Guha, McGregor '12b], [Goel, Kapralov, Post '12]:
Extend techniques to get single pass cut sparsifiers.

Prior Work

[Ahn, Guha ’09], [Kelner, Levin "11]: Cut and spectral
sparsifiers in insertion only streams.
[Ahn, Guha, McGregor '12a]: Introduced linear sketching
for graphs. This breakthrough work is the first to handle edge
deletions for graph problems. Connectivity, MST, multi-pass
sparsifiers.
[Ahn, Guha, McGregor '12b], [Goel, Kapralov, Post '12]:
Extend techniques to get single pass cut sparsifiers.
[Ahn, Guha, McGregor '13]: Dynamic spectral sparsifiers,
but O(n®/3) space.

Prior Work

[Ahn, Guha ’09], [Kelner, Levin "11]: Cut and spectral
sparsifiers in insertion only streams.

[Ahn, Guha, McGregor '12a]: Introduced linear sketching
for graphs. This breakthrough work is the first to handle edge

deletions for graph problems. Connectivity, MST, multi-pass
sparsifiers.

[Ahn, Guha, McGregor '12b], [Goel, Kapralov, Post '12]:
Extend techniques to get single pass cut sparsifiers.
[Ahn, Guha, McGregor '13]: Dynamic spectral sparsifiers,
but O(n®/3) space.
[Kapralov, Woodruff "14]: Dynamic spectral sparsifiers, but
multi-pass.

Prior Work

[Ahn, Guha ’09], [Kelner, Levin "11]: Cut and spectral
sparsifiers in insertion only streams.

[Ahn, Guha, McGregor '12a]: Introduced linear sketching
for graphs. This breakthrough work is the first to handle edge

deletions for graph problems. Connectivity, MST, multi-pass
sparsifiers.

[Ahn, Guha, McGregor '12b], [Goel, Kapralov, Post '12]:
Extend techniques to get single pass cut sparsifiers.

[Ahn, Guha, McGregor '13]: Dynamic spectral sparsifiers,
but O(n®/3) space.

[Kapralov, Woodruff "14]: Dynamic spectral sparsifiers, but
multi-pass.

Our result: 1-Pass dynamic spectral sparsifiers in O(n) space.

Overview
I I ——

Our Algorithm
m Sampling in the Streaming Model
» Recursive Sparsification [Li, Miller, Peng '12]

Why is the dynamic case hard?

S I —
Graph:

Why is the dynamic case hard?

|
Graph:

Sketch:

Why is the dynamic case hard?

|
Graph:

Sketch:

Why is the dynamic case hard?

|
Graph:

Why is the dynamic case hard?
4|

How do we get around this issue?
Take a cue from standard streaming algorithms:

1 Linear Sketching!

] Does not depend on insertion/deletion order.

Why is the dynamic case hard?
4|

How do we get around this issue?
Take a cue from standard streaming algorithms:

[0 Linear Sketching!

1 Does not depend on insertion/deletion order.

n O(n?) n

Oflog'n)| § | = O(log°n) II

B | o)

Overview
S

Graph Sparsification

Semi-Streaming Computational Model

Prior Work Review

Our Algorithm
m Sampling in the Streaming Model
Recursive Sparsification [Li, Miller, Peng '12]

Sampling in the Streaming Model
4|

We are still going to sample by effective resistance.

[0 Treat graph as resistor network, each edge has resistance 1.

Sampling in the Streaming Model
4|

We are still going to sample by effective resistance.

[0 Treat graph as resistor network, each edge has resistance 1.

Sampling in the Streaming Model
|

We are still going to sample by effective resistance.
1 Treat graph as resistor network, each edge has resistance 1.

1 Flow 1 unit of current from node i to j and measure voltage
drop between the nodes.

Sampling in the Streaming Model
I —

Using standard V' = IR equations:

F
X

@] ® +—0 <
I

B O S0

Sampling in the Streaming Model
I —

Using standard V' = IR equations:

r
X

@] ® +—0 <
I

B O S0
5
.
X

B OHH S0
I

@y ®+—0 <

Sampling in the Streaming Model
4|

Using standard V' = IR equations:

v C C A\
o u u o
1 r — r 1
L Xlt| = |t L 1 X = |t
a e € a
g n n g
e t t e
1
0
If xe = | 0], e's effective resistance is 7¢ = xeTL_lxe.

o L

Sampling in the Streaming Model
I I ———

Effective resistance of edge e is 7o = xIL_lxe.

Sampling in the Streaming Model
I —

Effective resistance of edge e is 7o = xeTL_lxe.

Alternatively, 7e is the et entry in the vector:

BL !x,

Sampling in the Streaming Model
4|

Effective resistance of edge e is 7o = xeTL_lxe.

Alternatively, 7e is the et entry in the vector:
BL !x,

AND

re=x L =x (L) TBTBL %, = |BL 'x.|3

Sampling in the Streaming Model
I I ———

We just need two more ingredients: BL !x.

Sampling in the Streaming Model

We just need two more ingredients:

/> Heavy Hitters [GLPS10]:
Sketch vector poly(n) vector in polylog(n) space.

Extract any element who's square is a O(1/ log n) fraction of
the vector's squared norm.

Sampling in the Streaming Model

We just need two more ingredients:

/> Heavy Hitters [GLPS10]:
Sketch vector poly(n) vector in polylog(n) space.

Extract any element who's square is a O(1/ log n) fraction of
the vector's squared norm.

Coarse Sparsifier:
L such that x"Lx = (1 & constant)x " Lx

Sampling in the Streaming Model
I —

Putting it all together: BL !x.
Sketch (Mpeavy hitters)B in nlog® n space.

Sampling in the Streaming Model
4|

Putting it all together: BL !x.
Sketch (Mpeavy hitters)B in nlog® n space.
CompUte (nheavy hitters)Bi:_l-

Sampling in the Streaming Model
4|

Putting it all together: BL !x.
Sketch (Mpeavy hitters)B in nlog® n space.
Compute (Mheavy hitters)BL .
For every possible edge e, compute (Mheavy hitters)BE_lxe

Sampling in the Streaming Model

Putting it all together: BL !x.

Sketch (Mpeavy hitters)B in nlog® n space.
CompUte (nheavy hitters)Bi:il-

For every possible edge e, compute (Mheavy hitters)BL_lxe

BL1x.(e)? N Lg

= =T
IBLx[3 e °

So, as long as 7 > O(1/ log n), we will recover the edge!

Sampling in the Streaming Model

Putting it all together:
Sketch (Mpeavy hitters)B in nlog® n space.
CompUte (nheavy hitters)Bi:il-
For every possible edge e, compute (Mheavy hitters)BI:_lxe

Extract heavy hitters from the vector, check if et entry is one.

BL 1x.(e)? N Lg

= =T
IBLx[3 e °

So, as long as 7 > O(1/log n), we will recover the edge!

Sampling in the Streaming Model
I —

How about edges with lower effective resistance? Sketch:

BL 1x.

Sampling in the Streaming Model
4|

How about edges with lower effective resistance? Sketch:

BL 1x.

Sampling in the Streaming Model

How about edges with lower effective resistance? Sketch:

B Bi;

BL 1x.

Sampling in the Streaming Model
|

How about edges with lower effective resistance? Sketch:

BL 1x.

Sampling in the Streaming Model
|

How about edges with lower effective resistance? Sketch:

%

B By, Bis Bys

I TN

BL 1x.

Sampling in the Streaming Model
I —

BL 1x,
How about edges with lower effective resistance?

Sampling in the Streaming Model
4|

BL 1x,
How about edges with lower effective resistance?
1 First level: 7. > 1/ log n with probability 1.

Sampling in the Streaming Model
4|

BL 1x,
How about edges with lower effective resistance?
1 First level: 7. > 1/ log n with probability 1.
1 Second level: 7. > 1/2log n with probability 1/2.

Sampling in the Streaming Model

How about edges with lower effective resistance?
First level: 7 > 1/log n with probability 1.
Second level: 7o > 1/2log n with probability 1/2.
Third level: 7o > 1/4log n with probability 1/4.

Sampling in the Streaming Model

How about edges with lower effective resistance?
First level: 7 > 1/log n with probability 1.
Second level: 7o > 1/2log n with probability 1/2.
Third level: 7o > 1/4log n with probability 1/4.
Forth level: 7. > 1/8log n with probability 1/8.

Sampling in the Streaming Model

How about edges with lower effective resistance?
First level: 7 > 1/log n with probability 1.
Second level: 7o > 1/2log n with probability 1/2.
Third level: 7o > 1/4log n with probability 1/4.
Forth level: 7. > 1/8log n with probability 1/8.

Sampling in the Streaming Model

How about edges with lower effective resistance?
First level: 7 > 1/log n with probability 1.
Second level: 7o > 1/2log n with probability 1/2.
Third level: 7o > 1/4log n with probability 1/4.
Forth level: 7. > 1/8log n with probability 1/8.

So, we can sample every edge by

Overview

Graph Sparsification
Semi-Streaming Computational Model
Prior Work Review

Our Algorithm
Sampling in the Streaming Model
» Recursive Sparsification [Li, Miller, Peng '12]

Sparsifer Chain
|

Final Piece [Li, Miller, Peng '12]

1 We needed a constant error spectral sparsifier to get our
(1 + €) sparsifier.

e

G

Sparsifer Chain
|

Final Piece [Li, Miller, Peng '12]

1 We needed a constant error spectral sparsifier to get our
(1 + €) sparsifier.

e

G

Sparsifer Chain
|

Final Piece [Li, Miller, Peng '12]

1 We needed a constant error spectral sparsifier to get our
(1 + €) sparsifier.

R

G

Sparsifer Chain
|

Final Piece [Li, Miller, Peng '12]

1 We needed a constant error spectral sparsifier to get our
(1 + €) sparsifier.

e A A

Sparsifer Chain
|

Final Piece [Li, Miller, Peng '12]

1 We needed a constant error spectral sparsifier to get our
(1 + €) sparsifier.

DR <A R B

Conclusion

Final Thoughts:
Note that everything we did extends unmodified to general
matrices B and general quadratic forms BT B.
Just need to ensure that we have a row dictionary and can
thus test every possible entry.
Generically, storing a compression of BT B takes Q(n?) space.
Avoid lower bound simply when the row dictionary is poly(n)
size.

Conclusion
S

Thank you!

	Graph Sparsification
	Semi-Streaming Computational Model
	Prior Work Review
	Our Algorithm
	Sampling in the Streaming Model
	Recursive Sparsification [Li, Miller, Peng '12]

