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Preserve every cut value to within (1± ε) factor

Applications: Minimum cut, sparsest cut, etc.



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)
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Let B ∈ R(n2)×n be the vertex-edge incidence matrix for a
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Let x ∈ {0, 1}n be an “indicator vector” for some cut.

‖Bx‖22 = cut value
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Let B ∈ R(n2)×n be the vertex-edge incidence matrix for a
graph G .

Let x ∈ {0, 1}n be an “indicator vector” for some cut.

‖Bx‖22 = cut value

v1 v2 v3 v4



e12 1 -1 0 0
e13 1 0 -1 0
e14 0 0 0 0
e23 0 1 -1 0
e24 0 1 0 -1
e34 0 0 0 0

B

×




1
1
0
0
x

=





0
1
0
1
1
0



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)
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x>B̃>B̃x ≈ x>B>Bx.

L = B>B is the graph Laplacian.
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calculating random walk properties, etc.



Graph Sparsification

Spectral Sparsification (Spielman, Teng ’04)

Goal

Find some B̃ such that, for all x ∈ {0, 1}n Rn,

(1− ε)‖Bx‖22 ≤ ‖B̃x‖22 ≤ (1 + ε)‖Bx‖22

Applications: Anything cut sparsifiers can do, Laplacian system
solves, computing effective resistances, spectral clustering,
calculating random walk properties, etc.



Graph Sparsification

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):



Graph Sparsification

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):



Graph Sparsification

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):



Graph Sparsification

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):



Graph Sparsification

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):



Graph Sparsification

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):



Graph Sparsification

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):



Graph Sparsification

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):



Graph Sparsification

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):



Graph Sparsification

How are sparsifiers constructed?

Sampling probabilities:

Connectivity for cut sparsifiers [Benczúr, Karger ’96], [Fung,
Hariharan, Harvey, Panigrahi ’11].

Effective resistances (i.e statistical leverage scores) for
spectral sparsifiers [Spielman, Srivastava ’08].

Actually oversample: by (effective resistance)× O(log n).
Gives sparsifiers with O(n log n) edges – reducing from O(n2).
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Motivation

Makes sense to compress a graph, but what if we cannot
afford to store it in the first place?

Is it possible to “sketch” a graph in small space by
maintaining a sparsifier or some other representation?
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[Ahn, Guha ’09], [Kelner, Levin ’11]: Cut and spectral
sparsifiers in insertion only streams.

[Ahn, Guha, McGregor ’12a]: Introduced linear sketching
for graphs. This breakthrough work is the first to handle edge
deletions for graph problems. Connectivity, MST, multi-pass
sparsifiers.

[Ahn, Guha, McGregor ’12b], [Goel, Kapralov, Post ’12]:
Extend techniques to get single pass cut sparsifiers.

[Ahn, Guha, McGregor ’13]: Dynamic spectral sparsifiers,
but O(n5/3) space.

[Kapralov, Woodruff ’14]: Dynamic spectral sparsifiers, but
multi-pass.

Our result: 1-Pass dynamic spectral sparsifiers in Õ(n) space.
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Sampling in the Streaming Model

We just need two more ingredients: BL−1xe

`2 Heavy Hitters [GLPS10]:

Sketch vector poly(n) vector in polylog(n) space.

Extract any element who’s square is a O(1/ log n) fraction of
the vector’s squared norm.

Coarse Sparsifier:

L̃ such that x>L̃x = (1± constant)x>Lx
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Putting it all together: BL−1xe

1 Sketch (Πheavy hitters)B in n logc n space.

2 Compute (Πheavy hitters)BL̃−1.

3 For every possible edge e, compute (Πheavy hitters)BL̃−1xe

4 Extract heavy hitters from the vector, check if eth entry is one.

BL̃−1xe(e)2

‖BL̃−1xe‖22
≈ τ2e
τe

= τe

So, as long as τe > O(1/ log n), we will recover the edge!
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BL−1xe
How about edges with lower effective resistance?
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Conclusion

Final Thoughts:

Note that everything we did extends unmodified to general
matrices B and general quadratic forms B>B.

Just need to ensure that we have a row dictionary and can
thus test every possible entry.

Generically, storing a compression of B>B takes Ω(n2) space.
Avoid lower bound simply when the row dictionary is poly(n)
size.



Conclusion

Thank you!
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