
Single Pass Spectral Sparsification

in Dynamic Streams

2014.10.21 M. Kapralov, Y.T. Lee, C. Musco, C. Musco, A. Sidford
Massachusetts Institute of Technology



1-Pass Spectral Sparsification in Dynamic Streams

Overview

In Õ(n) space, maintain a graph compression from which we
can always return a spectral sparsifier.

Main technique

Use `2 heavy hitter sketches to sample by effective resistance
in the streaming model.



1-Pass Spectral Sparsification in Dynamic Streams

Overview

In Õ(n) space, maintain a graph compression from which we
can always return a spectral sparsifier.

Main technique

Use `2 heavy hitter sketches to sample by effective resistance
in the streaming model.



Outline

1 Graph Sparsification

2 Semi-Streaming Computational Model

3 Prior Work Review

4 Our Algorithm
Sampling in the Streaming Model
Recursive Sparsification [Li, Miller, Peng ’12]



Overview

1 Graph Sparsification

2 Semi-Streaming Computational Model

3 Prior Work Review

4 Our Algorithm
Sampling in the Streaming Model
Recursive Sparsification [Li, Miller, Peng ’12]



Graph Sparsification

General Idea

Approximate a dense graph with a much sparser graph.

Reduce O(n2) edges → O(n log n) edges



Graph Sparsification

General Idea

Approximate a dense graph with a much sparser graph.

Reduce O(n2) edges → O(n log n) edges



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Preserve every cut value to within (1± ε) factor

Applications: Minimum cut, sparsest cut, etc.



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Preserve every cut value to within (1± ε) factor

Applications: Minimum cut, sparsest cut, etc.



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Preserve every cut value to within (1± ε) factor

Applications: Minimum cut, sparsest cut, etc.



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Preserve every cut value to within (1± ε) factor

Applications: Minimum cut, sparsest cut, etc.



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Preserve every cut value to within (1± ε) factor

Applications: Minimum cut, sparsest cut, etc.



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Preserve every cut value to within (1± ε) factor

Applications: Minimum cut, sparsest cut, etc.



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Preserve every cut value to within (1± ε) factor

Applications: Minimum cut, sparsest cut, etc.



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Preserve every cut value to within (1± ε) factor

Applications: Minimum cut, sparsest cut, etc.



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Preserve every cut value to within (1± ε) factor

Applications: Minimum cut, sparsest cut, etc.



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Let B ∈ R(n2)×n be the vertex-edge incidence matrix for a
graph G .

Let x ∈ {0, 1}n be an “indicator vector” for some cut.

‖Bx‖22 = cut value

v1 v2 v3 v4



e12 1 -1 0 0
e13 1 0 -1 0
e14 0 0 0 0
e23 0 1 -1 0
e24 0 1 0 -1
e34 0 0 0 0

B

×




1
1
0
0
x

=





0
1
0
1
1
0



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Let B ∈ R(n2)×n be the vertex-edge incidence matrix for a
graph G .

Let x ∈ {0, 1}n be an “indicator vector” for some cut.

‖Bx‖22 = cut value

v1 v2 v3 v4



e12 1 -1 0 0
e13 1 0 -1 0
e14 0 0 0 0
e23 0 1 -1 0
e24 0 1 0 -1
e34 0 0 0 0

B

×




1
1
0
0
x

=





0
1
0
1
1
0



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Let B ∈ R(n2)×n be the vertex-edge incidence matrix for a
graph G .

Let x ∈ {0, 1}n be an “indicator vector” for some cut.

‖Bx‖22 = cut value

v1 v2 v3 v4



e12 1 -1 0 0
e13 1 0 -1 0
e14 0 0 0 0
e23 0 1 -1 0
e24 0 1 0 -1
e34 0 0 0 0

B

×




1
1
0
0
x

=





0
1
0
1
1
0



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Let B ∈ R(n2)×n be the vertex-edge incidence matrix for a
graph G .

Let x ∈ {0, 1}n be an “indicator vector” for some cut.

‖Bx‖22 = cut value

v1 v2 v3 v4



e12 1 -1 0 0
e13 1 0 -1 0
e14 0 0 0 0
e23 0 1 -1 0
e24 0 1 0 -1
e34 0 0 0 0

B

×




1
1
0
0
x

=





0
1
0
1
1
0



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Let B ∈ R(n2)×n be the vertex-edge incidence matrix for a
graph G .

Let x ∈ {0, 1}n be an “indicator vector” for some cut.

‖Bx‖22 = cut value

v1 v2 v3 v4



e12 1 -1 0 0
e13 1 0 -1 0
e14 0 0 0 0
e23 0 1 -1 0
e24 0 1 0 -1
e34 0 0 0 0

B

×




1
1
0
0
x

=





0
1
0
1
1
0



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Let B ∈ R(n2)×n be the vertex-edge incidence matrix for a
graph G .

Let x ∈ {0, 1}n be an “indicator vector” for some cut.

‖Bx‖22 = cut value

v1 v2 v3 v4



e12 1 -1 0 0
e13 1 0 -1 0
e14 0 0 0 0
e23 0 1 -1 0
e24 0 1 0 -0
e34 0 0 0 0

B

×




1
1
0
0
x

=





0
1
0
1
1
0



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Let B ∈ R(n2)×n be the vertex-edge incidence matrix for a
graph G .

Let x ∈ {0, 1}n be an “indicator vector” for some cut.

‖Bx‖22 = cut value

v1 v2 v3 v4



e12 1 -1 0 0
e13 1 0 -1 0
e14 0 0 0 0
e23 0 1 -1 0
e24 0 1 0 -1
e34 0 0 0 0

B

×




1
1
0
0
x

=





0
1
0
1
1
0



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Let B ∈ R(n2)×n be the vertex-edge incidence matrix for a
graph G .

Let x ∈ {0, 1}n be an “indicator vector” for some cut.

‖Bx‖22 = cut value

v1 v2 v3 v4



e12 1 -1 0 0
e13 1 0 -1 0
e14 0 0 0 0
e23 0 1 -1 0
e24 0 1 0 -1
e34 0 0 0 0

B

×




1
1
0
0
x

=





0
1
0
1
1
0



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Let B ∈ R(n2)×n be the vertex-edge incidence matrix for a
graph G .

Let x ∈ {0, 1}n be an “indicator vector” for some cut.

‖Bx‖22 = cut value

v1 v2 v3 v4



e12 1 -1 0 0
e13 1 0 -1 0
e14 0 0 0 0
e23 0 1 -1 0
e24 0 1 0 -1
e34 0 0 0 0

B

×




1
1
0
0
x

=





0
1
0
1
1
0



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Let B ∈ R(n2)×n be the vertex-edge incidence matrix for a
graph G .

Let x ∈ {0, 1}n be an “indicator vector” for some cut.

‖Bx‖22 = cut value

v1 v2 v3 v4



e12 1 -1 0 0
e13 1 0 -1 0
e14 0 0 0 0
e23 0 1 -1 0
e24 0 1 0 -1
e34 0 0 0 0

B

×




1
1
0
0
x

=





0
1
0
1
1
0



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Let B ∈ R(n2)×n be the vertex-edge incidence matrix for a
graph G .

Let x ∈ {0, 1}n be an “indicator vector” for some cut.

‖Bx‖22 = cut value

v1 v2 v3 v4



e12 1 -1 0 0
e13 1 0 -1 0
e14 0 0 0 0
e23 0 1 -1 0
e24 0 1 0 -1
e34 0 0 0 0

B

×




1
1
0
0
x

=





0
1
0
1
1
0



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Let B ∈ R(n2)×n be the vertex-edge incidence matrix for a
graph G .

Let x ∈ {0, 1}n be an “indicator vector” for some cut.

‖Bx‖22 = cut value

v1 v2 v3 v4



e12 1 -1 0 0
e13 1 0 -1 0
e14 0 0 0 0
e23 0 1 -1 0
e24 0 1 0 -1
e34 0 0 0 0

B

×




1
1
0
0
x

=





0
1
0
1
1
0



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Let B ∈ R(n2)×n be the vertex-edge incidence matrix for a
graph G .

Let x ∈ {0, 1}n be an “indicator vector” for some cut.

‖Bx‖22 = cut value

v1 v2 v3 v4



e12 1 -1 0 0
e13 1 0 -1 0
e14 0 0 0 0
e23 0 1 -1 0
e24 0 1 0 -1
e34 0 0 0 0

B

×




1
1
0
0
x

=





0
1
0
1
1
0



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96) So, ‖Bx‖22 = cut value.

Goal

Find some B̃ such that, for all x ∈ {0, 1}n,

(1− ε)‖Bx‖22 ≤ ‖B̃x‖22 ≤ (1 + ε)‖Bx‖22

x>B̃>B̃x ≈ x>B>Bx.

L = B>B is the graph Laplacian.



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96) So, ‖Bx‖22 = cut value.

Goal

Find some B̃ such that, for all x ∈ {0, 1}n,

(1− ε)‖Bx‖22 ≤ ‖B̃x‖22 ≤ (1 + ε)‖Bx‖22

x>B̃>B̃x ≈ x>B>Bx.

L = B>B is the graph Laplacian.



Graph Sparsification

Spectral Sparsification (Spielman, Teng ’04)

Goal

Find some B̃ such that, for all x ∈ {0, 1}n Rn,

(1− ε)‖Bx‖22 ≤ ‖B̃x‖22 ≤ (1 + ε)‖Bx‖22

Applications: Anything cut sparsifiers can do, Laplacian system
solves, computing effective resistances, spectral clustering,
calculating random walk properties, etc.



Graph Sparsification

Spectral Sparsification (Spielman, Teng ’04)

Goal

Find some B̃ such that, for all x ∈ {0, 1}n Rn,

(1− ε)‖Bx‖22 ≤ ‖B̃x‖22 ≤ (1 + ε)‖Bx‖22

Applications: Anything cut sparsifiers can do, Laplacian system
solves, computing effective resistances, spectral clustering,
calculating random walk properties, etc.



Graph Sparsification

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):



Graph Sparsification

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):



Graph Sparsification

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):



Graph Sparsification

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):



Graph Sparsification

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):



Graph Sparsification

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):



Graph Sparsification

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):



Graph Sparsification

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):



Graph Sparsification

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):



Graph Sparsification

How are sparsifiers constructed?

Sampling probabilities:

Connectivity for cut sparsifiers [Benczúr, Karger ’96], [Fung,
Hariharan, Harvey, Panigrahi ’11].

Effective resistances (i.e statistical leverage scores) for
spectral sparsifiers [Spielman, Srivastava ’08].

Actually oversample: by (effective resistance)× O(log n).
Gives sparsifiers with O(n log n) edges – reducing from O(n2).



Graph Sparsification

How are sparsifiers constructed?

Sampling probabilities:

Connectivity for cut sparsifiers [Benczúr, Karger ’96], [Fung,
Hariharan, Harvey, Panigrahi ’11].

Effective resistances (i.e statistical leverage scores) for
spectral sparsifiers [Spielman, Srivastava ’08].

Actually oversample: by (effective resistance)× O(log n).
Gives sparsifiers with O(n log n) edges – reducing from O(n2).



Graph Sparsification

How are sparsifiers constructed?

Sampling probabilities:

Connectivity for cut sparsifiers [Benczúr, Karger ’96], [Fung,
Hariharan, Harvey, Panigrahi ’11].

Effective resistances (i.e statistical leverage scores) for
spectral sparsifiers [Spielman, Srivastava ’08].

Actually oversample: by (effective resistance)× O(log n).
Gives sparsifiers with O(n log n) edges – reducing from O(n2).



Motivation

Makes sense to compress a graph, but what if we cannot
afford to store it in the first place?

Is it possible to “sketch” a graph in small space by
maintaining a sparsifier or some other representation?



Overview

1 Graph Sparsification

2 Semi-Streaming Computational Model

3 Prior Work Review

4 Our Algorithm
Sampling in the Streaming Model
Recursive Sparsification [Li, Miller, Peng ’12]



Semi-Streaming Model

Introduced by Feigenbaum, Kannan, McGregor, Suri, Zhang ’05.

Space allowance n logc(n).

Receive data via edge updates.

Minimum spanning tree, maximal matching, graph
connectivity, etc.



Semi-Streaming Model

Introduced by Feigenbaum, Kannan, McGregor, Suri, Zhang ’05.

Space allowance n logc(n).

Receive data via edge updates.

Minimum spanning tree, maximal matching, graph
connectivity, etc.



Semi-Streaming Model

Introduced by Feigenbaum, Kannan, McGregor, Suri, Zhang ’05.

Space allowance n logc(n).

Receive data via edge updates.

Minimum spanning tree, maximal matching, graph
connectivity, etc.



Semi-Streaming Model

Introduced by Feigenbaum, Kannan, McGregor, Suri, Zhang ’05.

Space allowance n logc(n).

Receive data via edge updates.

Minimum spanning tree, maximal matching, graph
connectivity, etc.



Semi-Streaming Model

Introduced by Feigenbaum, Kannan, McGregor, Suri, Zhang ’05.

Space allowance n logc(n).

Receive data via edge updates.

Minimum spanning tree, maximal matching, graph
connectivity, etc.



Semi-Streaming Model

Introduced by Feigenbaum, Kannan, McGregor, Suri, Zhang ’05.

Space allowance n logc(n).

Receive data via edge updates.

Minimum spanning tree, maximal matching, graph
connectivity, etc.



Semi-Streaming Model

Introduced by Feigenbaum, Kannan, McGregor, Suri, Zhang ’05.

Space allowance n logc(n).

Receive data via edge updates.

Minimum spanning tree, maximal matching, graph
connectivity, etc.



Semi-Streaming Model

Introduced by Feigenbaum, Kannan, McGregor, Suri, Zhang ’05.

Space allowance n logc(n).

Receive data via edge updates.

Minimum spanning tree, maximal matching, graph
connectivity, etc.



Semi-Streaming Model

Introduced by Feigenbaum, Kannan, McGregor, Suri, Zhang ’05.

Space allowance n logc(n).

Receive data via edge updates.

Minimum spanning tree, maximal matching, graph
connectivity, etc.



Semi-Streaming Model

Introduced by Feigenbaum, Kannan, McGregor, Suri, Zhang ’05.

Space allowance n logc(n).

Receive data via edge updates.

Minimum spanning tree, maximal matching, graph
connectivity, etc.



Semi-Streaming Model

Introduced by Feigenbaum, Kannan, McGregor, Suri, Zhang ’05.

Space allowance n logc(n).

Receive data via edge updates.

Minimum spanning tree, maximal matching, graph
connectivity, etc.



Overview

1 Graph Sparsification

2 Semi-Streaming Computational Model

3 Prior Work Review

4 Our Algorithm
Sampling in the Streaming Model
Recursive Sparsification [Li, Miller, Peng ’12]



Prior Work

[Ahn, Guha ’09], [Kelner, Levin ’11]: Cut and spectral
sparsifiers in insertion only streams.

[Ahn, Guha, McGregor ’12a]: Introduced linear sketching
for graphs. This breakthrough work is the first to handle edge
deletions for graph problems. Connectivity, MST, multi-pass
sparsifiers.

[Ahn, Guha, McGregor ’12b], [Goel, Kapralov, Post ’12]:
Extend techniques to get single pass cut sparsifiers.

[Ahn, Guha, McGregor ’13]: Dynamic spectral sparsifiers,
but O(n5/3) space.

[Kapralov, Woodruff ’14]: Dynamic spectral sparsifiers, but
multi-pass.

Our result: 1-Pass dynamic spectral sparsifiers in Õ(n) space.



Prior Work

[Ahn, Guha ’09], [Kelner, Levin ’11]: Cut and spectral
sparsifiers in insertion only streams.

[Ahn, Guha, McGregor ’12a]: Introduced linear sketching
for graphs. This breakthrough work is the first to handle edge
deletions for graph problems. Connectivity, MST, multi-pass
sparsifiers.

[Ahn, Guha, McGregor ’12b], [Goel, Kapralov, Post ’12]:
Extend techniques to get single pass cut sparsifiers.

[Ahn, Guha, McGregor ’13]: Dynamic spectral sparsifiers,
but O(n5/3) space.

[Kapralov, Woodruff ’14]: Dynamic spectral sparsifiers, but
multi-pass.

Our result: 1-Pass dynamic spectral sparsifiers in Õ(n) space.



Prior Work

[Ahn, Guha ’09], [Kelner, Levin ’11]: Cut and spectral
sparsifiers in insertion only streams.

[Ahn, Guha, McGregor ’12a]: Introduced linear sketching
for graphs. This breakthrough work is the first to handle edge
deletions for graph problems. Connectivity, MST, multi-pass
sparsifiers.

[Ahn, Guha, McGregor ’12b], [Goel, Kapralov, Post ’12]:
Extend techniques to get single pass cut sparsifiers.

[Ahn, Guha, McGregor ’13]: Dynamic spectral sparsifiers,
but O(n5/3) space.

[Kapralov, Woodruff ’14]: Dynamic spectral sparsifiers, but
multi-pass.

Our result: 1-Pass dynamic spectral sparsifiers in Õ(n) space.



Prior Work

[Ahn, Guha ’09], [Kelner, Levin ’11]: Cut and spectral
sparsifiers in insertion only streams.

[Ahn, Guha, McGregor ’12a]: Introduced linear sketching
for graphs. This breakthrough work is the first to handle edge
deletions for graph problems. Connectivity, MST, multi-pass
sparsifiers.

[Ahn, Guha, McGregor ’12b], [Goel, Kapralov, Post ’12]:
Extend techniques to get single pass cut sparsifiers.

[Ahn, Guha, McGregor ’13]: Dynamic spectral sparsifiers,
but O(n5/3) space.

[Kapralov, Woodruff ’14]: Dynamic spectral sparsifiers, but
multi-pass.

Our result: 1-Pass dynamic spectral sparsifiers in Õ(n) space.



Prior Work

[Ahn, Guha ’09], [Kelner, Levin ’11]: Cut and spectral
sparsifiers in insertion only streams.

[Ahn, Guha, McGregor ’12a]: Introduced linear sketching
for graphs. This breakthrough work is the first to handle edge
deletions for graph problems. Connectivity, MST, multi-pass
sparsifiers.

[Ahn, Guha, McGregor ’12b], [Goel, Kapralov, Post ’12]:
Extend techniques to get single pass cut sparsifiers.

[Ahn, Guha, McGregor ’13]: Dynamic spectral sparsifiers,
but O(n5/3) space.

[Kapralov, Woodruff ’14]: Dynamic spectral sparsifiers, but
multi-pass.

Our result: 1-Pass dynamic spectral sparsifiers in Õ(n) space.



Prior Work

[Ahn, Guha ’09], [Kelner, Levin ’11]: Cut and spectral
sparsifiers in insertion only streams.

[Ahn, Guha, McGregor ’12a]: Introduced linear sketching
for graphs. This breakthrough work is the first to handle edge
deletions for graph problems. Connectivity, MST, multi-pass
sparsifiers.

[Ahn, Guha, McGregor ’12b], [Goel, Kapralov, Post ’12]:
Extend techniques to get single pass cut sparsifiers.

[Ahn, Guha, McGregor ’13]: Dynamic spectral sparsifiers,
but O(n5/3) space.

[Kapralov, Woodruff ’14]: Dynamic spectral sparsifiers, but
multi-pass.

Our result: 1-Pass dynamic spectral sparsifiers in Õ(n) space.



Overview

1 Graph Sparsification

2 Semi-Streaming Computational Model

3 Prior Work Review

4 Our Algorithm
Sampling in the Streaming Model
Recursive Sparsification [Li, Miller, Peng ’12]



Why is the dynamic case hard?

Graph:

Sketch:



Why is the dynamic case hard?

Graph:

Sketch:



Why is the dynamic case hard?

Graph:

Sketch:



Why is the dynamic case hard?

Graph:

Sketch:



Why is the dynamic case hard?

How do we get around this issue?
Take a cue from standard streaming algorithms:

Linear Sketching!

Does not depend on insertion/deletion order.



Why is the dynamic case hard?

How do we get around this issue?
Take a cue from standard streaming algorithms:

Linear Sketching!

Does not depend on insertion/deletion order.



Overview

1 Graph Sparsification

2 Semi-Streaming Computational Model

3 Prior Work Review

4 Our Algorithm
Sampling in the Streaming Model
Recursive Sparsification [Li, Miller, Peng ’12]



Sampling in the Streaming Model

We are still going to sample by effective resistance.

Treat graph as resistor network, each edge has resistance 1.

Flow 1 unit of current from node i to j and measure voltage
drop between the nodes.



Sampling in the Streaming Model

We are still going to sample by effective resistance.

Treat graph as resistor network, each edge has resistance 1.

Flow 1 unit of current from node i to j and measure voltage
drop between the nodes.



Sampling in the Streaming Model

We are still going to sample by effective resistance.

Treat graph as resistor network, each edge has resistance 1.

Flow 1 unit of current from node i to j and measure voltage
drop between the nodes.



Sampling in the Streaming Model

Using standard V = IR equations:

If xe =


1
0
0
-1
0

, e’s effective resistance is τe = x>e L−1xe .



Sampling in the Streaming Model

Using standard V = IR equations:

If xe =


1
0
0
-1
0

, e’s effective resistance is τe = x>e L−1xe .



Sampling in the Streaming Model

Using standard V = IR equations:

If xe =


1
0
0
-1
0

, e’s effective resistance is τe = x>e L−1xe .



Sampling in the Streaming Model

Effective resistance of edge e is τe = x>e L−1xe .

Alternatively, τe is the eth entry in the vector:

BL−1xe

AND

τe = x>e L−1xe = x>e (L−1)>B>BL−1xe = ‖BL−1xe‖22



Sampling in the Streaming Model

Effective resistance of edge e is τe = x>e L−1xe .

Alternatively, τe is the eth entry in the vector:

BL−1xe

AND

τe = x>e L−1xe = x>e (L−1)>B>BL−1xe = ‖BL−1xe‖22



Sampling in the Streaming Model

Effective resistance of edge e is τe = x>e L−1xe .

Alternatively, τe is the eth entry in the vector:

BL−1xe

AND

τe = x>e L−1xe = x>e (L−1)>B>BL−1xe = ‖BL−1xe‖22



Sampling in the Streaming Model

We just need two more ingredients: BL−1xe

`2 Heavy Hitters [GLPS10]:

Sketch vector poly(n) vector in polylog(n) space.

Extract any element who’s square is a O(1/ log n) fraction of
the vector’s squared norm.

Coarse Sparsifier:

L̃ such that x>L̃x = (1± constant)x>Lx



Sampling in the Streaming Model

We just need two more ingredients: BL−1xe

`2 Heavy Hitters [GLPS10]:

Sketch vector poly(n) vector in polylog(n) space.

Extract any element who’s square is a O(1/ log n) fraction of
the vector’s squared norm.

Coarse Sparsifier:

L̃ such that x>L̃x = (1± constant)x>Lx



Sampling in the Streaming Model

We just need two more ingredients: BL−1xe

`2 Heavy Hitters [GLPS10]:

Sketch vector poly(n) vector in polylog(n) space.

Extract any element who’s square is a O(1/ log n) fraction of
the vector’s squared norm.

Coarse Sparsifier:

L̃ such that x>L̃x = (1± constant)x>Lx



Sampling in the Streaming Model

Putting it all together: BL−1xe

1 Sketch (Πheavy hitters)B in n logc n space.

2 Compute (Πheavy hitters)BL̃−1.

3 For every possible edge e, compute (Πheavy hitters)BL̃−1xe

4 Extract heavy hitters from the vector, check if eth entry is one.

BL̃−1xe(e)2

‖BL̃−1xe‖22
≈ τ2e
τe

= τe

So, as long as τe > O(1/ log n), we will recover the edge!



Sampling in the Streaming Model

Putting it all together: BL−1xe

1 Sketch (Πheavy hitters)B in n logc n space.

2 Compute (Πheavy hitters)BL̃−1.

3 For every possible edge e, compute (Πheavy hitters)BL̃−1xe

4 Extract heavy hitters from the vector, check if eth entry is one.

BL̃−1xe(e)2

‖BL̃−1xe‖22
≈ τ2e
τe

= τe

So, as long as τe > O(1/ log n), we will recover the edge!



Sampling in the Streaming Model

Putting it all together: BL−1xe

1 Sketch (Πheavy hitters)B in n logc n space.

2 Compute (Πheavy hitters)BL̃−1.

3 For every possible edge e, compute (Πheavy hitters)BL̃−1xe

4 Extract heavy hitters from the vector, check if eth entry is one.

BL̃−1xe(e)2

‖BL̃−1xe‖22
≈ τ2e
τe

= τe

So, as long as τe > O(1/ log n), we will recover the edge!



Sampling in the Streaming Model

Putting it all together: BL−1xe

1 Sketch (Πheavy hitters)B in n logc n space.

2 Compute (Πheavy hitters)BL̃−1.

3 For every possible edge e, compute (Πheavy hitters)BL̃−1xe

4 Extract heavy hitters from the vector, check if eth entry is one.

BL̃−1xe(e)2

‖BL̃−1xe‖22
≈ τ2e
τe

= τe

So, as long as τe > O(1/ log n), we will recover the edge!



Sampling in the Streaming Model

Putting it all together: BL−1xe

1 Sketch (Πheavy hitters)B in n logc n space.

2 Compute (Πheavy hitters)BL̃−1.

3 For every possible edge e, compute (Πheavy hitters)BL̃−1xe

4 Extract heavy hitters from the vector, check if eth entry is one.

BL̃−1xe(e)2

‖BL̃−1xe‖22
≈ τ2e
τe

= τe

So, as long as τe > O(1/ log n), we will recover the edge!



Sampling in the Streaming Model

How about edges with lower effective resistance? Sketch:

BL−1xe



Sampling in the Streaming Model

How about edges with lower effective resistance? Sketch:

BL−1xe



Sampling in the Streaming Model

How about edges with lower effective resistance? Sketch:

BL−1xe



Sampling in the Streaming Model

How about edges with lower effective resistance? Sketch:

BL−1xe



Sampling in the Streaming Model

How about edges with lower effective resistance? Sketch:

BL−1xe



Sampling in the Streaming Model

BL−1xe
How about edges with lower effective resistance?

First level: τe > 1/ log n with probability 1.

Second level: τe > 1/2 log n with probability 1/2.

Third level: τe > 1/4 log n with probability 1/4.

Forth level: τe > 1/8 log n with probability 1/8.

...

So, we can sample every edge by (effective resistance)× O(log n).



Sampling in the Streaming Model

BL−1xe
How about edges with lower effective resistance?

First level: τe > 1/ log n with probability 1.

Second level: τe > 1/2 log n with probability 1/2.

Third level: τe > 1/4 log n with probability 1/4.

Forth level: τe > 1/8 log n with probability 1/8.

...

So, we can sample every edge by (effective resistance)× O(log n).



Sampling in the Streaming Model

BL−1xe
How about edges with lower effective resistance?

First level: τe > 1/ log n with probability 1.

Second level: τe > 1/2 log n with probability 1/2.

Third level: τe > 1/4 log n with probability 1/4.

Forth level: τe > 1/8 log n with probability 1/8.

...

So, we can sample every edge by (effective resistance)× O(log n).



Sampling in the Streaming Model

BL−1xe
How about edges with lower effective resistance?

First level: τe > 1/ log n with probability 1.

Second level: τe > 1/2 log n with probability 1/2.

Third level: τe > 1/4 log n with probability 1/4.

Forth level: τe > 1/8 log n with probability 1/8.

...

So, we can sample every edge by (effective resistance)× O(log n).



Sampling in the Streaming Model

BL−1xe
How about edges with lower effective resistance?

First level: τe > 1/ log n with probability 1.

Second level: τe > 1/2 log n with probability 1/2.

Third level: τe > 1/4 log n with probability 1/4.

Forth level: τe > 1/8 log n with probability 1/8.

...

So, we can sample every edge by (effective resistance)× O(log n).



Sampling in the Streaming Model

BL−1xe
How about edges with lower effective resistance?

First level: τe > 1/ log n with probability 1.

Second level: τe > 1/2 log n with probability 1/2.

Third level: τe > 1/4 log n with probability 1/4.

Forth level: τe > 1/8 log n with probability 1/8.

...

So, we can sample every edge by (effective resistance)× O(log n).



Sampling in the Streaming Model

BL−1xe
How about edges with lower effective resistance?

First level: τe > 1/ log n with probability 1.

Second level: τe > 1/2 log n with probability 1/2.

Third level: τe > 1/4 log n with probability 1/4.

Forth level: τe > 1/8 log n with probability 1/8.

...

So, we can sample every edge by (effective resistance)× O(log n).



Overview

1 Graph Sparsification

2 Semi-Streaming Computational Model

3 Prior Work Review

4 Our Algorithm
Sampling in the Streaming Model
Recursive Sparsification [Li, Miller, Peng ’12]



Sparsifer Chain

Final Piece [Li, Miller, Peng ’12]

We needed a constant error spectral sparsifier to get our
(1± ε) sparsifier.



Sparsifer Chain

Final Piece [Li, Miller, Peng ’12]

We needed a constant error spectral sparsifier to get our
(1± ε) sparsifier.



Sparsifer Chain

Final Piece [Li, Miller, Peng ’12]

We needed a constant error spectral sparsifier to get our
(1± ε) sparsifier.



Sparsifer Chain

Final Piece [Li, Miller, Peng ’12]

We needed a constant error spectral sparsifier to get our
(1± ε) sparsifier.



Sparsifer Chain

Final Piece [Li, Miller, Peng ’12]

We needed a constant error spectral sparsifier to get our
(1± ε) sparsifier.



Conclusion

Final Thoughts:

Note that everything we did extends unmodified to general
matrices B and general quadratic forms B>B.

Just need to ensure that we have a row dictionary and can
thus test every possible entry.

Generically, storing a compression of B>B takes Ω(n2) space.
Avoid lower bound simply when the row dictionary is poly(n)
size.



Conclusion

Thank you!


	Graph Sparsification
	Semi-Streaming Computational Model
	Prior Work Review
	Our Algorithm
	Sampling in the Streaming Model
	Recursive Sparsification [Li, Miller, Peng '12]


