Single Pass Spectral Sparsification in Dynamic Streams

2014.10.21

M. Kapralov, Y.T. Lee, C. Musco, C. Musco, A. Sidford Massachusetts Institute of Technology

Overview

□ In $\tilde{O}(n)$ space, maintain a graph compression from which we can always return a spectral sparsifier.

Main technique

 \Box Use ℓ_2 heavy hitter sketches to sample by effective resistance in the streaming model.

Overview

□ In $\tilde{O}(n)$ space, maintain a graph compression from which we can always return a spectral sparsifier.

Main technique

 \Box Use ℓ_2 heavy hitter sketches to sample by effective resistance in the streaming model.

Outline

1 Graph Sparsification

2 Semi-Streaming Computational Model

3 Prior Work Review

- 4 Our Algorithm
 - Sampling in the Streaming Model
 - Recursive Sparsification [Li, Miller, Peng '12]

Overview

Graph Sparsification

2 Semi-Streaming Computational Model

3 Prior Work Review

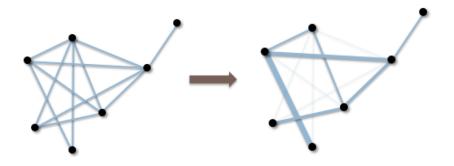
- 4 Our Algorithm
 - Sampling in the Streaming Model
 - Recursive Sparsification [Li, Miller, Peng '12]

General Idea

- □ Approximate a dense graph with a much sparser graph.
- \Box Reduce $O(n^2)$ edges $\rightarrow O(n \log n)$ edges

General Idea

- □ Approximate a dense graph with a much sparser graph.
- \Box Reduce $O(n^2)$ edges $\rightarrow O(n \log n)$ edges



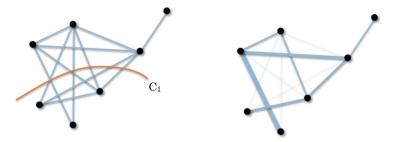
Cut Sparsification (Benczúr, Karger '96)

 \Box Preserve *every* cut value to within $(1 \pm \varepsilon)$ factor



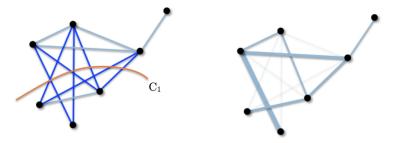
Cut Sparsification (Benczúr, Karger '96)

 \Box Preserve *every* cut value to within $(1 \pm \varepsilon)$ factor



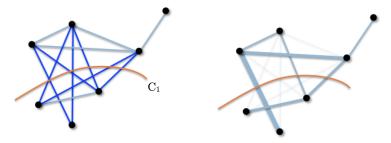
Cut Sparsification (Benczúr, Karger '96)

 \Box Preserve *every* cut value to within $(1 \pm \varepsilon)$ factor



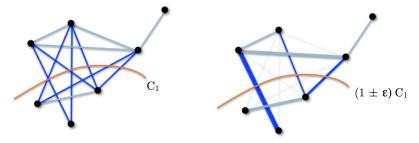
Cut Sparsification (Benczúr, Karger '96)

 \Box Preserve *every* cut value to within $(1 \pm \varepsilon)$ factor



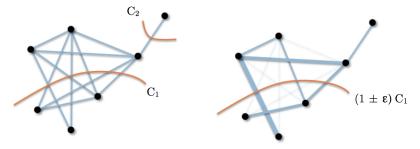
Cut Sparsification (Benczúr, Karger '96)

 \Box Preserve *every* cut value to within $(1 \pm \varepsilon)$ factor



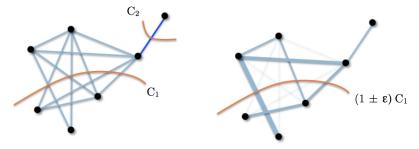
Cut Sparsification (Benczúr, Karger '96)

 \Box Preserve *every* cut value to within $(1 \pm \varepsilon)$ factor



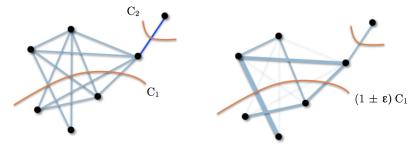
Cut Sparsification (Benczúr, Karger '96)

 \Box Preserve *every* cut value to within $(1 \pm \varepsilon)$ factor



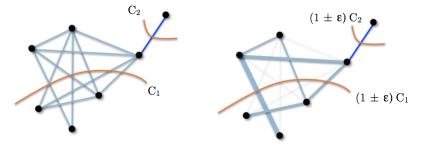
Cut Sparsification (Benczúr, Karger '96)

 \Box Preserve *every* cut value to within $(1 \pm \varepsilon)$ factor

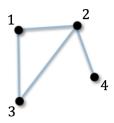


Cut Sparsification (Benczúr, Karger '96)

 \Box Preserve *every* cut value to within $(1 \pm \varepsilon)$ factor

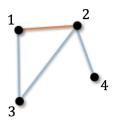


- □ Let $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$ be the vertex-edge incidence matrix for a graph *G*.
- \Box Let $\mathbf{x} \in \{0,1\}^n$ be an "indicator vector" for some cut.



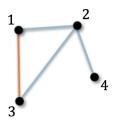
$$\begin{array}{c|ccccc} v_1 & v_2 & v_3 & v_4 \\ e_{12} & \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ e_{13} & \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ e_{23} & \begin{bmatrix} 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ e_{34} & \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \end{array}$$

- □ Let $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$ be the vertex-edge incidence matrix for a graph *G*.
- \Box Let $\mathbf{x} \in \{0,1\}^n$ be an "indicator vector" for some cut.



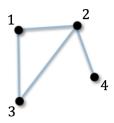
$$\begin{array}{c|cccccc} v_1 & v_2 & v_3 & v_4 \\ e_{12} & \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ e_{13} & \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ e_{23} & 0 & 1 & -1 & 0 \\ e_{24} & \begin{bmatrix} 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \\ e_{34} & \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \\ B \end{array}$$

- □ Let $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$ be the vertex-edge incidence matrix for a graph *G*.
- \Box Let $\mathbf{x} \in \{0,1\}^n$ be an "indicator vector" for some cut.

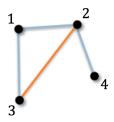


$$\begin{array}{c|cccccc} v_1 & v_2 & v_3 & v_4 \\ e_{12} & \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ e_{13} & \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ e_{23} & 0 & 1 & -1 & 0 \\ e_{24} & \begin{bmatrix} 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \\ e_{34} & \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

- □ Let $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$ be the vertex-edge incidence matrix for a graph *G*.
- \Box Let $\mathbf{x} \in \{0,1\}^n$ be an "indicator vector" for some cut.

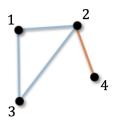


- □ Let $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$ be the vertex-edge incidence matrix for a graph *G*.
- \Box Let $\mathbf{x} \in \{0,1\}^n$ be an "indicator vector" for some cut.



$$\begin{array}{c|ccccc} v_1 & v_2 & v_3 & v_4 \\ e_{12} & \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ e_{13} & \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ e_{23} & 0 & 1 & -1 & 0 \\ e_{24} & \begin{bmatrix} 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \\ e_{34} & \begin{bmatrix} 0 & 0 & 0 \\ B \end{bmatrix}$$

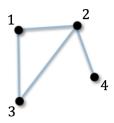
- □ Let $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$ be the vertex-edge incidence matrix for a graph *G*.
- \Box Let $\mathbf{x} \in \{0,1\}^n$ be an "indicator vector" for some cut.



$$\begin{array}{c|cccccc} v_1 & v_2 & v_3 & v_4 \\ e_{12} & \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ e_{13} & \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ e_{23} & 0 & 1 & -1 & 0 \\ e_{24} & \begin{bmatrix} 0 & 1 & 0 & -0 \\ 0 & 1 & 0 & -0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{array}{c} \mathbf{B} \end{array}$$

- □ Let $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$ be the vertex-edge incidence matrix for a graph *G*.
- \Box Let $\mathbf{x} \in \{0,1\}^n$ be an "indicator vector" for some cut.



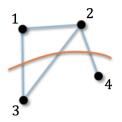
$$\begin{array}{c|cccccc} v_1 & v_2 & v_3 & v_4 \\ e_{12} & \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ e_{13} & \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ e_{23} & \begin{bmatrix} 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ e_{34} & \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \end{array}$$

Cut Sparsification (Benczúr, Karger '96)

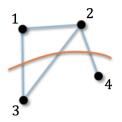
□ Let $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$ be the vertex-edge incidence matrix for a graph *G*.

٠..

 \Box Let $\mathbf{x} \in \{0,1\}^n$ be an "indicator vector" for some cut.

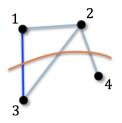


- □ Let $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$ be the vertex-edge incidence matrix for a graph *G*.
- \Box Let $\mathbf{x} \in \{0,1\}^n$ be an "indicator vector" for some cut.



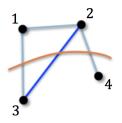
$$\begin{array}{cccccc} v_1 & v_2 & v_3 & v_4 \\ e_{12} & \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ e_{13} & \begin{bmatrix} 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ e_{24} & \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix} \\ \mathbf{B}$$

- □ Let $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$ be the vertex-edge incidence matrix for a graph *G*.
- \Box Let $\mathbf{x} \in \{0,1\}^n$ be an "indicator vector" for some cut.

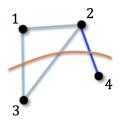


$$\begin{array}{cccccc} v_1 & v_2 & v_3 & v_4 \\ e_{12} & \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ e_{13} & \begin{bmatrix} 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ e_{34} & \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \times \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

- □ Let $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$ be the vertex-edge incidence matrix for a graph *G*.
- \Box Let $\mathbf{x} \in \{0,1\}^n$ be an "indicator vector" for some cut.

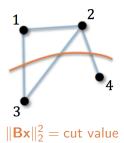


- □ Let $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$ be the vertex-edge incidence matrix for a graph *G*.
- \Box Let $\mathbf{x} \in \{0,1\}^n$ be an "indicator vector" for some cut.



$$\begin{array}{cccccc} v_1 & v_2 & v_3 & v_4 \\ e_{12} \\ e_{13} \\ e_{14} \\ e_{23} \\ e_{24} \\ e_{34} \end{array} \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

- □ Let $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$ be the vertex-edge incidence matrix for a graph *G*.
- \Box Let $\mathbf{x} \in \{0,1\}^n$ be an "indicator vector" for some cut.



$$\begin{array}{cccccc} v_1 & v_2 & v_3 & v_4 \\ e_{12} & \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ e_{13} & \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ e_{23} & \begin{bmatrix} 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

$$\begin{array}{c} \mathbf{B} \\ \mathbf{B} \end{array}$$

Cut Sparsification (Benczúr, Karger '96) So, $\|\mathbf{Bx}\|_2^2 = \text{cut value}$.

$\begin{array}{l} \mbox{Goal}\\ \mbox{Find some } \tilde{\mathbf{B}} \mbox{ such that, for all } \mathbf{x} \in \{0,1\}^n,\\ (1-\varepsilon) \|\mathbf{B}\mathbf{x}\|_2^2 \leq \|\tilde{\mathbf{B}}\mathbf{x}\|_2^2 \leq (1+\varepsilon) \|\mathbf{B}\mathbf{x}\|_2^2 \end{array}$

 $\Box \mathbf{x}^{\top} \mathbf{\tilde{B}}^{\top} \mathbf{\tilde{B}} \mathbf{x} \approx \mathbf{x}^{\top} \mathbf{B}^{\top} \mathbf{B} \mathbf{x}.$ $\Box \mathbf{L} = \mathbf{B}^{\top} \mathbf{B} \text{ is the graph Laplacian.}$

Cut Sparsification (Benczúr, Karger '96) So, $\|\mathbf{Bx}\|_2^2 = \text{cut value}$.

GoalFind some $\tilde{\mathbf{B}}$ such that, for all $\mathbf{x} \in \{0,1\}^n$, $(1-\varepsilon) \|\mathbf{B}\mathbf{x}\|_2^2 \le \|\tilde{\mathbf{B}}\mathbf{x}\|_2^2 \le (1+\varepsilon) \|\mathbf{B}\mathbf{x}\|_2^2$

 $\Box \mathbf{x}^{\top} \mathbf{\tilde{B}}^{\top} \mathbf{\tilde{B}} \mathbf{x} \approx \mathbf{x}^{\top} \mathbf{B}^{\top} \mathbf{B} \mathbf{x}.$ $\Box \mathbf{L} = \mathbf{B}^{\top} \mathbf{B} \text{ is the graph Laplacian.}$

Spectral Sparsification (Spielman, Teng '04)

Goal Find some $\tilde{\mathbf{B}}$ such that, for all $\mathbf{x} \in \{0, 1\}^n \mathbb{R}^n$, $(1 - \varepsilon) \|\mathbf{B}\mathbf{x}\|_2^2 \le \|\tilde{\mathbf{B}}\mathbf{x}\|_2^2 \le (1 + \varepsilon) \|\mathbf{B}\mathbf{x}\|_2^2$

Applications: Anything cut sparsifiers can do, Laplacian system solves, computing effective resistances, spectral clustering, calculating random walk properties, etc.

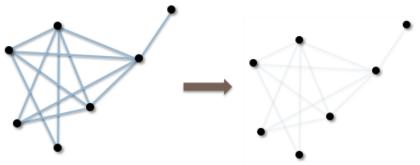
Spectral Sparsification (Spielman, Teng '04)

Goal Find some $\tilde{\mathbf{B}}$ such that, for all $\mathbf{x} \in \{0, 1\}^n \mathbb{R}^n$, $(1 - \varepsilon) \|\mathbf{B}\mathbf{x}\|_2^2 \le \|\tilde{\mathbf{B}}\mathbf{x}\|_2^2 \le (1 + \varepsilon) \|\mathbf{B}\mathbf{x}\|_2^2$

Applications: Anything cut sparsifiers can do, Laplacian system solves, computing effective resistances, spectral clustering, calculating random walk properties, etc.

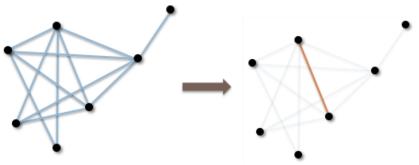
How are sparsifiers constructed?

Randomly sample edges (i.e. rows from **B**):



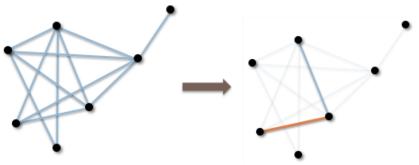
How are sparsifiers constructed?

Randomly sample edges (i.e. rows from **B**):

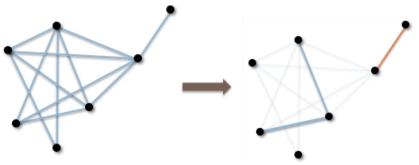


How are sparsifiers constructed?

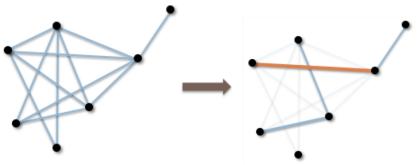
Randomly sample edges (i.e. rows from **B**):



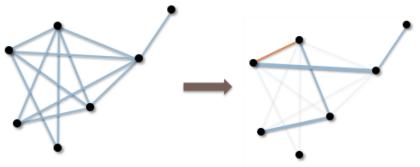
How are sparsifiers constructed?



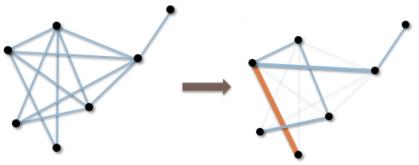
How are sparsifiers constructed?



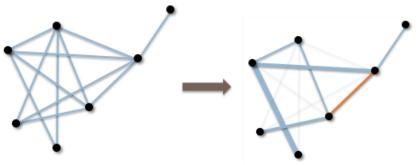
How are sparsifiers constructed?



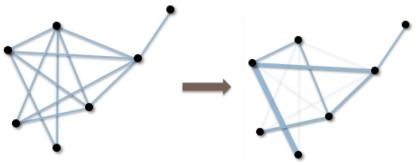
How are sparsifiers constructed?



How are sparsifiers constructed?



How are sparsifiers constructed?



How are sparsifiers constructed?

Sampling probabilities:

- Connectivity for cut sparsifiers [Benczúr, Karger '96], [Fung, Hariharan, Harvey, Panigrahi '11].
- Effective resistances (i.e statistical leverage scores) for spectral sparsifiers [Spielman, Srivastava '08].

Actually oversample: by (effective resistance) $\times O(\log n)$. Gives sparsifiers with $O(n \log n)$ edges – reducing from $O(n^2)$.

How are sparsifiers constructed?

Sampling probabilities:

- Connectivity for cut sparsifiers [Benczúr, Karger '96], [Fung, Hariharan, Harvey, Panigrahi '11].
- Effective resistances (i.e statistical leverage scores) for spectral sparsifiers [Spielman, Srivastava '08].

Actually oversample: by (effective resistance) $\times O(\log n)$. Gives sparsifiers with $O(n \log n)$ edges – reducing from $O(n^2)$.

How are sparsifiers constructed?

Sampling probabilities:

- Connectivity for cut sparsifiers [Benczúr, Karger '96], [Fung, Hariharan, Harvey, Panigrahi '11].
- Effective resistances (i.e statistical leverage scores) for spectral sparsifiers [Spielman, Srivastava '08].

Actually oversample: by (effective resistance) $\times O(\log n)$. Gives sparsifiers with $O(n \log n)$ edges – reducing from $O(n^2)$.

- □ Makes sense to compress a graph, but what if we cannot afford to store it in the first place?
- □ Is it possible to "sketch" a graph in small space by maintaining a sparsifier or some other representation?

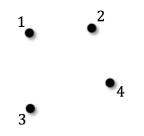
2 Semi-Streaming Computational Model

3 Prior Work Review

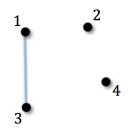
- 4 Our Algorithm
 - Sampling in the Streaming Model
 - Recursive Sparsification [Li, Miller, Peng '12]

- □ Space allowance $n \log^{c}(n)$.
- Receive data via edge updates.
- Minimum spanning tree, maximal matching, graph connectivity, etc.

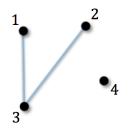
- □ Space allowance $n \log^{c}(n)$.
- Receive data via edge updates.
- Minimum spanning tree, maximal matching, graph connectivity, etc.



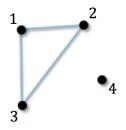
- □ Space allowance $n \log^{c}(n)$.
- Receive data via edge updates.
- Minimum spanning tree, maximal matching, graph connectivity, etc.



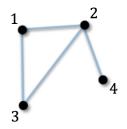
- □ Space allowance $n \log^{c}(n)$.
- Receive data via edge updates.
- Minimum spanning tree, maximal matching, graph connectivity, etc.



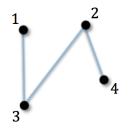
- \Box Space allowance $n \log^{c}(n)$.
- Receive data via edge updates.
- Minimum spanning tree, maximal matching, graph connectivity, etc.



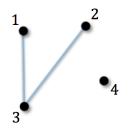
- □ Space allowance $n \log^{c}(n)$.
- Receive data via edge updates.
- Minimum spanning tree, maximal matching, graph connectivity, etc.



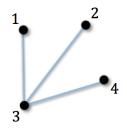
- □ Space allowance $n \log^{c}(n)$.
- Receive data via edge updates.
- Minimum spanning tree, maximal matching, graph connectivity, etc.



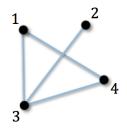
- □ Space allowance $n \log^{c}(n)$.
- Receive data via edge updates.
- Minimum spanning tree, maximal matching, graph connectivity, etc.



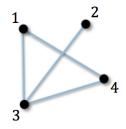
- □ Space allowance $n \log^{c}(n)$.
- Receive data via edge updates.
- Minimum spanning tree, maximal matching, graph connectivity, etc.



- □ Space allowance $n \log^{c}(n)$.
- Receive data via edge updates.
- Minimum spanning tree, maximal matching, graph connectivity, etc.



- \Box Space allowance $n \log^{c}(n)$.
- □ Receive data via edge updates.
- Minimum spanning tree, maximal matching, graph connectivity, etc.



2 Semi-Streaming Computational Model

3 Prior Work Review

4 Our Algorithm

- Sampling in the Streaming Model
- Recursive Sparsification [Li, Miller, Peng '12]

□ [Ahn, Guha '09], [Kelner, Levin '11]: Cut and spectral sparsifiers in *insertion only* streams.

- [Ahn, Guha, McGregor '12a]: Introduced linear sketching for graphs. This breakthrough work is the first to handle edge deletions for graph problems. Connectivity, MST, multi-pass sparsifiers.
 - □ [Ahn, Guha, McGregor '12b], [Goel, Kapralov, Post '12]: Extend techniques to get single pass cut sparsifiers.
- □ [Ahn, Guha, McGregor '13]: Dynamic spectral sparsifiers, but $O(n^{5/3})$ space.
- □ **[Kapralov, Woodruff '14]**: Dynamic spectral sparsifiers, but multi-pass.

- □ [Ahn, Guha '09], [Kelner, Levin '11]: Cut and spectral sparsifiers in *insertion only* streams.
- □ [Ahn, Guha, McGregor '12a]: Introduced linear sketching for graphs. This breakthrough work is the first to handle edge deletions for graph problems. Connectivity, MST, multi-pass sparsifiers.
 - □ [Ahn, Guha, McGregor '12b], [Goel, Kapralov, Post '12]: Extend techniques to get single pass cut sparsifiers.
- □ [Ahn, Guha, McGregor '13]: Dynamic spectral sparsifiers, but $O(n^{5/3})$ space.
- □ **[Kapralov, Woodruff '14]**: Dynamic spectral sparsifiers, but multi-pass.

- □ [Ahn, Guha '09], [Kelner, Levin '11]: Cut and spectral sparsifiers in *insertion only* streams.
- □ [Ahn, Guha, McGregor '12a]: Introduced linear sketching for graphs. This breakthrough work is the first to handle edge deletions for graph problems. Connectivity, MST, multi-pass sparsifiers.
 - [Ahn, Guha, McGregor '12b], [Goel, Kapralov, Post '12]: Extend techniques to get single pass cut sparsifiers.
- □ [Ahn, Guha, McGregor '13]: Dynamic spectral sparsifiers, but $O(n^{5/3})$ space.
- □ **[Kapralov, Woodruff '14]**: Dynamic spectral sparsifiers, but multi-pass.

- □ [Ahn, Guha '09], [Kelner, Levin '11]: Cut and spectral sparsifiers in *insertion only* streams.
- □ [Ahn, Guha, McGregor '12a]: Introduced linear sketching for graphs. This breakthrough work is the first to handle edge deletions for graph problems. Connectivity, MST, multi-pass sparsifiers.
 - [Ahn, Guha, McGregor '12b], [Goel, Kapralov, Post '12]: Extend techniques to get single pass cut sparsifiers.
- □ [Ahn, Guha, McGregor '13]: Dynamic spectral sparsifiers, but $O(n^{5/3})$ space.
- □ **[Kapralov, Woodruff '14]**: Dynamic spectral sparsifiers, but multi-pass.

- □ [Ahn, Guha '09], [Kelner, Levin '11]: Cut and spectral sparsifiers in *insertion only* streams.
- □ [Ahn, Guha, McGregor '12a]: Introduced linear sketching for graphs. This breakthrough work is the first to handle edge deletions for graph problems. Connectivity, MST, multi-pass sparsifiers.
 - [Ahn, Guha, McGregor '12b], [Goel, Kapralov, Post '12]: Extend techniques to get single pass cut sparsifiers.
- □ [Ahn, Guha, McGregor '13]: Dynamic spectral sparsifiers, but $O(n^{5/3})$ space.
- □ [Kapralov, Woodruff '14]: Dynamic spectral sparsifiers, but multi-pass.

- □ [Ahn, Guha '09], [Kelner, Levin '11]: Cut and spectral sparsifiers in *insertion only* streams.
- □ [Ahn, Guha, McGregor '12a]: Introduced linear sketching for graphs. This breakthrough work is the first to handle edge deletions for graph problems. Connectivity, MST, multi-pass sparsifiers.
 - [Ahn, Guha, McGregor '12b], [Goel, Kapralov, Post '12]: Extend techniques to get single pass cut sparsifiers.
- □ [Ahn, Guha, McGregor '13]: Dynamic spectral sparsifiers, but $O(n^{5/3})$ space.
- □ [Kapralov, Woodruff '14]: Dynamic spectral sparsifiers, but multi-pass.

Overview

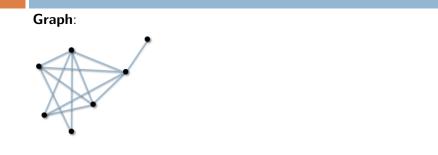
1 Graph Sparsification

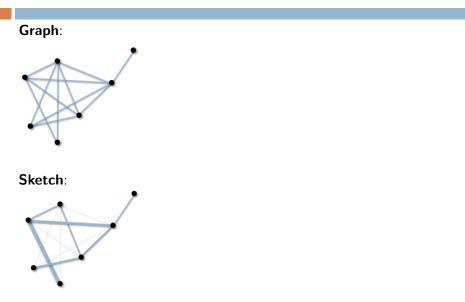
2 Semi-Streaming Computational Model

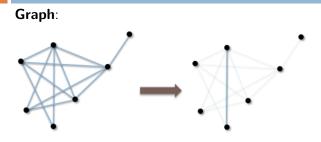
3 Prior Work Review

4 Our Algorithm

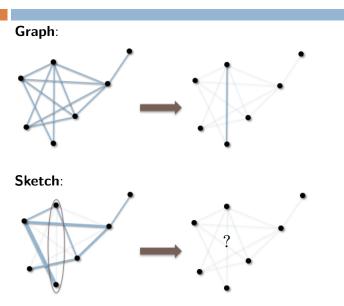
- Sampling in the Streaming Model
- Recursive Sparsification [Li, Miller, Peng '12]







Sketch:



How do we get around this issue?

Take a cue from standard streaming algorithms:

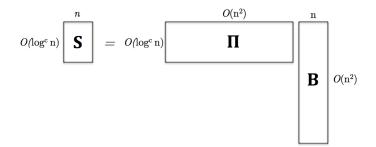
□ Linear Sketching!

Does *not* depend on insertion/deletion order.

How do we get around this issue?

Take a cue from standard streaming algorithms:

- □ Linear Sketching!
- Does *not* depend on insertion/deletion order.



Overview

1 Graph Sparsification

2 Semi-Streaming Computational Model

3 Prior Work Review

4 Our Algorithm
Sampling in the Streaming Model
Recursive Sparsification [Li, Miller, Peng '12]

We are still going to sample by effective resistance.

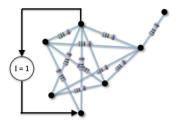
- □ Treat graph as resistor network, each edge has resistance 1.
- □ Flow 1 unit of current from node *i* to *j* and measure voltage drop between the nodes.

We are still going to sample by effective resistance.

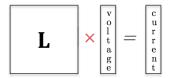
- □ Treat graph as resistor network, each edge has resistance 1.
- □ Flow 1 unit of current from node *i* to *j* and measure voltage drop between the nodes.

We are still going to sample by effective resistance.

- □ Treat graph as resistor network, each edge has resistance 1.
- □ Flow 1 unit of current from node *i* to *j* and measure voltage drop between the nodes.

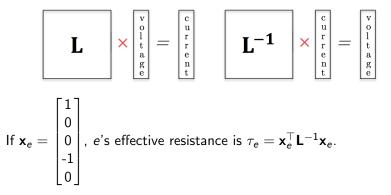


Using standard V = IR equations:



Using standard V = IR equations:

Using standard V = IR equations:



Effective resistance of edge *e* is $\tau_e = \mathbf{x}_e^\top \mathbf{L}^{-1} \mathbf{x}_e$.

Alternatively, τ_e is the e^{th} entry in the vector:

 $\mathbf{BL}^{-1}\mathbf{x}_e$

AND

 $\tau_e = \mathbf{x}_e^\top \mathbf{L}^{-1} \mathbf{x}_e = \mathbf{x}_e^\top (\mathbf{L}^{-1})^\top \mathbf{B}^\top \mathbf{B} \mathbf{L}^{-1} \mathbf{x}_e = \|\mathbf{B} \mathbf{L}^{-1} \mathbf{x}_e\|_2^2$

Effective resistance of edge *e* is $\tau_e = \mathbf{x}_e^\top \mathbf{L}^{-1} \mathbf{x}_e$.

Alternatively, τ_e is the e^{th} entry in the vector:

 $\mathbf{BL}^{-1}\mathbf{x}_e$

AND

 $\tau_e = \mathbf{x}_e^\top \mathbf{L}^{-1} \mathbf{x}_e = \mathbf{x}_e^\top (\mathbf{L}^{-1})^\top \mathbf{B}^\top \mathbf{B} \mathbf{L}^{-1} \mathbf{x}_e = \|\mathbf{B} \mathbf{L}^{-1} \mathbf{x}_e\|_2^2$

Effective resistance of edge *e* is $\tau_e = \mathbf{x}_e^\top \mathbf{L}^{-1} \mathbf{x}_e$.

Alternatively, τ_e is the e^{th} entry in the vector:

 $\mathbf{BL}^{-1}\mathbf{x}_{e}$

AND

$$\tau_e = \mathbf{x}_e^\top \mathbf{L}^{-1} \mathbf{x}_e = \mathbf{x}_e^\top (\mathbf{L}^{-1})^\top \mathbf{B}^\top \mathbf{B} \mathbf{L}^{-1} \mathbf{x}_e = \|\mathbf{B} \mathbf{L}^{-1} \mathbf{x}_e\|_2^2$$

We just need two more ingredients:

- ℓ_2 Heavy Hitters [GLPS10]:
 - □ Sketch vector poly(n) vector in polylog(n) space.
 - □ Extract any element who's square is a $O(1/\log n)$ fraction of the vector's squared norm.
- **Coarse Sparsifier:**
 - \Box \tilde{L} such that $\mathbf{x}^{\top}\tilde{L}\mathbf{x} = (1 \pm constant)\mathbf{x}^{\top}\mathbf{L}\mathbf{x}$

We just need two more ingredients:

 $\mathbf{BL}^{-1}\mathbf{x}_e$

ℓ_2 Heavy Hitters [GLPS10]:

- □ Sketch vector poly(n) vector in polylog(n) space.
- Extract any element who's square is a O(1/log n) fraction of the vector's squared norm.

Coarse Sparsifier:

 \Box \tilde{L} such that $\mathbf{x}^{\top}\tilde{L}\mathbf{x} = (1 \pm constant)\mathbf{x}^{\top}\mathbf{L}\mathbf{x}$

We just need two more ingredients:

 $\mathbf{BL}^{-1}\mathbf{x}_e$

ℓ_2 Heavy Hitters [GLPS10]:

- □ Sketch vector poly(n) vector in polylog(n) space.
- □ Extract any element who's square is a $O(1/\log n)$ fraction of the vector's squared norm.

Coarse Sparsifier:

 \square \tilde{L} such that $\textbf{x}^{\top}\tilde{L}\textbf{x} = (1 \pm \textit{constant})\textbf{x}^{\top}\textbf{L}\textbf{x}$

Putting it all together:

$$\mathbf{B}\mathbf{L}^{-1}\mathbf{x}_{e}$$

- **1** Sketch $(\Pi_{\text{heavy hitters}})\mathbf{B}$ in $n \log^{c} n$ space.
- 2 Compute $(\Pi_{heavy hitters})B\tilde{L}^{-1}$
- **B** For every possible edge e, compute $(\Pi_{\text{heavy hitters}})B\tilde{L}^{-1}x_e$
- 4 Extract heavy hitters from the vector, check if eth entry is one.

$$\frac{\mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}(e)^{2}}{\|\mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}\|_{2}^{2}}\approx\frac{\tau_{e}^{2}}{\tau_{e}}=\tau_{e}$$

Putting it all together:

$$\mathbf{B}\mathbf{L}^{-1}\mathbf{x}_{e}$$

- **1** Sketch $(\Pi_{\text{heavy hitters}})\mathbf{B}$ in $n \log^{c} n$ space.
- 2 Compute $(\Pi_{\text{heavy hitters}})B\tilde{L}^{-1}$.
- **B** For every possible edge e, compute $(\Pi_{\text{heavy hitters}})B\tilde{L}^{-1}x_e$
- Extract heavy hitters from the vector, check if eth entry is one.

$$\frac{\mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}(e)^{2}}{\|\mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}\|_{2}^{2}}\approx\frac{\tau_{e}^{2}}{\tau_{e}}=\tau_{e}$$

Putting it all together:

$$\mathbf{B}\mathbf{L}^{-1}\mathbf{x}_{e}$$

- **1** Sketch $(\Pi_{\text{heavy hitters}})\mathbf{B}$ in $n \log^{c} n$ space.
- **2** Compute $(\Pi_{\text{heavy hitters}})B\tilde{L}^{-1}$.
- **3** For every possible edge e, compute $(\Pi_{\text{heavy hitters}})B\tilde{L}^{-1}x_e$
- Extract heavy hitters from the vector, check if eth entry is one.

$$\frac{\mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}(e)^{2}}{\|\mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}\|_{2}^{2}}\approx\frac{\tau_{e}^{2}}{\tau_{e}}=\tau_{e}$$

Putting it all together:

$$\mathbf{B}\mathbf{L}^{-1}\mathbf{x}_{e}$$

- **1** Sketch $(\Pi_{\text{heavy hitters}})\mathbf{B}$ in $n \log^{c} n$ space.
- **2** Compute $(\Pi_{\text{heavy hitters}})B\tilde{L}^{-1}$.
- **3** For every possible edge e, compute $(\Pi_{\text{heavy hitters}})B\tilde{L}^{-1}x_e$
- Extract heavy hitters from the vector, check if eth entry is one.

$$\frac{\mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}(e)^{2}}{\|\mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}\|_{2}^{2}}\approx\frac{\tau_{e}^{2}}{\tau_{e}}=\tau_{e}$$

Putting it all together:

$$\mathbf{B}\mathbf{L}^{-1}\mathbf{x}_{e}$$

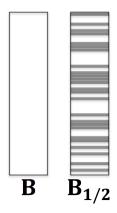
- **1** Sketch $(\Pi_{\text{heavy hitters}})\mathbf{B}$ in $n \log^{c} n$ space.
- **2** Compute $(\Pi_{\text{heavy hitters}})B\tilde{L}^{-1}$.
- B For every possible edge e, compute $(\Pi_{\text{heavy hitters}})B\tilde{L}^{-1}x_e$
- Extract heavy hitters from the vector, check if eth entry is one.

$$\frac{\mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}(e)^{2}}{\|\mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}\|_{2}^{2}}\approx\frac{\tau_{e}^{2}}{\tau_{e}}=\tau_{e}$$

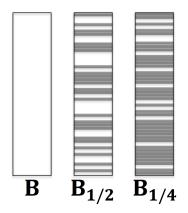
How about edges with lower effective resistance? Sketch:

How about edges with lower effective resistance? Sketch:

How about edges with lower effective resistance? Sketch:

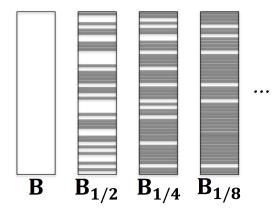


How about edges with lower effective resistance? Sketch:



 $\mathbf{B}\mathbf{L}^{-1}\mathbf{x}_{e}$

How about edges with lower effective resistance? Sketch:



 $\mathbf{B}\mathbf{L}^{-1}\mathbf{x}_{e}$

$\mathbf{B}\mathbf{L}^{-1}\mathbf{x}_{e}$

How about edges with lower effective resistance?

□ First level: $\tau_e > 1/\log n$ with probability 1.

- □ Second level: $\tau_e > 1/2 \log n$ with probability 1/2.
- □ Third level: $\tau_e > 1/4 \log n$ with probability 1/4.
- \Box Forth level: $\tau_e > 1/8 \log n$ with probability 1/8.

□ ..

How about edges with lower effective resistance?

□ First level: $\tau_e > 1/\log n$ with probability 1.

□ Second level: $\tau_e > 1/2 \log n$ with probability 1/2.

- □ Third level: $\tau_e > 1/4 \log n$ with probability 1/4.
- \Box Forth level: $\tau_e > 1/8 \log n$ with probability 1/8.

□ ..

$\mathbf{B}\mathbf{L}^{-1}\mathbf{x}_{e}$

How about edges with lower effective resistance?

□ First level: $\tau_e > 1/\log n$ with probability 1.

□ Second level: $\tau_e > 1/2 \log n$ with probability 1/2.

 \Box Third level: $au_e > 1/4 \log n$ with probability 1/4.

□ Forth level: $\tau_e > 1/8 \log n$ with probability 1/8.

□ ..

How about edges with lower effective resistance?

□ First level: $\tau_e > 1/\log n$ with probability 1.

- □ Second level: $\tau_e > 1/2 \log n$ with probability 1/2.
- □ Third level: $\tau_e > 1/4 \log n$ with probability 1/4.
- □ Forth level: $\tau_e > 1/8 \log n$ with probability 1/8.

□ ..

How about edges with lower effective resistance?

□ First level: $\tau_e > 1/\log n$ with probability 1.

- □ Second level: $\tau_e > 1/2 \log n$ with probability 1/2.
- □ Third level: $\tau_e > 1/4 \log n$ with probability 1/4.
- \Box Forth level: $\tau_e > 1/8 \log n$ with probability 1/8.

□ ..

$\mathbf{B}\mathbf{L}^{-1}\mathbf{x}_{e}$

How about edges with lower effective resistance?

□ First level: $\tau_e > 1/\log n$ with probability 1.

- □ Second level: $\tau_e > 1/2 \log n$ with probability 1/2.
- □ Third level: $\tau_e > 1/4 \log n$ with probability 1/4.
- \Box Forth level: $\tau_e > 1/8 \log n$ with probability 1/8.

□ ...

$\mathbf{B}\mathbf{L}^{-1}\mathbf{x}_{e}$

How about edges with lower effective resistance?

□ First level: $\tau_e > 1/\log n$ with probability 1.

- □ Second level: $\tau_e > 1/2 \log n$ with probability 1/2.
- □ Third level: $\tau_e > 1/4 \log n$ with probability 1/4.
- □ Forth level: $\tau_e > 1/8 \log n$ with probability 1/8.

□ ...

Overview

1 Graph Sparsification

2 Semi-Streaming Computational Model

3 Prior Work Review

4 Our Algorithm

- Sampling in the Streaming Model
- Recursive Sparsification [Li, Miller, Peng '12]

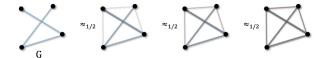
 \square We needed a constant error spectral sparsifier to get our $(1 \pm \epsilon)$ sparsifier.

 \square We needed a constant error spectral sparsifier to get our $(1 \pm \epsilon)$ sparsifier.



 \square We needed a constant error spectral sparsifier to get our $(1 \pm \epsilon)$ sparsifier.

 \Box We needed a constant error spectral sparsifier to get our $(1\pm\epsilon)$ sparsifier.



 \Box We needed a constant error spectral sparsifier to get our $(1\pm\epsilon)$ sparsifier.

Conclusion

Final Thoughts:

- □ Note that everything we did extends unmodified to general matrices **B** and general quadratic forms $\mathbf{B}^{\top}\mathbf{B}$.
 - Just need to ensure that we have a row dictionary and can thus test every possible entry.
- □ Generically, storing a compression of $\mathbf{B}^{\top}\mathbf{B}$ takes $\Omega(n^2)$ space. Avoid lower bound simply when the row dictionary is poly(n) size.

Thank you!