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Main technique

[ Use £» heavy hitter sketches to sample by effective resistance
in the streaming model.
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Cut Sparsification (Benczir, Karger '96) So, ||Bx||3 = cut value.

Find some B such that, for all x € {0,1}",

(1—e)lIBx|3 < [|Bx|3 < (1 +¢)[Bx[|3

1 x"BTBx ~ x' BT Bx.

0 L=B'B is the graph Laplacian.
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Spectral Sparsification (Spielman, Teng '04)

Goal
Find some B such that, for all x € {672 R”,

(1—e)lIBx|3 < [|Bx|3 < (1 +¢)[Bx[|3

Applications: Anything cut sparsifiers can do, Laplacian system
solves, computing effective resistances, spectral clustering,
calculating random walk properties, etc.
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Graph Sparsification

How are sparsifiers constructed?

Sampling probabilities:

Connectivity for cut sparsifiers [Benczir, Karger '96], [Fung,
Hariharan, Harvey, Panigrahi '11].

Effective resistances (i.e statistical leverage scores) for
spectral sparsifiers [Spielman, Srivastava '08].

Actually oversample: by
Gives sparsifiers with O(nlog n) edges — reducing from O( 2).



Motivation

Makes sense to compress a graph, but what if we cannot
afford to store it in the first place?

Is it possible to “sketch” a graph in small space by
maintaining a sparsifier or some other representation?
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Semi-Streaming Model

Introduced by Feigenbaum, Kannan, McGregor, Suri, Zhang '05.
Space allowance nlog®(n).
Receive data via edge updates.

Minimum spanning tree, maximal matching, graph
connectivity, etc.
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Prior Work

[Ahn, Guha ’09], [Kelner, Levin "11]: Cut and spectral
sparsifiers in insertion only streams.

[Ahn, Guha, McGregor '12a]: Introduced linear sketching
for graphs. This breakthrough work is the first to handle edge

deletions for graph problems. Connectivity, MST, multi-pass
sparsifiers.

[Ahn, Guha, McGregor '12b], [Goel, Kapralov, Post '12]:
Extend techniques to get single pass cut sparsifiers.

[Ahn, Guha, McGregor '13]: Dynamic spectral sparsifiers,
but O(n®/3) space.

[Kapralov, Woodruff "14]: Dynamic spectral sparsifiers, but
multi-pass.

Our result: 1-Pass dynamic spectral sparsifiers in O(n) space.
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[0 Linear Sketching!

1 Does not depend on insertion/deletion order.

n O(n?) n

Oflog'n)| § | = O(log°n) II
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Sampling in the Streaming Model
|

We are still going to sample by effective resistance.
1 Treat graph as resistor network, each edge has resistance 1.

1 Flow 1 unit of current from node i to j and measure voltage
drop between the nodes.
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If xe = | 0], e's effective resistance is 7¢ = xeTL_lxe.

o L



Sampling in the Streaming Model
I I ———

Effective resistance of edge e is 7o = xIL_lxe.



Sampling in the Streaming Model
I —

Effective resistance of edge e is 7o = xeTL_lxe.

Alternatively, 7e is the et entry in the vector:

BL !x,



Sampling in the Streaming Model
4|

Effective resistance of edge e is 7o = xeTL_lxe.

Alternatively, 7e is the et entry in the vector:
BL !x,

AND

re=x L =x (L) TBTBL %, = |BL 'x.|3
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Sampling in the Streaming Model

We just need two more ingredients:

/> Heavy Hitters [GLPS10]:
Sketch vector poly(n) vector in polylog(n) space.

Extract any element who's square is a O(1/ log n) fraction of
the vector's squared norm.

Coarse Sparsifier:
L such that x"Lx = (1 & constant)x " Lx
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Sampling in the Streaming Model

Putting it all together:
Sketch (Mpeavy hitters)B in nlog® n space.
CompUte (nheavy hitters)Bi:il-
For every possible edge e, compute (Mheavy hitters)BI:_lxe

Extract heavy hitters from the vector, check if et entry is one.

BL 1x.(e)? N Lg

= =T
IBLx[3 e °

So, as long as 7 > O(1/log n), we will recover the edge!
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How about edges with lower effective resistance? Sketch:

%

B By, Bis Bys

I TN

BL 1x.
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Sampling in the Streaming Model

How about edges with lower effective resistance?
First level: 7 > 1/log n with probability 1.
Second level: 7o > 1/2log n with probability 1/2.
Third level: 7o > 1/4log n with probability 1/4.
Forth level: 7. > 1/8log n with probability 1/8.

So, we can sample every edge by
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Final Piece [Li, Miller, Peng '12]

1 We needed a constant error spectral sparsifier to get our
(1 + €) sparsifier.

DR <A R B




Conclusion

Final Thoughts:
Note that everything we did extends unmodified to general
matrices B and general quadratic forms BT B.
Just need to ensure that we have a row dictionary and can
thus test every possible entry.
Generically, storing a compression of BT B takes Q(n?) space.
Avoid lower bound simply when the row dictionary is poly(n)
size.



Conclusion
S

Thank you!
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