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Cut Sparsification (Benczúr, Karger ’96)

Let B ∈ R(n2)×n be the vertex-edge incidence matrix for a
graph G .

Let x ∈ {0, 1}n be an “indicator vector” for some cut.

‖Bx‖22 = cut value

v1 v2 v3 v4



e12 1 -1 0 0
e13 1 0 -1 0
e14 0 0 0 0
e23 0 1 -1 0
e24 0 1 0 -1
e34 0 0 0 0

B

×




1
1
0
0
x

=





0
1
0
1
1
0



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Let B ∈ R(n2)×n be the vertex-edge incidence matrix for a
graph G .

Let x ∈ {0, 1}n be an “indicator vector” for some cut.

‖Bx‖22 = cut value

v1 v2 v3 v4



e12 1 -1 0 0
e13 1 0 -1 0
e14 0 0 0 0
e23 0 1 -1 0
e24 0 1 0 -1
e34 0 0 0 0

B

×




1
1
0
0
x

=





0
1
0
1
1
0



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)
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Cut Sparsification (Benczúr, Karger ’96) So, ‖Bx‖22 = cut value.
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Find some B̃ such that, for all x ∈ {0, 1}n,

(1− ε)‖Bx‖22 ≤ ‖B̃x‖22 ≤ (1 + ε)‖Bx‖22

x>B̃>B̃x ≈ x>B>Bx.

L = B>B is the graph Laplacian.
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Applications: Anything cut sparsifiers can do, Laplacian system
solves, computing effective resistances, spectral clustering,
calculating random walk properties, etc.
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How are sparsifiers constructed?

Sampling probabilities:

Connectivity for cut sparsifiers [Benczúr, Karger ’96], [Fung,
Hariharan, Harvey, Panigrahi ’11].

Effective resistances (i.e statistical leverage scores) for
spectral sparsifiers [Spielman, Srivastava ’08].

Actually oversample: by (effective resistance)× O(log n).
Gives sparsifiers with O(n log n) edges – reducing from O(n2).
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Motivation

Makes sense to compress a graph, but what if we cannot
afford to store it in the first place?

Is it possible to “sketch” a graph in small space by
maintaining a sparsifier or some other representation?
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Prior Work

[Ahn, Guha ’09], [Kelner, Levin ’11]: Cut and spectral
sparsifiers in insertion only streams.

[Ahn, Guha, McGregor ’12a]: Introduced linear sketching
for graphs. This breakthrough work is the first to handle edge
deletions for graph problems. Connectivity, MST, multi-pass
sparsifiers.

[Ahn, Guha, McGregor ’12b], [Goel, Kapralov, Post ’12]:
Extend techniques to get single pass cut sparsifiers.

[Ahn, Guha, McGregor ’13]: Dynamic spectral sparsifiers,
but O(n5/3) space.

[Kapralov, Woodruff ’14]: Dynamic spectral sparsifiers, but
multi-pass.

Our result: 1-Pass dynamic spectral sparsifiers in Õ(n) space.
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[Kapralov, Woodruff ’14]: Dynamic spectral sparsifiers, but
multi-pass.

Our result: 1-Pass dynamic spectral sparsifiers in Õ(n) space.
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Conclusion

Final Thoughts:

Note that everything we did extends unmodified to general
matrices B and general quadratic forms B>B.

Just need to ensure that we have a row dictionary and can
thus test every possible entry.

Generically, storing a compression of B>B takes Ω(n2) space.
Avoid lower bound simply when the row dictionary is poly(n)
size.



Conclusion

Thank you!
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