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Abstract
We study a dynamic version of the implicit trace
estimation problem. Given access to an oracle
for computing matrix-vector multiplications with
a dynamically changing matrix A, our goal is
to maintain an accurate approximation to A’s
trace using as few multiplications as possible.
We present a practical algorithm for solving this
problem and prove that, in a natural setting, its
complexity is quadratically better than the stan-
dard solution of repeatedly applying Hutchinson’s
stochastic trace estimator. We support this theory
with empirical results, showing significant com-
putational improvements on two applications in
machine learning and network science: tracking
moments of the Hessian spectral density during
neural network optimization, and counting trian-
gles in a dynamically changing graph.

1. Introduction
1.1. Implicit Trace Estimation

Implicit or “matrix-free” trace estimation is a ubiquitous
computational primitive in linear algebra, which has be-
come increasingly important in machine learning and data
science. Given access to an oracle for computing matrix-
vector products Ax1, . . . , Axm between an n× n matrix A
and chosen vectors x1, . . . , xm, the goal is to compute an
approximation to A’s trace, tr(A) =

∑n
i=1Aii. This prob-

lem arises when A’s diagonal entries cannot be accessed
explicitly, usually because forming A is computationally
prohibitive. As an example, consider A which is the Hes-
sian matrix of a loss function involving a neural network.
While forming the Hessian is infeasible when the network
is large, backpropagation can be used to very efficiently
compute Hessian-vector products (Pearlmutter, 1994).

In other important applications, A is a matrix function of
some other matrix B. For example, if B is an n× n graph
adjacency matrix, tr(B3) equals six times the number of
triangle in the graph (Avron, 2010). Computing A = B3

explicitly to evaluate the trace would require O(n3) time,
whereas a matrix-vector multiplication Ax = B · (B · (Bx))

only requires O(n2) time. Similarly, in the application of
log-determinant approximation, useful in e.g. Bayesian
log likelihood computations or determinantal point process
methods, we want to approximate the trace of A = log(B)
(Boutsidis et al., 2015; Han et al., 2015; Saibaba et al., 2017).
Again, A takes O(n3) time to form explicitly, but Ax can
be computed efficiently using iterative methods like the
Lanczos algorithm in roughly O(n2) time (Higham, 2008).

In data science and machine learning, other applications
of implicit trace estimation include matrix norm and spec-
tral sum estimation (Han et al., 2017; Ubaru & Saad, 2018;
Musco et al., 2018), as well as methods for eigenvalue count-
ing (Di Napoli et al., 2016) and spectral density estimation
(Weiße et al., 2006; Lin et al., 2016). Spectral density es-
timation methods typically use implicit trace estimation to
estimate moments of a matrix’s eigenvalue distribution –
i.e., tr(A), tr(A2), tr(A3), etc. – which can then be used
to compute an approximation to that entire distribution. In
deep learning, spectral density estimation is used to quickly
analyze the spectra of weight matrices (Pennington et al.,
2018; Mahoney & Martin, 2019) or to probe information
about the Hessian matrix during optimization (Ghorbani
et al., 2019; Yao et al., 2021). Trace estimation has also
been used for neural networks weight quantization (Dong
et al., 2020; Qian et al., 2020) and to understand training
dynamics (Wei & Schwab, 2019).

1.2. Static Setting

The mostly widely used algorithm for implicit trace estima-
tion is Hutchinson’s estimator (Girard, 1987; Hutchinson,
1990), which approximates tr(A) via the average:

h`(A) =
1

`

1∑
i=1

gTi (Agi) ,

where g1, . . . , g` ∈ Rn are random vectors with i.i.d. mean
0 and unit variance entries (e.g. standard Gaussians or ±1
Rademachers). Hutchinson’s estimator requires ` matrix-
vector multiplications to compute, and can be shown to have
variance O(‖A‖2F /`) (Avron & Toledo, 2011). With high
probability, if ` = O(1/ε2), we have the error gaurantee

|h` − tr(A)| < ε‖A‖F . (1)
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When A is positive semidefinite, a modified version of
Hutchinson’s estimator obtains a relative error approxima-
tion with ` = O(1/ε) (Meyer et al., 2021), and improved
methods have also been studied for sparse, structured, or
nearly low-rank matrices (Tang & Saad, 2011; Stathopoulos
et al., 2013; Saibaba et al., 2017; Hanyu Li, 2020). For
general matrices, however, no known methods outperform
Hutchinon’s estimator – i.e., no methods can achieve guar-
antee (1) with o(1/ε2) matrix-vector products.

1.3. Dynamic Setting

We explore a natural and widely applicable dynamic version
of the implicit trace estimation problem: given access to a
matrix-vector multiplication oracle for a dynamically chang-
ing matrix A, we want to maintain an approximation to
A’s trace. For example, in the above applications involving
optimization in machine learning, we need to estimate the
trace of a constantly changing Hessian matrix H (or some
function of H) during the course of model training. In other
applications, A is dynamic because it is repeatedly modified
by some algorithmic process. For example, in the transit
planning method of (Wang et al., 2020), edges are added to
a network to optimally increase a measure of connectivity
known as the “Estrada index” (Estrada & Hatano, 2008).
This index depends on the quantity tr(exp(B)), where B
is the network adjacency matrix and exp(B) is a matrix
exponential. Implicit trace estimation is repeatedly used to
estimate tr(exp(B)) over the course of optimization (i.e.,
for a series of slowly changing graphs).

A naive solution to the above problems is to simply apply
Hutchinson’s estimator to every snapshot of A as it changes
over time. After m changes, we will require O(m/ε2)
matrix-vector multiplies to achieve a guarantee like (1) for
each time step. The goal of this paper is to improve on this
bound when the changes to A are bounded. Formally, we
abstract the problem as follows:

Problem 1 (Dynamic trace estimation). Let
A1, ..., Am be n× n matrices satisfying:

1. ‖Ai‖F ≤ 1, for all i ∈ [1,m].

2. ‖Ai+1 −Ai‖F ≤ α, for all i ∈ [1,m− 1].

Given implicit matrix-vector multiplication access to
each Ai in sequence, the goal is to compute trace ap-
proximations t1, . . . , tm for tr(A1), ...., tr(Am) such
that, for each i ∈ 1, . . . ,m,

P[|ti − tr(Ai)| ≥ ε] ≤ δ.

Here A1, . . . , Am represent different snapshots of a dy-
namic matrix at m time steps. Without loss of generality,

we can assume all matrices have Frobenius norm ‖Ai‖F
bounded by 1, since otherwise we can rescale the matrices
before estimating their trace. The second condition bounds
how much the matrices change over time. For simplicity, we
assume a fixed upper bound of α on the difference at each
time step, but the algorithms presented in this paper will
be adaptive to changing gaps between Ai and Ai+1, and
will perform better when these gaps are small on average.
By triangle inequality, α ≤ 2, but in applications we typi-
cally have α� 1, meaning that the changes in the dynamic
matrix are small relative to its Frobenius norm.

We will measure the complexity of any algorithm for solv-
ing Problem 1 in the matrix-vector multiplication ora-
cle model of computation, meaning that we consider the
cost of matrix-vector products (which are the only way
A1, . . . , Am can be accessed) to be significantly larger than
other computational costs, and thus seek to minimize the
number of such products used (Sun et al., 2019). The matrix-
vector oracle model has seen growing interest in recent years
as it generalizes both the matrix sketching and Krylov sub-
space models in linear algebra, naturally captures the true
computational cost of algorithms in these classes, and is
amenable to proving strong lower-bounds, as in other re-
stricted computational models like the first-order oracle
model in convex optimization (Simchowitz et al., 2018;
Braverman et al., 2020).

1.4. Main Result

Our main result is an algorithm for solving Problem 1 more
efficiently than the naive Hutchinson’s estimator solution:

Theorem 1.1. For any ε, δ, α ∈ (0, 1), the DeltaShift algo-
rithm (Algorithm 1) solves Problem 1 with

O

(
m · α log(1/δ)

ε2
+

log(1/δ)

ε2

)
total matrix-vector multiplications involving A1, . . . , Am.

For large m, the first term dominates the asymptotic com-
plexity in Theorem 1.1. For comparison, a tight analysis
of Hutchinson’s estimator via e.g., the Hanson-Wright in-
equality (Meyer et al., 2021; Martinsson & Tropp, 2020) es-
tablishes that the naive approach requires O

(
m · log(1/δ)ε2

)
,

which is worse than Theorem 1.1 by a factor of α. A nat-
ural setting is when α = O(ε), in which case Algorithm 1
requires O(log(1/δ)/ε) matrix-multiplications on average
per time step in comparison to O(log(1/δ)/ε2) for Hutchin-
son’s estimator, a quadratic improvement in ε.

To achieve the guarantee of Theorem 1.1, we introduce a
dynamic variance reduction scheme. By linearity of the
trace, we have that tr(Ai+1) = tr(Ai) + tr(∆i), where
∆i = Ai+1 − Ai. Instead of estimating tr(Ai+1) directly,
we can combine our previous estimate for tr(Ai) with an
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estimate for tr(∆i), computed via Hutchinson’s estimator.
Each sample for Hutchinson’s estimator applied to ∆i re-
quires just two matrix-vector multiplies – one with Ai and
one with Ai+1. At the same time, when ∆i has small Frobe-
nius norm (bounded by α), we can estimate its trace more
accurately than tr(Ai+1) directly.

While intuitive, this approach requires care to make
work, as in a naive implementation, error in estimating
tr(∆1), tr(∆2), . . . , builds quickly, eliminating any com-
putational savings. To avoid this issue, we introduce a novel
damping strategy that actually estimates tr(Ai+1 − (1 −
γ)Ai)) for a positive damping factor γ.

We compliment our main result, Theorem 1.1, which a
nearly matching conditional lower bound. Specifically, in
Section 4 we argue that our DeltaShift method cannot be im-
proved in the dynamic setting unless Hutchinson’s estimator
can be improved in the static setting for general matrices.

1.5. Related Work

Prior work on implicit trace estimation and applications in
machine learning is discussed in Section 1.1. To the best of
our knowledge, no dynamic version of the problem akin to
Problem 1 has been studied. However, the idea of variance
reduction has found applications in other work on implicit
trace estimation (Adams et al., 2018; Gambhir et al., 2017;
Lin, 2017; Meyer et al., 2021). In these results, the trace
of a matrix A is estimated by decomposing A = B + ∆
where B has an easily computed trace (e.g., it is low-rank)
and ‖∆‖F � ‖A‖F , so tr(∆) is more easily approximated
with Hutchinson’s estimator than tr(A) directly.

2. Preliminaries
2.1. Notation

We let B ∈ Rm×k denote a real-valued matrix with m rows
and k columns. x ∈ Rn denotes a real-valued vector with n
entries. Subscripts like Bi or xj typically denote a matrix
or vector in a sequence, but we use double subscripts with
matrices to denote entries: Bij being the entry at the ith row
and jth column. ‖B‖F denotes the Frobenius norm of B,√∑

i,j B
2
ij . We let E[v] and Var[v] denote the expectation

and variance of a random variable v.

2.2. Hutchinson’s Estimator

Our algorithm will use Hutchinson’s trace estimator with
Rademacher ±1 random variables as a subroutine. Specif-
ically, let g1, . . . , g` ∈ Rn be independent random vec-
tors, with each entry +1 or −1 with probability 1/2. Let

A ∈ Rn×n. Hutchinson’s can estimator for tr(A) is:

h`(A) =
1

`

∑̀
i=1

gTi (Agi) (2)

Claim 2.1 (Hutchinson’s expectation and variance). For
any positive integer ` and matrix A we have:

E[h`(A)] = tr(A)

Var[h`(A)] =
2

`

(
‖A‖2F −

n∑
i=1

A2
ii

)
≤ 2

`
‖A‖2F .

The above follow from simple calculations, found e.g. in
(Avron & Toledo, 2011). Similar bounds can be obtained
when Hutchinson’s estimator is implemented with different
random variables. For example, random Gaussians also
lead to a variance bound of 2

` ‖A‖2F . We use Rademachers
because they tend to work better empirically.

Given the variance bound of Claim 2.1, Chebyshev’s in-
equality immediately implies a concentration bound for
Hutchinson’s estimator.

Claim 2.2 (Chebyshev’s Inequality). For a random variable
X with mean E[X] = µ and variance Var[X] = σ2, for
any k ≥ 1,

P (|X − µ| ≥ kσ) ≤ 1

k2
.

Corollary 2.2.1. For any ε, δ ∈ (0, 1), if ` = 2
ε2δ then

Pr [|h`(A)− tr(A)| ≥ ε‖A‖F ] ≤ δ.

The δ dependence in Corollary 2.2.1 can be improved from
1
δ to log(1/δ) via the Hanson-Wright inequality, which
shows that h`(A) is a sub-exponential random variable
(Rudelson et al., 2013; Meyer et al., 2021). We also require
Hanson-Wright to obtain our bound involving log(1/δ).

By applying this tighter bound to each matrix in Problem
1, Hutchinson’s yields a total matrix-vector multiplication
bound of O

(
m · log(1/δ)ε2

)
for solving the problem.

3. Main Algorithmic Result
As discussed in Section 1.3, a natural idea for solving Prob-
lem 1 with fewer than O(m/ε2) queries is to take advantage
of the small differences between Ai+1 and Ai to compute
a running estimate of the trace. In particular, instead of
estimating tr(A1), tr(A2), . . . , tr(Am) individually using
Hutchinson’s estimator, we use linearity of the trace to write:

tr(Aj) = tr(A1) +

j∑
i=2

tr(∆i) (3)
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Algorithm 1 DeltaShift
Input: Implicit matrix-vector multiplication access to
A1, ..., Am ∈ Rn×n, positive integer constants `0, `, damp-
ing factor γ ∈ [0, 1].
Output: t1, . . . , tm approximating tr(A1), . . . , tr(Am).

Draw `0 random ±1 vectors g1, . . . , g`0 ∈ Rn

Initialize t1 ← 1
`0

∑`0
i=1 g

T
i A1gi

for j ← 2 to m do
Draw ` random ±1 vectors g1, . . . , g` ∈ Rn
z1 ← Aj−1g1, . . . , z` ← Aj−1g`
w1 ← Ajg1, . . . , w` ← Ajg`
tj ← (1− γ)tj−1 + 1

`

∑`
i=1 g

T
i (wi − (1− γ)zi)

end for

where ∆i = Ai −Ai−1.

Then, we can compute an accurate approximation
h`0(A1) ≈ tr(A1) for large `0, and for i > 1 and some
` < `0, approximate:

tr(Aj) ≈ h`0(A1) +

j∑
i=2

h`(∆i) (4)

The above expression is still an unbiased estimate for tr(Aj),
and since ‖∆i‖F ≤ α � ‖Ai+1‖F , we expect to ap-
proximate tr(∆2), . . . , tr(∆m) much more accurately than
tr(A2), . . . , tr(Am) directly. At the same time, the esti-
mator in (4) only incurs a 2 factor overhead in matrix-
vector multiplies in comparisons to Hutchinson’s: it re-
quires 2 · (m− 1)` to compute h`(∆2), . . . , h`(∆m) versus
(m− 1)` to compute h`(A2), . . . , h`(Am). The cost of the
initial estimate h`0(A1) is necessarily higher, but can be
amortized over time.

3.1. Our Approach

While intuitive, the problem with this approach is that error
compounds over time due to the sum in (4). Each h`(∆i) is
roughly α/

√
` away from tr(∆i), so after j steps we naively

expect to incur error ∼ j · α/
√
`. We can do slightly better

by taking advantage of the randomness in our errors, and
argue that they accumulate as ∼ √j · α/

√
`, but regardless,

there is accumulation. One option is to “restart” the estima-
tion process – i.e. after some fixed number of steps q, throw
out all previous trace approximations, compute an accurate
estimate for tr(Aq), and for j ≥ q construct an estimator
based on tr(Aj) = tr(Aq) +

∑j−1
i=q tr(∆i). While possi-

ble to analyze theoretically, this approach turns out to be
difficult to implement in practice due to several competing
parameters – see the experiments in Section 5 for details.

Instead, we introduce a cleaner approach based on a damped
variance reduction strategy, which is detailed in Algorithm
1, which we calll DeltaShift. Instead being based on (3),

DeltaShift uses the following recursive identity involving a
fixed parameter 0 ≤ γ < 1 (to be chosen later):

tr(Aj) = (1− γ)tr(Aj−1) + tr(∆̂j) (5)

where

∆̂j = Aj − (1− γ)Aj−1.

Given an estimate tj−1 for tr(Aj−1), DeltaShift estimates
tr(Aj) by (1−γ)tj−1 +h`(∆̂j). This approach has several
useful properties: 1) if tj−1 is an unbiased estimate for
tr(Aj−1), tj is an unbiased estimate for tr(Aj), 2) ‖∆̂j‖F
is not much larger than ‖∆j‖F if γ is small, and 3) by
shrinking tj−1 by a factor of (1 − γ) when computing tj ,
the estimator reduces the variance of this leading term. The
last property suffices to ensure that error does no accumulate
over time, leading to our main result:

Theorem 1.1 (Restated). For any ε, δ, α ∈ (0, 1), Al-

gorithm 1 run with γ = α, `0 = O
(

log(1/δ)
ε2

)
, and

` = O
(
α log(1/δ)

ε2

)
solves Problem 1. In total, it requires

O

(
m · α log(1/δ)

ε2
+

log(1/δ)

ε2

)
matrix-vector multiplications with A1, . . . , Am.

The full proof of Theorem 1.1 relies on the Hanson-Wright
inequality, and is given in Appendix A. Here, we give a
simple proof of essentially the same statement, but with a
slightly weaker dependence on the failure probability δ.

Proof. Let γ = α, `0 = 2
ε2δ , and ` = 8α

ε2δ . The proof is
based on an inductive analysis of the variance of tj . Specifi-
cally, we claim that that for j = 1, . . . ,m:

Var[tj ] ≤ δε2. (6)

For the base case, consider t1, which is simply Hutchinson’s
estimator applied to A1. The bound of (6) follows directly
from Claim 2.1 and our assumption that ‖A1‖F ≤ 1.

Now consider the inductive case, tj . This random variable
is the sum of two independent estimators, tj−1 and h`(∆̂j).
So, to bound its variance, we just need to bound the variance
of these two terms. To address the second, note that by
triangle inequality, ‖∆̂j‖F = ‖Aj − (1 − γ)Aj−1‖F ≤
‖Aj − Aj−1‖F + γ‖Aj−1‖F ≤ 2α. So, by our inductive
assumption that Var[tj−1] ≤ δε2, and Claim 2.1, we have:

Var[tj ] = (1− γ)2Var[tj−1] + Var[h`(∆̂j)]

≤ (1− α)2δε2 +
2

`
‖∆̂j‖2F

≤ (1− α)δε2 + αδε2 = δε2.
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This proves (6) for all j = 1, . . . ,m, and by Chebyshev’s
inequality with k =

√
1/δ, we thus have that, for each j,

Pr [|tj − tr(Aj)| ≥ ε] ≤ δ.

3.2. Selecting γ in Practice

While DeltaShift is simple to implement, in practice, its
performance is sensitive to the choice of γ. For the Theorem
1.1 analysis, we assume γ = α, but α may not be known
apriori, and may change over time. To address this issue, we
describe a practical way of selecting a near optimal γ at each
time step j (the choice may change over time) with very little
additional computational overhead. Let vj−1 = Var[tj−1]
be the variance of our estimator for tr(Aj−1). We have
that vj = Var[tj ] = (1 − γ)2vj−1 + Var[h`(Aj − (1 −
γ)Aj−1)] ≤ (1− γ)2vj−1 + 2

` ‖Aj − (1− γ)Aj−1‖2F . At
time step j, a natural goal is to choose damping parameter
γ∗ that minimizes this upper bound on the variance of tj :

γ∗ = arg min
γ

[
(1− γ)2vj−1 +

2

`
‖∆̂j‖2F

]
, (7)

where ∆̂j = Aj − (1− γ)Aj−1 as before.

While (7) cannot be computed directly, observing that
‖B‖2F = tr(BTB) for any matrix B, so for any choice
of γ, the above quantity can be estimated as:

ṽj = (1− γ)2ṽj−1 +
2

`
h`(∆̂j

T
∆̂j), (8)

where ṽj−1 is an estimate for vj−1. Importantly, the esti-

mate h`(∆̂j

T
∆̂j) can be computed using exactly the same `

matrix-vector products involving Aj and Aj−1 that are used
to estimate tr(∆̂j), so there is little computational overhead.

Moreover, since ∆̂j

T
∆̂j is positive semidefinite, as long

as ` exceeds log(1/δ) as in Theorem 1.1, we will obtain a
constant factor relative error approximation to its trace in
(8) with probability 1− δ.

An alternative approach to estimating vj would be to simply
compute the empirical variance of the average h`(∆̂j), but
this requires fixing γ. An advantage of (8) is that it can
be used to analytically optimize γ. Specifically, expanding

∆̂j

T
∆̂j , we have that:

ṽj = (1− γ)2ṽj−1 +
2

`

(
h`(A

T
j Aj)+

(1− γ)2h`(A
T
j Aj)− 2(1− γ)h`(A

T
j−1Aj)

)
.

Above, each estimate h` is understood to use the same set
of random vectors. Taking the derivative and setting to zero,

Algorithm 2 Parameter Free DeltaShift
Input: Implicit matrix-vector multiplication access to
A1, ..., Am ∈ Rn×n, positive integer constant `.
Output: t1, . . . , tm approximating tr(A1), . . . , tr(Am).

Draw ` random ±1 vectors g1, . . . , g` ∈ Rn
z1 ← A1g1, . . . , z` ← A1g`
N ← 1

`

∑`
i=1 z

T
i zi (estimate for ‖A1‖2F )

Initialize t1 ← 1
`

∑`
i=1 g

T
i zi and v ← 2

`N
for j ← 2 to m do

Draw ` random ±1 vectors g1, . . . , g` ∈ Rn
z1 ← Aj−1g1, . . . , z` ← Aj−1g`
w1 ← Ajg1, . . . , w` ← Ajg`
N ← 1

`

∑`
i=1 z

T
i zi (estimate for tr(ATj−1Aj−1))

M ← 1
`

∑`
i=1 w

T
i wi (estimate for tr(ATj Aj))

C ← 1
`

∑`
i=1 w

T
i zi (estimate for tr(ATj−1Aj))

γ ← 1− 2C
`ṽj−1+2N (optimal damping factor)

tj ← (1− γ)tj−1 + 1
`

∑`
i=1 g

T
i (wi − (1− γ)zi)

v ← (1− γ)2v + 2
`

(
N + (1− γ)2M − 2(1− γ)C

)
end for

we have that the minimizer of (8), denoted γ̃∗, equals:

γ̃∗ = 1−
2h`(A

T
j−1Aj)

`ṽj−1 + 2h`(ATj−1Aj−1)
. (9)

The above expression motivates an essentially parameter
free version of DeltaShift, summarized as Algorithm 2,
which is what we use in our experimental evaluation.

The only input to this version of the algorithm is `, which
controls the number of matrix-vector products used at each
time step. For simplicity, unlike in Algorithm 1, we do
not use a larger number of matrix-vector multiplies when
estimating A1. In practice this leads to somewhat higher
error for the first matrices in the sequence A1, . . . , Am, but
error quickly falls off for large j.

4. Lower Bound and Open Problems
In this section, we prove a lower bound to compliment
Theorem 1.1, and discuss directions for further research.

4.1. Lower Bound

As noted, for large m, the matrix-vector multiplication com-
plexity of DeltaShift is dominated by the leading term in
Theorem 1.1, O

(
m · α log(1/δ)

ε2

)
. We note that it is unlikely

an improvement on this term can be obtained in general.
Specifically, any improvement would immediately imply a
better estimator than Hutchinon’s estimator:
Lemma 4.1. If there is an algorithm S for solving Prob. 1
with o

(
m · α log(1/δ)

ε2

)
total matrix-vector multiplications
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with A2, . . . , Am, and any number of matrix-vector multi-
plications with A1, then there is an algorithm T for achiev-
ing guarantee (1) for a single matrix A with o

(
log(1/δ)

ε2

)
matrix-vector multiplications.

Proof. The proof is via a direct reduction. Given a matrixA,
positive integer m > 1, and parameter α = 1

m−1 , construct
the sequence of matrices:

A1 = 0

A2 = α ·A
...

A1/α = (1− α)A

Am = A

Since A = 0, and every A2, . . . , Am is a scaling of A, any
algorithm S satisfying the assumption of Lemma 4.1 can be
implemented with o

(
(m− 1) · α log(1/δ)

ε2

)
= o

(
log(1/δ)

ε2

)
matrix-vector multiplications with A. Moreover, if S is run
on this sequence of matrices, on the last step it outputs an
approximation tm to tr(A) with Pr[|tm − tr(A)| ≥ ε] ≤ δ.
So algorithm T can simply simulate S on A1, . . . , Am and
return its final estimate to satisfy (1).

Lemma 4.1 implies a conditional lower-bound on matrix-
vector query algorithms for solving Problem 1: if Hutchin-
son’s estimator cannot be improved for static trace estima-
tion (and it hasn’t been for 30 years) then DeltaShift cannot
be improved for dynamic trace estimation.

Open Question. An interesting question is if the lower
bound of Lemma 4.1 can be made unconditional. A natural
approach would be to first prove an unconditional lower
bound arguing that any algorithm requires O

(
log(1/δ)

ε2

)
calls to a matrix-vector multiplication oracle to achieve
guarantee (1), and thus Hutchinson’s estimator is tight in
general. Lower bounds for trace estimation have been stud-
ied, but only in the special case of positive semidefinite
matrices (Meyer et al., 2021; Wimmer et al., 2014).

4.2. Positive semidefinite matrices

As discussed, a natural setting for Problem 1 has α ≈ ε.
In this case, the matrix-vector multiplication complexity of
DeltaShift is roughlyO(m/ε), which is a quadratic improve-
ment over the O(m/ε2) required by Hutchinson’s estimator.
However, in the special case when A1, . . . , Am are all pos-
itive semidefinite (PSD), such an improvement is already
possible in the static setting. Specifically, recent work shows
that just O

(
log(1/δ)

ε

)
matrix-vector multiplications are

needed to find an estimate t such that |tr(A)− t| ≤ ε · tr(A)
with probability 1− δ (Meyer et al., 2021).

Algorithm 3 Dynamic trace estimation with restarts
Input: Implicit matrix-vector multiplication access to
A1, ..., Am ∈ Rn×n, positive integer constant `0, `, q ≤ m.
Output: t1, . . . , tm approximating tr(A1), . . . , tr(Am).

Draw `0 random ±1 vectors g1, . . . , g`0 ∈ Rn

Initialize t1 ← 1
`0

∑`0
i=1 g

T
i A1gi

for j ← 2 to m do
if j ≡ 1 (mod n) then

Draw `0 random ±1 vectors g1, . . . , g`0 ∈ Rn

tj ← 1
`0

∑`0
i=1 g

T
i Ajgi

else
Draw `0 random ±1 vectors g1, . . . , g` ∈ Rn
tj ← tj−1 + 1

`

∑`
i=1 g

T
i (Aj −Aj−1)gi

end if
end for

Open Question. A natural question is if such a guarantee
can be obtained in the dynamic setting with o

(
m · log(1/δ)ε

)
matrix-vector multiplication when each of A1, . . . , Am is
PSD. Sequences of PSD matrices arise in many applications
– for example, in the Estrada index application discussed in
Section 1.3, Aj is PSD for all j because the exponential of a
matrix is always PSD. We note that answering this question
requires some care: even though A1, . . . , Am are PSD, it is
not typical that Aj −Aj−1 is PSD. As such, the improved
method from (Meyer et al., 2021), which is called Hutch++,
cannot be immediately applied in our variance reduction
framework.

5. Experiments
We show that our proposed algorithm outperforms three al-
ternatives on both synthetic and real-world trace estimation
problems. Specifically, we evaluate the following methods:

Hutchinson. The naive method of estimating each
tr(A1), . . . , tr(Am) using an independent Hutchinson’s es-
timator. Discussed in Section 2.2.

NoRestart. The estimator of (4), which uses the same vari-
ance reduction strategy as DeltaShift for all j ≥ 2, but does
not restart or add damping to reduce error accumulation.

Restart The estimator discussed in the beginning of Sec-
tion 3.1, which periodically restarts the variance reduction
strategy, using Hutchinson’s to obtain a fresh estimator for
tr(Aj). Pseudocode is included as Algorithm 3.

DeltaShift Our parameter free, damped variance reduction
estimator described in Algorithm 2.1

We allocated to each method a fixed number of matrix-
1We ran our large scale experiments before realizing γ̃∗ had a

closed form solution – see (3.2). Instead, we optimized γ numeri-
cally at each step using a simple grid search.
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vector queries, Q, to be used over all time steps 1, . . . ,m.
For Hutchinson and DeltaShift, the same number of vectors
Q/m was used for each Aj . For Restart and NoRestart, the
distribution was non-uniform, and parameter selections are
described in detail below.
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Figure 1. Synthetic data with low perturbation (Q = 104)
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Figure 2. Synthetic data with significant perturbation (Q = 104)

Synthetic data: To stimulate the dynamic setting, we con-
sider a random symmetric matrix A ∈ Rn×n and random
perturbation ∆ ∈ Rn×n to A for 100 time steps, with
n = 2000. We consider two cases, one where the pertur-
bations are small (Fig. 1) and one where the perturbations
are significant (Fig. 2). For the first case, A is a symmetric
matrix with uniformly random eigenvectors and eigenvalues
in [−1, 1]. Each perturbation is a random rank-1 matrix:
∆j = 5e−5 · ggT where r is random ±1 and g ∈ Rn is
random Gaussian. For the large perturbation case, each ∆j

is a random rank-25 positive semidefinite matrix. As such,
A’s trace and Frobenius norm monotonically increase over
time, which is reflected in increasing absolute error among
all algorithms. For the Restart algorithm, we restart every
q = 20 time steps, resulting in periodic dips in error. The
Q matrix-vector multiplications were evenly distributed to
each block of 20 matrices, and then 1/3 of those used for
estimating the trace of the first matrix in the block, and the
rest split evenly among the remaining 19. For NoRestart, the
same number of vectors were allocated to A1 as for Restart,
and the rest evenly divided among all 99 remaining steps.

We report scaled absolute error between the estimator at
time, tj , and the true trace tr(Aj). We average error over
100 trials and report ±0.25σ of the error. As expected,
Hutchinson is outperformed even by NoRestart when each
perturbation ∆j is small. DeltaShift performs best, and its
error actually improve slightly over time. DeltaShift also
performs best for the large ∆j experiment. We note that
choosing the multiple parameters for the Restart algorithm
was a major challenge in comparison to DeltaShift. Tuning
the method becomes infeasible for larger experiments, or
for multiple Q, so we exclude this method in our other
experiments. That includes for the plots in Fig. 3, which
show that DeltaShift continues to outperform Hutchinson
and NoRestart for lower values of Q.

Estimating triangle counts in Graph: Our first real-data
experiment is on estimating the number of triangles in a
dynamic graph. For an undirected graph G with adjacency
matrix B and entries either 0 or 1, the number of triangles
in the graph is 1

6 tr(B3). The number of triangles can be
thus approximated by estimating the trace of B3. The graph
dataset we use is the Wikipedia vote network dataset with
7115 nodes (Leskovec et al., 2010a;b). At each timestep
we perturb the graph by sampling a number of nodes (k)
uniformly between 10 and 150 and adding a complete sub-
graph of size k. After 75 time steps, we start randomly
deleting among the subgraphs added. This setup ensures
that the perturbations to the graph in the initial stages are
significant. For small perturbations, DeltaShift easily per-
forms better than Hutchinson’s, but we also wish to evaluate
its performance in more challenging settings. We follow
the same setup for number of matrix-vector products used
by the estimators and the error reported as in the synthetic
experiments. Note that for this particular application, the
actual number of matrix-vector multiplications with B is
3Q, since each oracle call computes B(B(Bx)). As seen in
Fig. 4, DeltaShift provides the best estimates overall.

Hessian spectral density: Our second real-data experiment
involves a dynamically changing Hessian matrix, H , for a
neural network training problem. As discussed in Section 1,
a common goal is to approximate the spectral density of H .
One common way to do this is via the Kernel Polynomial
Method (Weiße et al., 2006), which requires computing
the trace of polynomials of the matrix H . Specifically,
we consider the sequence of Chebyshev polynomials, but
note that other polynomial basis sets can also be used (e.g.,
Legendre polynomials). The three term recurrence relation
for the Chebyshev polynomials of first kind is:

T0(H) = I T1(H) = H

Tn+1(H) = 2HTn(H)− Tn−1(H). (10)

Here I is the identity matrix. The Chebyshev polynomials
form an orthogonal basis for functions in the range [−1, 1].
So, as a first step, we estimate the maximum eigenvalue of
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Figure 3. Comparison of DeltaShift with Hutchinson and NoRestart for trace estimation on synthetic data.
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Figure 4. Comparison of DeltaShift with Hutchinson and NoRestart for triangle counting in dynamic graph.

the Hessian using power iteration and scale H̃ = H/λmax.
Like trace estimation, power iteration requires computing
Hessian-vector products, which we compute approximately
using the PyHessian library (Yao et al., 2020). For a given
neural network and loss function, PyHessian efficiently ap-
proximates Hessian-vector products by applying Pearlmut-
ter’s method to a randomly sampled batch of data points
(Pearlmutter, 1994). To compute matrix-vector products
with T0(H), T1(H), . . . , Tq(H), which are needed to ap-
proximate the trace of these matrices, we simply imple-
ment the recurrence of (10) using PyHessian’s routine for
Hessian-vector products. Multiplying by Tq(H) requires q
Hessian-vector products in total.

We consider a ResNet model with 269722 parameters and
train it on the CIFAR-10 dataset. The model is trained us-
ing SGD and a batch size of 128, and we pre-train for 50
epochs before tracking the Hessian for 25 more steps. We
report error in estimating the trace of the first 5 Chebyshev
polynomials of H , averaged over 5 trials. As it is impos-
sible to compute the true trace of these matrices, we use
Hutchinson’s estimator with a greater number of queries as
placeholder for ground-truth, and compare the performance
against the computed values.

As can be seen in Tables 1 and 2, DeltaShift obtains uni-
formly better approximation to the trace values, although
the improvement is only marginal. This makes sense, as
more progress on each training epoch implies a greater
change in the Hessian over time, meaning α is larger and
thus DeltaShift’s advantage over Hutchinson’s is smaller.

Table 1. Average error for trace of polynomials of Hessian with
learning rate 0.001 and Q = 2000

HUTCHINSON NORESTART DELTASHIFT

T1(H) 2.5E-02 3.7E-02 1.7E-02
T2(H) 1.2E-06 1.7E-06 8.0E-07
T3(H) 4.0E-02 4.1E-02 3.1E-02
T4(H) 1.5E-06 1.7E-06 1.0E-06
T5(H) 2.1E-02 4.3E-02 1.9E-02
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A. High Probability Proofs
In this section we give a full proof of Theorem 1.1 with
the correct logarithmic dependence on 1/δ. Before doing
so, we collect several definitions and results required for
proving the theorem.

Definition 1. (Wainwright, 2019) A random variable X with
E[X] = µ is sub-exponential with parameters (ν, β) if its
moment generating function satisfies:

E[eλ(X−µ)] ≤ e ν
2λ2

2 for all |λ| < 1

β
.
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Claim A.1. (Wainwright, 2019) Any sub-exponential ran-
dom variable with parameters (ν, β) satisfies the tail bound

Pr [|X− µ| ≥ t] ≤

2e
−t2

2ν2 if 0 ≤ t ≤ ν2

β

2e
−t
2β for t > ν2

β .

Claim A.2. Let X1,X2, . . . ,Xk be independent random
variables with mean µ1, ..., µk and sub-exponential parame-
ters (ν1, β1), ...(νk, βk), then

∑k
i=1 aiXi is sub-exponential

with parameters (ν∗, β∗) where,

ν∗ =

√√√√ k∑
i=1

a2i ν
2
i and β∗ = max

i=1,...,k
aiβi

Proof. The proof is straight-forward by computing the
moment generating function of

∑k
i=1 aiXi using the in-

dependence of X1,X2, . . . ,Xk. Specifically, for |λ| <
1/(maxi=1,...,k aiβi) we have:

E[eλ
∑k
i=1 ai(Xi−µi)] =

k∏
i=1

E[eλai(Xi−µi)]

≤
k∏
i=1

e
λ2a2i ν

2
i

2 = e
λ2ν2∗

2 .

As discussed, a tight analysis of Hutchinson’s estimator, and
also our DeltaShift algorithm, relies on the Hanson-Wright
inequality (Hanson & Wright, 1971), which shows that any
quadratic form involving a vector with i.i.d. sub-Gaussian
entries is a sub-exponential random variable. Specifically,
we use the following version of the inequality:

Claim A.3. [Corollary of Theorem 1.1, (Rudelson et al.,
2013)] For A ∈ Rn×n, let h`(A) be Hutchinson’s estimator
as defined in Section 2.2, implemented with Rademacher
random vectors. h`(A) is a sub-exponential random vari-
able with parameters

ν =
c1‖A‖F√

`
and β =

c2‖A‖2
`

,

where c1, c2 are absolute constants.

Proof. Recall that h`(A) is an average of ` independent
random variables, each of the form gTAg, where g ∈ Rn
is a vector with independent ±1 Rademacher random en-
tries. We start by decoupling gTAg in two sums involving
diagonal and off-diagonal terms in A:

gTAg =

n∑
i=1

g2iAii +

n∑
i,j:i6=j

Aijgigj .

Here gi denotes the ith entry of g. Since each gi is sam-
pled i.i.d. from a ±1 Rademacher distribution, the first
term is constant with value

∑n
i=1Aii = tr(A). Rudel-

son et al. (2013) derive a bound on the moment generat-
ing function for the off-diagonal term, which they denote
S =

∑n
i,j:i 6=j Aijgigj . Specifically, they show that

E
[
eλS
]
≤ ec21‖A‖2Fλ2/2, for all |λ| < 1

c2‖A‖2
,

where c1, c2 are positive constants. As S is mean zero,
we conclude that it is sub-exponential with parameters
(c1‖A‖F , c2‖A‖2) (refer to Definition 1), and thus gTAg
(which is just S added to a constant) is sub-exponential
with same parameters. Finally, from Claim A.2, we imme-
diately have that h`(A) is sub-exponential with parameters(
c1‖A‖F√

`
, c2‖A‖2`

)
. Note that, while we only consider ±1

Rademacher random vectors, a similar analysis can be per-
formed for any i.i.d. sub-Gaussian random entries by show-
ing that the diagonal term is itself subexponential (it will
no longer be constant). The result will involve additional
constants depending on the choice of gi. In the case when
gi are i.i.d. standard normals, the diagonal term is a scaled
chi-squared random variable.

Now, we are ready to move on to the main result.

Theorem 1.1 (Restated). For any ε, δ, α ∈ (0, 1), Al-

gorithm 1 run with γ = α, `0 = O
(

log(1/δ)
ε2

)
, and

` = O
(
α log(1/δ)

ε2

)
solves Problem 1. In total, it requires

O

(
m · α log(1/δ)

ε2
+

log(1/δ)

ε2

)
matrix-vector multiplications with A1, . . . , Am.

Proof. The proof is by induction. Let t1, . . . , tm be the
estimators for tr(A1), . . . , tr(Am) returned by Algorithm
1. We claim that, for all j = 1, . . . ,m, tj is sub-exponential
with parameters

νj ≤
ε

2
√

log(2/δ)
, βj ≤

ε2

4 log(2/δ)
. (11)

If we can prove (11), the theorem immediately follows by
applying Claim A.1 with t = ε to the random variable tj .
Recall that E[tj ] = tr(Aj)

First consider the base case, t1 = hl0(A1). By
Claim A.3, hl0(A1) is sub-exponential with parameters(
c1√
`0
, c2‖A1‖2

`0

)
. Noting that ‖A1‖2 ≤ ‖A1‖F ≤ 1 and

setting constants appropriately on `0 gives the bound.

Next consider the inductive case. Recall that tj = (1 −
γ)tj−1 + h`(∆̂j), where ∆̂j = Aj − (1 − γ)Aj−1. As
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shown in Section 3.1, ‖∆̂j‖F ≤ 2α. So by Claim A.3,

h`(∆̂1) is sub-exponential with parameters
(

2c1α√
`
, 2c2α`

)
.

As long as ` = c · α log(2/δ)
ε2 for sufficiently large constant c,

we therefore have by Claim A.2 that

βj = max

[
(1− γ)βj−1,

2c2α

`

]
≤ ε2

4 log(2/δ)
.

Note that above we used the ‖∆̂j‖2 ≤ ‖∆̂j‖F ≤ 2α. Set-
ting γ = α, we also have

ν2j = (1− α)2ν2j−1 +

(
2c1α√
`

)2

≤ (1− α)ν2j−1 + αν2j−1 = ν2j−1.

The inequality
(

2c1α√
`

)2
≤ αν2j−1 follows as long as ` =

c · α log(2/δ)
ε2 for sufficiently large constant c. We have thus

proven (11) and the theorem follows.

B. Experimental setup
All experiments were run on server with 2vCPU @2.2GHz
and 27 GB main memory and P100 GPU with 16GB mem-
ory.


