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today’s topic

Goal: Expand the influence of RandNLA to other pillars of
applied and computational mathematics.
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Potential for ideas from randomized linear algebra to impact:

Approximation theory, signal processing, wireless
communications, spatial statistics, etc.

AKA: What I learned between last year at Simons and now.
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basic approach

Powerful tool: Extend RandNLA sketching and sampling
methods from matrices to continuous linear operators.

[Fx]i =
∑
j
Fi,jxj =⇒ [Fx](y) =

∫
z∈S

F(y, z)x(z)dz

Randomized Functional Analysis.
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some applications

• Continuous function interpolation (polynomials,
bandlimited, sparse Fourier, etc.)

• Kernel approximation in machine learning (random
Fourier features methods).

• Toeplitz covariance approximation + other signal
processing problem.

• What else?
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example problem

Polynomial regression:

• Given: Pointwise access to f(x) : [0, T] → R for For x ∈ [0, T].

• Goal: Find good degree q polynomial fit to f on [0, T].
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polynomial regression

Approximation goal:

If there exists a degree q polynomial p∗ with ∥p∗ − f∥ ≤ ϵ,
return a degree q polynomial p with ∥p− f∥ ≤ O(ϵ).

• ∞-norm: ∥p− f∥ = maxx∈[0,T] |f(x)− p(x)|.

• L2-norm: ∥p− f∥ =
∫ T
0 |f(x)− p(x)|2dx.

• L1-norm: ∥p− f∥ =
∫ T
0 |f(x)− p(x)|dx.

• . . .
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classical approximation theory

∞-norm: ∥p− f∥∞ = maxx∈[0,T] |f(x)− p(x)|.

1. Take samples at q+ 1 Chebyshev nodes.

2. Interpolation or Chebyshev expansion to find p.

Guarantee: ∥p− f∥∞ ≤ O(log k) · ∥p∗ − f∥∞.

“On the maximum errors of polynomial approximations defined by
interpolation and by least squares criteria.” [Powell, 1967].
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polynomial regression

∞-norm bounds lack any robustness properties.

No p∗ with small ∥f− p∗∥∞, but we could still recover a good
L2-norm or L1-norm approximation.
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polynomial regression

This is an issue with the methods, not just the analysis!
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polynomial regression

This is an issue with the methods, not just the analysis!

Randomness is necessary for robustness.
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robust polynomial regression

RandNLA approach: View as least-squares regression:

pc(t) = c0 + c1t+ . . .+ cqtq

min
c

∥Fc− y∥2 =
∫ T

0
|y(t)− pc(t)|2dt
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robust polynomial regression

Discretize via subsampling.
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leverage score sampling

[Drineas, Mahoney, Muthukrishnan 2006], [Sarlos 2006],
[Spielman, Srivastava 2008], etc.

Rank q operator =⇒ suffices to sample O(q log q) rows from F
with probability proportional to statistical leverage scores.

Definition (Leverage Score)
The leverage scores of row ai in a matrix A, τ(ai) equals:

τ(ai) = aTi (ATA)−1ai
= min

y:ATy=ai
∥y∥22

= max
x

(Ax)2i
∥Ax∥22
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leverage score sampling

For the linear operator with continuous column space, we have
a leverage function τ : [0, T] → R+.

Forget about computing the leverage function...

We need a closed form upper bound.

Lots of structure on our side!
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definitions of leverage score

1) Row norms of any orthonormal basis for columns of F .

Legendre Polynomials P0,P1, . . . ,Pq.

For all i ̸= j, ⟨Pi,Pj⟩ =
∫ 1
−1 Pi(t)Pj(t)dt = 0.
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definitions of leverage score

1) Row norms of any Legendre polynomial basis.

q∑
i=0

Pi(t)2

≤ cq√
1− t2

[Lorch, ’83]
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definitions of leverage score

Lorch’s bound is tight up to constants:

∫ 1
−1 τ̃q(t)dt = O(q).

Only need to take O(q logq) samples.
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least squares polynomial fitting

Theorem (Cohen, Migliorati ‘16)
Suppose there exists a degree q polynomial p∗ with
∥p∗ − f∥2 ≤ ϵ on [0, T]. Let p = argmin

∑s
i=1(f(ti)− p(ti))2

where t1, . . . , ts are sampled via the leverage score
distribution for degree q polynomials. Then as long as
s = O(q logq), ∥p− f∥2 ≤ O(ϵ) with high probability.

First near sample optimal robust polynomial interpolation via
tools from RandNLA/matrix concentration!

See [Price, Chen COLT ’19] for improvement to O(q) samples,
using ideas from Batson, Spielman, Srivastava ’08].
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least squares polynomial fitting

Samples taken according to the same asymptotic density as
the Chebyshev nodes.
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christoffel functions

Definition (Christoffel Function)

λq(t) = sup
degree q poly. p

∫ 1
−1 p(t)

2dt
p(t)2 .

Cohen and Migliorati sample proportional to 1
λq(t) .

Lots of other application in approximation theory: Jackson
type theorems, understanding zeros of orthogonal
polynomials, behavior or orthogonal expansion, etc.
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christoffel functions

Claim (Inverse Christoffel Function = Leverage Score)

1
λq(t)

= τq(t).

Maximization characterization of leverage scores:

τ(ai) = max
x

(Ax)2i
∥Ax∥22

Follows from standard equation τ(ai) = aTi (ATA)−1ai +
Cauchy-Scharwz + basic linear algebra.
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maximization characterization

Is there a function in the range of F that is concentrated at t?
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polynomial leverage

• Markov Brother’s Inequality:

τq(t) = inf
degree q poly. p

p(t)2∫ 1
−1 p(t)2dt

≤ O
(
q2
)

• Bernstein’s Inequality:

τq(t) = inf
degree q poly. p

p(t)2∫ 1
−1 p(t)2dt

≤ O
(

q√
1− t2

)

Polynomials can “spike” more near the edge of an interval.
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polynomial leverage

Additional implication: O(q2 logq) uniformly sampled points
are sufficient for robust polynomial fitting [Cohen, Davenport,
Leviatan, FoCM ’13].
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leverage functions

Anything beyond the polynomial operator?
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fourier transform structure

E.g. y is Fourier sparse. ŷ(ξ) is supported on k frequencies.

Compressed sensing, applications in medical imaging,
microscopy, RADAR, etc.
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sparse fourier operator

Fj(t) = e−2πifjt.

Nearly the same bounds holds for k-sparse Fourier operators,
not matter what f1, . . . , fj are!

27



sparse fourier operator

Fj(t) = e−2πifjt.

Nearly the same bounds holds for k-sparse Fourier operators,
not matter what f1, . . . , fj are!

27



sparse fourier operator

Such bounds are immediate for discrete Fourier matrices:

Fj,k = e−2πiIjk.

F is always a (scaled) orthonormal basis, so leverage scores
are proportional to row norms, which are all the same.
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fourier sparse leverage

[Halász 1983], [Kós, 2008], [Erdélyi 2016], [Chen, Kane, Price,
Song, FOCS 2016], [Chen, Price 2018], [Avron, Kapralov, Musco,

Musco, Velingker, Zandieh, 2019]

Theorem (Fourier sparse leverage)
When F is a k-sparse Fourier operator on [0, T],

|Fx(t)|2

∥Fx∥22
≤ ck2

|Fx(t)|2

∥Fx∥22
≤ ck/min(t, T− t).
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fourier sparse leverage

This upper bound is nearly tight:

Total number of samples:

k+ O(k log k)
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fourier sparse leverage

Intuition: Sums of close frequencies look like modulated
polynomials. Far frequencies are nearly orthogonal.
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immediate application

Theorem (Chen, Kane, Price, Song FOCS 2016)
Given y : [0, T] → R. Suppose there is some k-sparse Fourier
function g(t) =

∑k
j=1 cje−2πifjt with ∥y− g∥22 ≤ O(ϵ). With Õ(k4)

samples, we can find a k-sparse Fourier function g̃ with:

∥y− g̃∥22 ≤ O(ϵ).

Major challenge: Can this be improved? To O(k logc k)?
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additional applications

Implications for many other interpolation problems with
Fourier structure:

Applications in spectrum sensing/cognitive radio, medical
imaging, time series, etc.
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other priors

Smooth penalties underly Gaussian process regression,
kriging, kernel ridge regression, etc.

Countless applications in environmental science, geostatistics,
image processing, economics, time series analysis, etc.
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universal sampling

”A Universal Sampling Method for Reconstructing Signals with
Simple Fourier Transforms” [AKMMVZ, STOC 2019].
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time domain discretization

For these problems, we need to sample by an appropriately
defined ridge leverage score:

τ(t) = max
g

1
T |Fg(t)|

2

∥Fg∥22 + ϵ∥g∥22
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open questions

Sample and time efficient “spectrum blind” function fitting.

Ideally nearly matching the sample complexity of when the
spectrum is known.
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open questions

Everything in higher dimensions!

• Sampling columns: Random Fourier features methods for
kernels (see our [ICML 2017] work).

• Sampling rows: Nystrom methods and active kernel
regression.
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open questions

Understanding data distribution sampling.

“Relating Leverage Scores and Density using Regularized
Christoffel Functions” – Pauwels, Bach, Vert 2018.

• In our problems we lost O(q)/O(k) factors from data
distribution sampling instead of leverage score sampling.

• For what other settings is this loss bounded? Is data
distribution sampling okay under additional assumptions?
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open questions

More explicit connections?

• How do deterministic methods in RandNLA (e.g. based on
Batson. Spielman, Srivastava) compare with existing
deterministic sampling schemes?

• How about methods for different norms? 40



thank you!
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