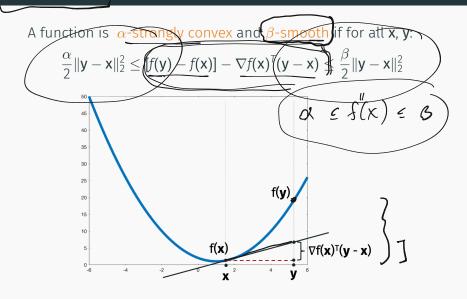
CS-GY 6763: Lecture 9
Finish Second Order Conditions, Online and
Stochastic Gradient Descent

NYU TandonSchool of Engineering, Prof. Christopher Musco

SECOND ORDER CONDITIONS



ALERNATIVE DEFINITION OF SMOOTHNESS

Definition (β -smoothness)

A function f is β smooth if and only if, for all x, y

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_2 \le \underline{\beta} \|\mathbf{x} - \mathbf{y}\|_2$$

I.e., the gradient function is a β -Lipschitz function.

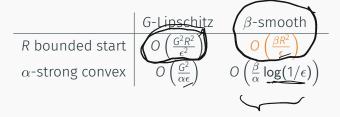
We won't use this definition directly, but it's good to know.

Easy to prove equivalency to previous definition (see Lem. 3.4

IMPROVING GRADIENT DESCENT

Having <u>either</u> an upper and lower bound on the second derivative helps convergence. Having both helps a lot.

Number of iterations for ϵ error:



GUARANTEED PROGRESS

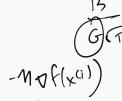
Gradient descent for β -smooth functions:

10f(x) 11, EG

- Select starting point $\mathbf{x}^{(0)}$, $\underline{\eta} = 1/\beta$.
- For i = 0, ..., T:

•
$$\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} - \eta \nabla f(\mathbf{x}^{(i)})$$

• Return $\hat{\mathbf{x}} = \arg\min_{i} f(\mathbf{x}^{(i)})$.



Why do you think gradient descent might be faster when a

GUARANTEED PROGRESS

Previously learning rate/step size η depended on G. Now choose it based on β : $\mathbf{x}^{(t+1)} \leftarrow \mathbf{x}^{(t)} \left(-\frac{1}{2} \nabla f(\mathbf{x}^{(t)}) \right)$

Progress per step of gradient descept:
$$\nabla f(x^{(+)})^T \nabla f(x^{(+)$$

1.
$$[f(\mathbf{x}^{(t+1)}) - f(\mathbf{x}^{(t)})] - \nabla f(\mathbf{x}^{(t)})^{\mathsf{T}} (\mathbf{x}^{(t+1)} - \mathbf{x}^{(t)}) \le \frac{\beta}{2} ||\mathbf{x}^{(t)} - \mathbf{x}^{(t+1)}||_{2}^{2}$$

$$||f(x^{(+)}) - f(x^{(+)})|| - \nabla f(x^{(+)}) - ||f(x^{(+)})|| + ||f(x^{(+)})|| - ||f(x^{(+)})|| + ||f(x^{(+)$$

2.
$$[f(\mathbf{x}^{(t+1)}) - f(\mathbf{x}^{(t)})] + \frac{1}{\beta} \|\nabla f(\mathbf{x}^{(t)})\|_{2}^{2} \le \frac{\beta}{2} \|\frac{1}{\beta} \nabla f(\mathbf{x}^{(t)})\|_{2}^{2} = \frac{1}{26} \|\nabla f(\mathbf{x}^{(t)})\|_{2}^{2}$$

$$\left(3. f(\mathbf{x}^{(t)}) - f(\mathbf{x}^{(t+1)}) \ge \frac{1}{2\beta} \| \underline{\nabla f(\mathbf{x}^{(t)})} \|_2^2.\right) \qquad f(\mathbf{x}^{(t+1)}) \ge f(\mathbf{x}^{(t+1)})$$

Where did we use convexity in this proof?

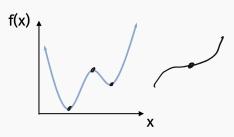
CONVERGENCE TO STATIONARY POINT

Theorem (Convergence to Near-Stationary Point)

For any β -smooth differentiable function f (convex or not), if we run GD for T steps, we can find a point $\hat{\mathbf{x}}$ such that:

$$\frac{\|\nabla f(\hat{\mathbf{x}})\|_{2}^{2} \leq \frac{2\beta}{T} \left(f(\mathbf{x}^{(0)}) - f(\mathbf{x}^{*}) \right) \leq C}{T = b_{1}^{2} f(\mathbf{x}^{0}) \cdot f(\mathbf{x}^{*})}$$

local/global minima - local/global maxima - saddle points



TELESCOPING SUM PROOF

We have that $\frac{1}{2\beta} \|\nabla f(\mathbf{x}^{(t)})\|_2^2 \leq f(\mathbf{x}^{(t)}) - f(\mathbf{x}^{(t+1)})$. So:

$$\int_{t=0}^{T-1} \frac{1}{2\beta} \|\nabla f(\mathbf{x}^{(t)})\|_{2}^{2} \leq \underbrace{f(\mathbf{x}^{(0)}) - f(\mathbf{x}^{(t)})}_{f(\mathbf{x}^{(0)}) - f(\mathbf{x}^{(t)})} + \underbrace{f(\mathbf{x}^{(t)}) - f(\mathbf{x}^{(t)})}_{f(\mathbf{x}^{(t)}) - f(\mathbf{x}^{(t)})} + \underbrace{f(\mathbf{x}^{(t)}) - f(\mathbf{x}^{(t)})}_{f(\mathbf{x}^{(t)})} \leq \frac{2\beta}{T} \left(f(\mathbf{x}^{(0)}) - f(\mathbf{x}^{(t)}) \right) \leq \frac{2\beta}{T} \left(f(\mathbf{x}^{(0)}) - f(\mathbf{x}^{(t)}) \right)$$

$$\widehat{\mathbf{x}} = \underbrace{\alpha_{t} \sum_{t=0}^{T-1} \|\nabla f(\mathbf{x}^{(t)})\|_{2}^{2}}_{f(\mathbf{x}^{(t)}) - f(\mathbf{x}^{(t)})} + \underbrace{\mathbf{x}^{(t)} \sum_{t=0}^{T-1} \|\nabla f(\mathbf{x}^{(t)})\|_{2}^{2}}_{f(\mathbf{x}^{(t)})} \leq \frac{2\beta}{T} \left(f(\mathbf{x}^{(0)}) - f(\mathbf{x}^{(t)}) \right)$$

BACK TO CONVEX FUNCTIONS

For convex functions, we want to further prove that: 🔥

$$f(\hat{\mathbf{x}}) - f(\mathbf{x}^*) \le \frac{2\beta R^2}{T}$$

Convex functions only have one stationary point: the global minimum **x***. Ideally, we would argue that a <u>near-stationary</u> <u>point</u> is a <u>near-minimizer</u>. However, this isn't always the case!

CONVERGENCE GUARANTEE

Nevertheless, not to hard to obtain a proof from the progress condition. A concise version can be found on Page 15 in

Garrigos and Gower's notes.

Theorem (GD convergence for β -smooth functions.)

Let f be a β smooth convex function and assume we have $\|\mathbf{x}^* - \mathbf{x}^{(\mathbf{0})}\|_2 \leq R$. If we run GD for \mathbf{J} steps with $\eta = \frac{1}{\beta}$ we have:

$$f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \frac{2\beta R^2}{T}$$

Corollary: $|\mathbf{T} = O\left(\frac{\beta R^2}{\epsilon}\right)|$ we have $f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \epsilon$.

Note: This is not optimal! Can be improved to depend on $O(1/T^2)$ using a technique called <u>acceleration</u>.

CONVERGENCE GUARANTEE

What if
$$f$$
 is both β -smooth and α -strongly convex? $f(x^{(1)}) \in f(x^{+})$

Theorem (GD for β -smooth, α -strongly convex.) $\{(\chi^{(1)}) - f(\chi^{+})\}$ Let f be a β -smooth and α -strongly convex function. If we run

GD for T steps (with step size $\eta = \frac{1}{\beta}$) we have:

$$\frac{2}{6} \left\{ f(x^{(T)}) - f(x^{(T)}) - f(x^{(T)}) - f(x^{(T)}) - f(x^{(T)}) - f(x^{(T)}) - f(x^{(T)}) \right\} = e^{-T\frac{\alpha}{\beta}} \|x^{(0)} - x^*\|_2^2 \le e^{-T\frac{\alpha}{\beta}} \|x^{(0)} - x^*\|_2$$

$$\kappa = \frac{\beta}{\alpha}$$
 is called the "condition number" of f .

Is it better if κ is large or small?

SMOOTH AND STRONGLY CONVEX

Converting to more familiar form: Using that fact the $\chi : X^{\bullet}$ $\nabla f(x^*) = 0$ along with

$$\frac{\alpha}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2} \leq [f(\mathbf{y}) - f(\mathbf{x})] - \nabla f(\mathbf{x})^{\mathsf{T}} (\mathbf{y} - \mathbf{x}) \leq \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2},$$
we have:
$$\frac{\alpha}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2} \leq [f(\mathbf{y}) - f(\mathbf{x})] - f(\mathbf{x})^{\mathsf{T}} (\mathbf{y} - \mathbf{x}) \leq \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2},$$

$$\frac{2}{\beta} \left[f(\mathbf{x}^{(\mathsf{T})}) - f(\mathbf{x}^{*}) \right] \leq \|\mathbf{x}^{(\mathsf{T})} - \mathbf{x}^{*}\|_{2}^{2}$$

We also assume

$$\|\mathbf{x}^{(0)} - \mathbf{x}^*\|_2^2 \le R^2.$$

CONVERGENCE GUARANTEE

Corollary (GD for β -smooth, α -strongly convex.)

Let f be a β -smooth and α -strongly convex function. If we run GD for T steps (with step size $\eta = \frac{1}{\beta}$) we have:

$$f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \frac{\beta}{2} e^{-T\frac{\alpha}{\beta}} \cdot R^2$$

Corollary: If $T = O\left(\frac{\beta}{\alpha}\log(R\beta/\epsilon)\right)$ we have:

$$f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \epsilon$$
 $\mathcal{T} = \mathcal{O}\left(\left[\frac{3}{4}, \log \right]^{83}\right)$

Only depend on $\log(1/\epsilon)$ instead of on $1/\epsilon$ or $1/\epsilon^2$!

Note: Can be further improved with acceleration!

SMOOTH, STRONGLY CONVEX OPTIMIZATION

After break we will prove the guarantee for the special case of:

$$f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$

Goal: Get some of the key ideas across, introduces important concepts like the Hessian, and show the connection between conditioning and linear algebra.

But first we will talk about <u>online gradient descent</u> and <u>stochastic gradient descent</u>.

ONLINE AND STOCHASTIC GRADIENT DESCENT

- · Basics of Online Learning + Optimization.
- Introduction to Regret Analysis.
- · Application to analyzing Stochastic Gradient Descent.

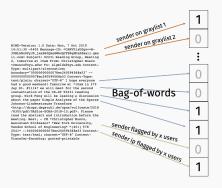
Original motivation for online learning: Often need to train machine learning models on constantly updating/changing data. Do not want to restart from scratch.

Plant identification via iNaturalist app.

(California Academy of Science + National Geographic)

- When the app fails, image is classified via crowdsourcing (backed by huge network of amateurs and experts).
- Single model that is updated constantly, not retrained in batches.

Machine learning based email spam filtering.



Markers for spam change overtime, so model might change.

Machine learning based email spam filtering.

Markers for spam change overtime, so model might change.

ONLINE LEARNING FRAMEWORK

Choose some mode M_x parameterized by parameters x and some loss function $\underline{\ell}$. At time steps $\underline{1}, \ldots, \underline{\mathcal{I}}$, receive data vectors $\underline{\mathbf{a}}^{(1)}, \ldots, \underline{\mathbf{a}}^{(T)}$.

- At each time step, we pick ("play") a parameter vector $\mathbf{x}^{(i)}$.
- Make prediction $\tilde{y}^{(i)} = M_{\mathbf{x}^{(i)}}(\mathbf{a}_{\underline{i}})$.
- Then told true value or label $y^{(i)}$. Possibly use this information to choose a new $\mathbf{x}^{(i+1)}$
- Goal is to minimize cumulative loss: $M_{x^{(i)}}(Q^{(i)}) J^{(i)}$

$$L = \sum_{i=1}^{T} (\ell(\mathbf{x}^{(i)}, \mathbf{a}^{(i)}, \mathbf{y}^{(i)})) \qquad (x) = \sum_{i=1}^{T} (\ell(\mathbf{x}, \mathbf{a}^{(i)}, \mathbf{y}^{(i)}))$$

For example, for a regression problem we might use the ℓ_1 loss:

$$\ell(\mathbf{x}^{(i)}, \mathbf{a}^{(i)}, y^{(i)}) = \left(M_{\mathbf{x}^{(i)}}(\mathbf{a}_i) - y^{(i)}\right)^2.$$

For classification, we could use logistic/cross-entropy loss.

ONLINE OPTIMIZATION

Aegret

Abstraction as optimization problem: Instead of a single objective function f, we have a <u>unknown</u> function $f_1, \ldots, f_T : \mathbb{R}^d \to \mathbb{R}$ for each time step.

- For time step $i \in \underline{1}, \dots, \underline{T}$, select vector $(\mathbf{x}^{(i)})$
- Observe f_i and pay cost $f_i(\mathbf{x}^{(i)})$
- Goal is to minimize $\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)})$.

We make <u>no assumptions</u> that $\underline{f_1}, \dots, \underline{f_T}$ are related to each other at all!

REGRET BOUND

In offline optimization, we wanted to find $\hat{\mathbf{x}}$ satisfying $f(\hat{\mathbf{x}}) < \min_{\mathbf{x}} f(\mathbf{x}) + \epsilon$. Ask for a similar thing here.

Objective: Choose $x_{\underline{-}}^{(1)}, \dots, x_{\underline{-}}^{(T)}$ so that:

Choose
$$\underline{\mathbf{x}}_{i=1}^{(1)}, \dots, \underline{\mathbf{x}}_{i}^{(T)}$$
 so that:
$$\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)}) \leq \underbrace{\left[\min_{\mathbf{x}} \sum_{i=1}^{T} f_i(\mathbf{x})\right]}_{\mathbf{x}} + \underbrace{\epsilon}. \qquad \qquad \mathbf{a} \leq \mathbf{a}$$

Here ϵ is called the regret of our solution sequence $x^{(0)}, \dots, x^{(T)}$

We typically ϵ to be growing sublinearly in T.

Regret compares to the best <u>fixed</u> solution in hindsight.

$$\left(\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)})\right) \leq \left[\min_{\mathbf{x}} \sum_{i=1}^{T} f_i(\mathbf{x})\right] + \epsilon.$$

It is very possible that $\left[\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)})\right] < \left[\min_{\mathbf{x}} \sum_{i=1}^{T} f_i(\mathbf{x})\right]$. Could we hope for something stronger?

Exercise: Argue that the following is impossible to achieve:

$$\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)}) \leq \left[\sum_{i=1}^{T} \min_{\mathbf{x}} f_i(\mathbf{x})\right] + \epsilon.$$

HARD EXAMPLE FOR ONLINE OPTIMIZATION

Convex functions: If
$$h_i = 0$$

$$(4-2n) \quad x_i = 0$$

$$(4-2n) \quad x_i$$

REGRET BOUNDS



Beautiful balance:

• Either f_1, \ldots, f_T are similar or changing slowly, so we can learn/predict f_i from earlier functions.

Or f_1, \ldots, f_T are very different, in which case $\min_{\mathbf{x}} \sum_{i=1}^{T} f_i(\mathbf{x})$ is large, so regret bound is easy to achieve.

· Or we live somewhere in the middle.

FOLLOW-THE-LEADER

Follow-the-leader algorithm:

$$\chi^{(i)}$$

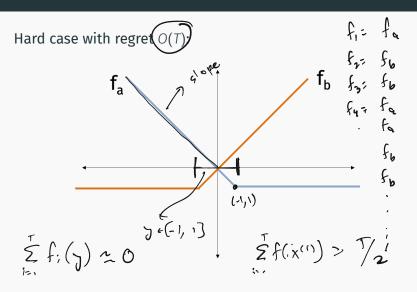
• Choose $\mathbf{x}^{(0)}$.

f.,.. f.

- For i = 1, ..., T:
 - Let $\underline{\mathbf{x}}^{(i)} = \arg\min_{\mathbf{x}} \sum_{j=1}^{i-1} f_j(\mathbf{x})$.
 - Plav $\mathbf{x}^{(i)}$.
 - Observe f_i and incur cost $f_i(\mathbf{x}^{(i)})$.

Simple and intuitive, but there are two issues with this approach. One is computational, one is related to the accuracy.

FOLLOW-THE-LEADER



https://www.desmos.com/calculator/3t8bfowo3j

ONLINE GRADIENT DESCENT

Online Gradient descent:

Celun 3:35

- Choose $\underline{\mathbf{x}^{(1)}}$ and $\underline{\eta}$.
- For $i = \underline{1}, \dots, \underline{T}$:
 - Play **x**⁽ⁱ⁾. **J**
 - Observe f_i and incur cost $f_i(\mathbf{x}^{(i)})$.

$$\cdot \mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} - (\eta \nabla f_i(\mathbf{x}^{(i)}))$$

If $f_1, \ldots, f_T = f$ are all the same, this is the same as regular gradient descent. We update parameters using the gradient ∇f at each step.

ONLINE GRADIENT DESCENT (OGD)

- f_1, \ldots, f_T are all convex.)
- Each is G-Lipschitz: for all \mathbf{x} , i, $\|\nabla f_i(\mathbf{x})\|_2 \leq G$.
- Starting radius: $\|\mathbf{x}^* \mathbf{x}^{(1)}\|_2 \le \underline{R}$.

Online Gradient descent:

- Choose $\mathbf{x}^{(1)}$ and $\eta = \frac{R}{G\sqrt{T}}$.
- For i = 1, ..., T:
 - Play $\mathbf{x}^{(i)}$.
 - Observe f_i and incur cost $f_i(\mathbf{x}^{(i)})$.
 - $\cdot \mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} \eta \nabla f_i(\mathbf{x}^{(i)})$

ONLINE GRADIENT DESCENT ANALYSIS

Theorem (OGD Regret Bound)

If the conditions of the previous slide hold, then after T steps, $\epsilon = \frac{1}{4} \left[\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)}) \right] - \left[\sum_{i=1}^{T} f_i(\mathbf{x}^*) \right] \leq RG\sqrt{7}.$

Average regret overtime is bounded by $\frac{\epsilon}{T} \leq \underbrace{\binom{RG}{\sqrt{T}}}$. Goes $\to 0$ as $T \to \infty$.

All this with (no assumptions on how f_1, \ldots, f_T) relate to each other! They could have even been chosen adversarially – e.g. with f_i depending on our choice of \mathbf{x}_i and all previous choices.

ONLINE GRADIENT DESCENT ANALYSIS

Theorem (OGD Regret Bound)

If the conditions of the previous slide hold, then after T steps, $\epsilon = \left[\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)})\right] - \left[\sum_{i=1}^{T} f_i(\mathbf{x}^*)\right] \leq RG\sqrt{T}$.

Claim 1: For all
$$i = 1, ..., T$$
,
$$\int_{0}^{\infty} x^{(i+1)} = x^{(i+1)} = x^{(i+1)}$$

$$\int_{0}^{\infty} x^{(i+1)} = x^{(i+1)}$$

(Same proof for standard GD. Only uses convexity of f_i .)

ONLINE GRADIENT DESCENT ANALYSIS

Theorem (OGD Regret Bound)

After T steps,
$$\epsilon = \left[\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)})\right] - \left[\sum_{i=1}^{T} f_i(\mathbf{x}^*)\right] \leq RG\sqrt{T}$$
.

Claim 1: For all
$$i = 1, \ldots, T$$
,

$$f_{i}(\mathbf{x}^{(i)}) - f_{i}(\mathbf{x}^{*}) \leq \frac{\|\mathbf{x}^{(i)} - \mathbf{x}^{*}\|_{2}^{2} - \|\mathbf{x}^{(i+1)} - \mathbf{x}^{*}\|_{2}^{2}}{2\eta} \left(\frac{\eta G^{2}}{2}\right)$$
coning Sum:

Telescoping Sum:

$$\sum_{i=1}^{T} \left[f_i(\mathbf{x}^{(i)}) - f_i(\mathbf{x}^*) \right] \leq \frac{\|\mathbf{x}^{(1)} - \mathbf{x}^*\|_2^2 - \|\mathbf{x}^{(T)} - \mathbf{x}^*\|_2^2}{2\eta} + \frac{T\eta G^2}{2}$$

$$\leq \frac{R^2}{2\eta} + \frac{T\eta G^2}{2}$$

That's it!

STOCHASTIC GRADIENT DESCENT (SGD)

Efficient offline optimization method for functions f with finite sum structure: $L(x) := \sum_{i=1}^{n} f_i(x).$ Goal is to find \hat{x} such that $f(\hat{x}) \le f(x^*) + \epsilon$.

- The most widely use optimization algorithm in modern machine learning.
- Easily analyzed as a special case of online gradient descent!

STOCHASTIC GRADIENT DESCENT

Recall the machine learning setup. In empirical risk minimization, we can typically write: $f(\mathbf{x}) = \sum_{i=1}^n f_i(\mathbf{x})$ where f_i is the loss function for a particular data example $(\mathbf{a}^{(i)}, y^{(i)})$.

Example: least squares linear regression.

$$\int (\mathbf{u} \, \mathbf{d})$$

$$\int (\mathbf{x} \, \mathbf{d}) = \sum_{i=1}^{n} (\mathbf{x}^{\mathsf{T}} \mathbf{a}^{(i)} - y^{(i)})^{2}$$
Note that by linearity, $\nabla f(\mathbf{x}) = \sum_{i=1}^{n} \nabla f_{i}(\mathbf{x})$.

2 (x (a(1) -y(1)). (a(1))

2

STOCHASTIC GRADIENT DESCENT

Main idea: Use random approximate gradient in place of actual gradient.

Pick random $j \in 1, ..., n$ and update **x** using $\nabla f_j(\mathbf{x})$.

$$\mathbb{E}\left[\nabla f_{j}(\mathbf{x})\right] = \frac{1}{n} \nabla \underline{f}(\mathbf{x}).$$

$$\mathbb{E}\left[\nabla f_{j}(\mathbf{x})\right] = \frac{1}{n} \nabla \underline{f}(\mathbf{x}).$$

$$\mathbb{E}\left[\nabla f_{j}(\mathbf{x})\right] = \frac{1}{n} \nabla f(\mathbf{x}).$$

 $n\nabla f_j(\mathbf{x})$ s an unbiased estimate for the true gradient $\nabla f(\mathbf{x})$, but can typically be computed in a 1/n fraction of the time!

Trade slower convergence for cheaper iterations.

STOCHASTIC GRADIENT DESCENT

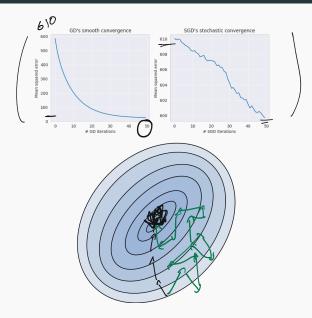
Stochastic first-order oracle for $f(\mathbf{x}) = \sum_{i=1}^{n} f_i(\mathbf{x})$.

- Function Query: For any chosen j, x, return $f_i(x)$
- Gradient Query: For any chosen j, x, return $\nabla f_i(\mathbf{x})$

Stochastic Gradient descent:

- Choose starting vector $\mathbf{x}^{(1)}$, step size η
- For i = 1, ..., T:
 - Pick random $j_i \in 1, ..., n$.
- $\underbrace{\mathbf{x}^{(i+1)}}_{\cdot} = \underbrace{\mathbf{x}^{(i)}}_{T} \underbrace{\eta \nabla f_{j_i}(\mathbf{x}^{(i)})}_{t}$ $\cdot \text{ Return } \hat{\mathbf{x}} = \frac{1}{T} \sum_{i=1}^{T} \mathbf{x}^{(i)}$

VISUALIZING SGD



STOCHASTIC GRADIENT DESCENT

Assume:

- Finite sum structure: $f(\mathbf{x}) = \sum_{i=1}^n f_i(\mathbf{x})$, with $\underline{f_1}, \dots, \underline{f_n}$ all convex.
- Lipschitz functions: for all \mathbf{x} , j, $\|\nabla f_i(\mathbf{x})\|_2 \leq \frac{G'}{n}$.
 - What does this imply about Lipschitz constant of f?
- 11 0 f(x) 11 = 11 2 0 f; (x) 11 2 • Starting radius: $\|\mathbf{x}^* - \mathbf{x}^{(1)}\|_2 \leq \frac{R}{2}$. < \frac{7}{2} ||\nathensight\text{Nf}_{j}(x)||_{2}
 < \text{N} \cdot \frac{G}{2} = \frac{G}{2}

Stochastic Gradient descent:

- Choose $\mathbf{x}^{(1)}$, steps T, step size $\underline{\eta} = \frac{R}{G'\sqrt{T}}$. • For i = 1, ..., T:
 - - Pick random $j_i \in 1, ..., n$. $\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} \eta \nabla f_{j_i}(\mathbf{x}^{(i)})$
- Return $\hat{\mathbf{x}} = \frac{1}{T} \sum_{i=1}^{T} \mathbf{x}^{(i)}$

Approach: View as online gradient descent run on function sequence f_{i_1}, \ldots, f_{i_T} .

STOCHASTIC GRADIENT DESCENT BOUND

Claim (SGD Convergence)

After
$$T = \frac{R^2 G}{\epsilon^2}$$
 iterations:

$$\mathbb{E}\left[f(\hat{\mathbf{x}}) - f(\mathbf{x}^*)\right] \le \epsilon.$$

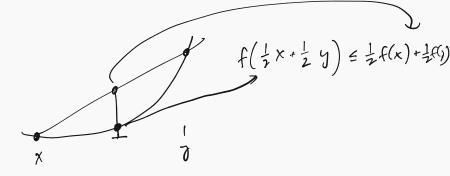
Will prove using:

- Black-box result for online gradient descent (already proven).
- 2. The fact that $\underline{\underline{n}} \cdot \mathbb{E}[\underline{f_{j_i}}(\mathbf{x}^{(i)})] = \underline{\underline{f}}(\mathbf{x}^{(i)}).$
- 3. Jensen's inequality.

JENSEN'S INEQUALITY

For a convex function f and points $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(t)}$

$$f\left(\underbrace{\frac{1}{t} \cdot \mathbf{x}^{(1)} + \ldots + \frac{1}{t} \cdot \mathbf{x}^{(t)}}_{}\right) \leq \underbrace{\frac{1}{t} \cdot \underline{f(\mathbf{x}^{(1)})}}_{} + \ldots + \underbrace{\frac{1}{t} \cdot \underline{f(\mathbf{x}^{(t)})}}_{}$$



After
$$T = \frac{R^2G'^2}{\epsilon^2}$$
 iterations:

$$\mathbb{E}\left[f(\hat{\mathbf{x}}) - f(\mathbf{x}^*)\right] \leq \epsilon.$$

Claim 1:

$$\int \frac{f(\hat{\mathbf{x}}) - f(\mathbf{x}^*)}{\int f(\hat{\mathbf{x}})} \leq \frac{1}{T} \sum_{i=1}^{T} \left[f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*) \right]$$

Prove using Jensen's Inequality:

$$f(\vec{x}, x^{(i)}) - \frac{1}{7} \vec{z} f(x^{4}) \leq \frac{1}{7} \vec{z} f(x^{(i)}) - \frac{1}{7} \vec{z} f(x^{4})$$

$$= \frac{1}{7} \vec{z} f(x^{(i)}) - f(x^{4})$$

Claim (SGD Convergence)

After
$$T = \frac{R^2G'^2}{\epsilon^2}$$
 iterations:
$$\mathbb{E}\left[f(\hat{\mathbf{x}}) - f(\mathbf{x}^*)\right] \leq \epsilon.$$

$$\mathbb{E}\left[f(\hat{\mathbf{x}}) - f(\mathbf{x}^*)\right] \leq \frac{1}{T} \sum_{i=1}^{T} \mathbb{E}\left[f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*)\right]$$

$$= \frac{1}{T} \sum_{i=1}^{T} n \mathbb{E}\left[f_{j_i}(\mathbf{x}^{(i)}) - f_{j_i}(\mathbf{x}^*)\right]$$

Claim (SGD Convergence)

 f_{j_1,\ldots,j_r}

After
$$T = \frac{R^2 G'^2}{\epsilon^2}$$
 iterations:

$$\mathbb{E}\left[f(\hat{\mathbf{x}}) - f(\mathbf{x}^*)\right] \leq \epsilon.$$

$$\frac{\mathbb{E}[f(\hat{\mathbf{x}}) - f(\mathbf{x}^*)] \leq \frac{1}{T} \sum_{i=1}^{T} \mathbb{E}\left[f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*)\right] \\
= \frac{1}{T} \sum_{i=1}^{T} n \mathbb{E}\left[f_{j_i}(\mathbf{x}^{(i)}) - f_{j_i}(\mathbf{x}^*)\right] = \frac{\mathbf{N}}{T} \mathbb{E}\left[f_{j_i}(\mathbf{x}^{(i)}) - f_{j_i}(\mathbf{x}^{(i)})\right] \\
\leq \underbrace{\frac{n}{T} \cdot \mathbb{E}\left[\sum_{i=1}^{T} f_{j_i}(\mathbf{x}^{(i)}) - f_{j_i}(\mathbf{x}^{offline})\right]}_{,}$$

where $\underline{\mathbf{x}}^{offline} = \underset{i=1}{\operatorname{arg min}} \mathbf{x} \sum_{i=1}^{T} f_{j_i}(\mathbf{x})$.

Claim (SGD Convergence)

After $T = \frac{R^2G'^2}{\epsilon^2}$ iterations:

$$\mathbb{E}\left[f(\hat{\mathbf{x}}) - f(\mathbf{x}^*)\right] \leq \epsilon.$$

13(55)

$$\mathbb{E}[f(\hat{\mathbf{x}}) - f(\mathbf{x}^*)] \leq \frac{1}{T} \sum_{i=1}^{T} \mathbb{E}\left[f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*)\right]$$

$$= \frac{1}{T} \sum_{i=1}^{T} n \mathbb{E}\left[f_{j_i}(\mathbf{x}^{(i)}) - f_{j_i}(\mathbf{x}^*)\right]$$

$$\leq \frac{n}{T} \cdot \mathbb{E}\left[\sum_{i=1}^{T} f_{j_i}(\mathbf{x}^{(i)}) - f_{j_i}(\mathbf{x}^{\text{offline}})\right]$$

$$\leq \frac{n}{T} \cdot \left(R \cdot \frac{G'}{n} \cdot \sqrt{T}\right) \qquad \text{(by OGD guarantee.)}$$

$$= \frac{R}{T} \cdot \frac{G}{T} \cdot \frac{1}{T} \cdot \frac{R^{2}}{T} \cdot \frac{1}{T} \cdot \frac{1$$

Number of iterations for error ϵ :

C= (-1

- Gradient Descent: $T = \frac{\sqrt{R^2 G^2}}{\sqrt{\epsilon^2}}$.
- Stochastic Gradient Descent: $T = \frac{R^2 G^2}{\epsilon^2}$.

Always have
$$G \leq G'$$
:
$$\max_{\mathbf{X}} \|\nabla f(\mathbf{X})\|_{2} \xrightarrow{\mathbf{X}} \max_{\mathbf{X}} (\|\nabla f_{1}(\mathbf{X})\|_{2} + \ldots + \|\nabla f_{n}(\mathbf{X})\|_{2})$$

$$\leq \max_{\mathbf{X}} (\|\nabla f_{1}(\mathbf{X})\|_{2}) + \ldots + \max_{\mathbf{X}} (\|\nabla f_{n}(\mathbf{X})\|_{2})$$

$$\leq n \cdot \frac{G'}{n} = G'.$$

So GD converges strictly faster than SGD.

But for a fair comparison:

• SGD cost = (
$$\#$$
 of iterations) • $O(1)$

• GD cost = (# of iterations)
$$\cdot$$
 $O(n)$

We always have $G \le G'$. When it is <u>much smaller</u> then GD will perform better. When it is closer to this upper bound, SGD will perform better.

What is an extreme case where G = G'?

What if each gradient $\nabla f_i(\mathbf{x})$ looks like random vectors in \mathbb{R}^d ? E.g. with $\mathcal{N}(0,1)$ entries?

What if each gradient
$$\nabla f_i(\mathbf{x})$$
 looks like random vectors in \mathbb{R}^d ?

E.g. with $\mathcal{N}(0,1)$ entries?

$$\mathbb{E}\left[\|\nabla f_i(\mathbf{x})\|_2^2\right] = \int \|\nabla f_i(\mathbf{x})\|_2^2 = \int \|\nabla f_i(\mathbf{x})\|_$$

$$\mathbb{E}\left[\|\nabla f_{i}(\mathbf{x})\|_{2}^{2}\right] = \mathbf{d} \qquad \|\nabla f_{i}(\mathbf{x})\|_{2}^{2} = \mathbf{d} \qquad \|\nabla f(\mathbf{x})\|_{2}^{2} = \mathbf{n} \mathbf{d}$$

Takeaway: SGD performs better when there is more structure or repetition in the data set.



PRECONDITIONING

Main idea: Instead of minimizing f(x), find another function g(x) with the same minimum but which is better suited for first order optimization (e.g., is smoother, or has a smaller conditioner number).

Claim: Let
$$h(\mathbf{x}) : \mathbb{R}^d \to \mathbb{R}^d$$
 be an invertible function. Let $g(\mathbf{x}) = f(h(\mathbf{x}))$. Then

$$\min_{\mathbf{x}} f(\mathbf{x}) = \min_{\mathbf{y}} g(\mathbf{y})$$
 and $\underset{\mathbf{x}}{\operatorname{arg min}} f(\mathbf{x}) = h \left(\underset{\mathbf{y}}{\operatorname{arg min}} g(\mathbf{y}) \right).$

PRECONDITIONING

First Goal: We need $g(\mathbf{x})$ to still be convex.

Claim: Let P be an invertible $d \times d$ matrix and let $g(\mathbf{x}) = f(P\mathbf{x})$.

 $g(\mathbf{x})$ is always convex.

PRECONDITIONING

Second Goal:

 $g(\mathbf{x})$ should have better condition number κ than $f(\mathbf{x})$.

Example:

$$f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$
. $\kappa_f = \frac{\lambda_1(\mathbf{A}^T\mathbf{A})}{\lambda_d(\mathbf{A}^T\mathbf{A})}$.

•
$$g(\mathbf{x}) = \|\mathbf{A}\mathbf{P}\mathbf{x} - \mathbf{b}\|_2^2$$
. $\kappa_g = \frac{\lambda_1(\mathbf{P}^\mathsf{T}\mathbf{A}^\mathsf{T}\mathbf{A}\mathbf{P})}{\lambda_d(\mathbf{P}^\mathsf{T}\mathbf{A}^\mathsf{T}\mathbf{A}\mathbf{P})}$.

DIAGONAL PRECONDITIONER

Third Goal: P should be easy to compute.

Many, many problem specific preconditioners are used in practice. There design is usually a heuristic process.

Example: Diagonal preconditioner.

- · Let $D = diag(A^TA)$
- Intuitively, we roughly have that $D \approx A^T A$.
- Let $P = \sqrt{D^{-1}}$

P is often called a **Jacobi preconditioner**. Often works very well in practice!

DIAGONAL PRECONDITIONER

```
A =
        -734
                                   33
                                              9111
                                                              0
         -31
                       -2
                                              5946
                                  108
                                                            -19
         232
                                  101
                                              3502
                                                             10
         426
                                  -65
                                             12503
                                                              9
        -373
                                   26
                                              9298
        -236
                                  -94
                                              2398
        2024
                                 -132
                                             -6904
                                                            -25
       -2258
                                   92
                                             -6516
        2229
                                    0
                                             11921
                                                            -22
         338
                                    -5
                                            -16118
                                                            -23
```

ADAPTIVE STEPSIZES

Another view: If g(x) = f(Px) then $\nabla g(x) = P^T \nabla f(Px)$.

 $\nabla g(\mathbf{x}) = \mathbf{P} \nabla f(\mathbf{P} \mathbf{x})$ when **P** is symmetric.

Gradient descent on *g*:

- For t = 1, ..., T, • $\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - \eta \mathbf{P} \left[\nabla f(\mathbf{P} \mathbf{x}^{(t)}) \right]$
- Return Px^(T)

Gradient descent on *g*:

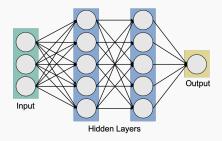
• For
$$t = 1, ..., T$$
,
• $\mathbf{y}^{(t+1)} = \mathbf{y}^{(t)} - \eta \mathbf{P}^2 \left[\nabla f(\mathbf{y}^{(t)}) \right]$

When **P** is diagonal, this is just gradient descent with a different step size for each parameter!

ADAPTIVE STEPSIZES

Algorithms based on this idea:

- · AdaGrad
- RMSprop
- · Adam optimizer



(Pretty much all of the most widely used optimization methods for training neural networks.)

STOCHASTIC METHODS

Main idea: Trade slower convergence (more iterations) for cheaper iterations.

Stochastic Gradient Descent: When $f(\mathbf{x}) = \sum_{i=1}^{n} f_i(\mathbf{x})$, approximate $\nabla f(\mathbf{x})$ with $\nabla f_i(\mathbf{x})$ for randomly chosen i.

STOCHASTIC METHODS

Main idea: Trade slower convergence (more iterations) for cheaper iterations.

Stochastic Coordinate Descent: Only compute a <u>single random</u> entry of $\nabla f(\mathbf{x})$ on each iteration:

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(\mathbf{x}) \\ \frac{\partial f}{\partial x_2}(\mathbf{x}) \\ \vdots \\ \frac{\partial f}{\partial x_d}(\mathbf{x}) \end{bmatrix} \qquad \nabla_i f(\mathbf{x}) = \begin{bmatrix} 0 \\ \frac{\partial f}{\partial x_i}(\mathbf{x}) \\ \vdots \\ 0 \end{bmatrix}$$

Update: $\mathbf{x}^{(t+1)} \leftarrow \mathbf{x}^{(t)} + \eta \nabla_i f(\mathbf{x}^{(t)})$.