
CS-GY 6763: Lecture 9
Finish Second Order Conditions, Online and
Stochastic Gradient Descent

NYU TandonSchool of Engineering, Prof. Christopher Musco

1

SECOND ORDER CONDITIONS

A function is α-strongly convex and β-smooth if for all x, y:
α

2 ∥y− x∥22 ≤ [f(y)− f(x)]−∇f(x)T(y− x) ≤ β

2 ∥y− x∥22

2

ALERNATIVE DEFINITION OF SMOOTHNESS

Definition (β-smoothness)
A function f is β smooth if and only if, for all x, y

∥∇f(x)−∇f(y)∥2 ≤ β∥x− y∥2

I.e., the gradient function is a β-Lipschitz function.

We won’t use this definition directly, but it’s good to know.
Easy to prove equivalency to previous definition (see Lem. 3.4
in Bubeck’s book).

3

https://arxiv.org/pdf/1405.4980.pdf

IMPROVING GRADIENT DESCENT

Having either an upper and lower bound on the second
derivative helps convergence. Having both helps a lot.

Number of iterations for ϵ error:

G-Lipschitz β-smooth
R bounded start O

(
G2R2

ϵ2

)
O
(
βR2

ϵ

)
α-strong convex O

(
G2

αϵ

)
O
(
β
α log(1/ϵ)

)

4

GUARANTEED PROGRESS

Gradient descent for β-smooth functions:

• Select starting point x(0), η = 1/β.
• For i = 0, . . . , T:

• x(i+1) = x(i) − η∇f(x(i))
• Return x̂ = argmini f(x(i)).

Why do you think gradient descent might be faster when a
function is β-smooth?

5

GUARANTEED PROGRESS

Previously learning rate/step size η depended on G. Now
choose it based on β:

x(t+1) ← x(t) − 1
β
∇f(x(t))

Progress per step of gradient descent:

1.
[
f(x(t+1))− f(x(t))

]
−∇f(x(t))T(x(t+1)−x(t)) ≤ β

2 ∥x(t)−x(t+1)∥22.

2.
[
f(x(t+1))− f(x(t))

]
+ 1

β∥∇f(x(t))∥22 ≤
β
2 ∥

1
β∇f(x(t))∥22.

3. f(x(t))− f(x(t+1)) ≥ 1
2β∥∇f(x(t))∥22.

Where did we use convexity in this proof? 6

CONVERGENCE TO STATIONARY POINT

Theorem (Convergence to Near-Stationary Point)
For any β-smooth differentiable function f (convex or not), if
we run GD for T steps, we can find a point x̂ such that:

∥∇f(x̂)∥22 ≤
2β
T

(
f(x(0))− f(x∗)

)

local/global minima - local/global maxima - saddle points

7

TELESCOPING SUM PROOF

We have that 1
2β∥∇f(x(t))∥22 ≤ f(x(t))− f(x(t+1)). So:

T−1∑
t=0

1
2β ∥∇f(x

(t))∥22 ≤ f(x(0))− f(x(t))

1
T

T−1∑
t=0
∥∇f(x(t))∥22 ≤

2β
T

(
f(x(0))− f(x∗)

)

min
t
∥∇f(x(t))∥22 ≤

2β
T

(
f(x(0))− f(x∗)

)

8

BACK TO CONVEX FUNCTIONS

For convex functions, we want to further prove that:

f(x̂)− f(x∗) ≤ 2βR2

T

Convex functions only have one stationary point: the global
minimum x∗. Ideally, we would argue that a near-stationary
point is a near-minimizer. However, this isn’t always the case!

9

CONVERGENCE GUARANTEE

Nevertheless, not to hard to obtain a proof from the progress
condition. A concise version can be found on Page 15 in
Garrigos and Gower’s notes.

Theorem (GD convergence for β-smooth functions.)
Let f be a β smooth convex function and assume we have
∥x∗ − x(1)∥2 ≤ R. If we run GD for T steps with η = 1

β we have:

f(x(T))− f(x∗) ≤ 2βR2

T

Corollary: If T = O
(
βR2

ϵ

)
we have f(x(T))− f(x∗) ≤ ϵ.

Note: This is not optimal! Can be improved to depend on
O(1/T2) using a technique called acceleration. 10

https://gowerrobert.github.io/pdf/M2_statistique_optimisation/grad_conv.pdf

CONVERGENCE GUARANTEE

What if f is both β-smooth and α-strongly convex?

Theorem (GD for β-smooth, α-strongly convex.)
Let f be a β-smooth and α-strongly convex function. If we run
GD for T steps (with step size η = 1

β) we have:

∥x(T) − x∗∥22 ≤ e−Tα
β ∥x(0) − x∗∥22

κ = β
α is called the “condition number” of f.

Is it better if κ is large or small?

11

SMOOTH AND STRONGLY CONVEX

Converting to more familiar form: Using that fact the
∇f(x∗) = 0 along with

α

2 ∥x− y∥22 ≤ [f(y)− f(x)]−∇f(x)T(y− x) ≤ β

2 ∥x− y∥22,

we have:
2
β

[
f(x(T))− f(x∗)

]
≤ ∥x(T) − x∗∥22

We also assume

∥x(0) − x∗∥22 ≤ R2.

12

CONVERGENCE GUARANTEE

Corollary (GD for β-smooth, α-strongly convex.)
Let f be a β-smooth and α-strongly convex function. If we run
GD for T steps (with step size η = 1

β) we have:

f(x(T))− f(x∗) ≤ β

2 e
−Tα

β · R2

Corollary: If T = O
(
β
α log(Rβ/ϵ)

)
we have:

f(x(T))− f(x∗) ≤ ϵ

Only depend on log(1/ϵ) instead of on 1/ϵ or 1/ϵ2!

Note: Can be further improved with acceleration!

13

SMOOTH, STRONGLY CONVEX OPTIMIZATION

After break we will prove the guarantee for the special case of:

f(x) = ∥Ax− b∥22

Goal: Get some of the key ideas across, introduces important
concepts like the Hessian, and show the connection between
conditioning and linear algebra.

But first we will talk about online gradient descent and
stochastic gradient descent.

14

ONLINE AND STOCHASTIC GRADIENT DESCENT

• Basics of Online Learning + Optimization.
• Introduction to Regret Analysis.
• Application to analyzing Stochastic Gradient Descent.

Original motivation for online learning: Often need to train
machine learning models on constantly updating/changing
data. Do not want to restart from scratch.

15

EXAMPLE

Plant identification via iNaturalist app.

(California Academy of Science + National Geographic)

• When the app fails, image
is classified via
crowdsourcing (backed by
huge network of amateurs
and experts).

• Single model that is
updated constantly, not
retrained in batches.

16

EXAMPLE

Machine learning based email spam filtering.

Markers for spam change overtime, so model might change.

17

EXAMPLE

Machine learning based email spam filtering.

Markers for spam change overtime, so model might change.

18

ONLINE LEARNING FRAMEWORK

Choose some model Mx parameterized by parameters x and
some loss function ℓ. At time steps 1, . . . , T, receive data
vectors a(1), . . . , a(T).

• At each time step, we pick (“play”) a parameter vector x(i).
• Make prediction ỹ(i) = Mx(i)(ai).
• Then told true value or label y(i). Possibly use this
information to choose a new x(i+1).

• Goal is to minimize cumulative loss:

L =
T∑

i=1
ℓ(x(i), a(i), y(i))

For example, for a regression problem we might use the ℓ2 loss:

ℓ(x(i), a(i), y(i)) =
(
Mx(i)(ai)− y(i)

)2
.

For classification, we could use logistic/cross-entropy loss. 19

ONLINE OPTIMIZATION

Abstraction as optimization problem: Instead of a single
objective function f, we have a unknown function
f1, . . . , fT : Rd → R for each time step.

• For time step i ∈ 1, . . . , T, select vector x(i).
• Observe fi and pay cost fi(x(i))
• Goal is to minimize

∑T
i=1 fi(x(i)).

We make no assumptions that f1, . . . , fT are related to each
other at all!

20

REGRET BOUND

In offline optimization, we wanted to find x̂ satisfying
f(x̂) ≤ minx f(x) + ϵ. Ask for a similar thing here.

Objective: Choose x(1), . . . , x(T) so that:

T∑
i=1

fi(x(i)) ≤
[
min
x

T∑
i=1

fi(x)
]
+ ϵ.

Here ϵ is called the regret of our solution sequence
x(0), . . . , x(T).

We typically ϵ to be growing sublinearly in T.

21

REGRET BOUND

Regret compares to the best fixed solution in hindsight.

T∑
i=1

fi(x(i)) ≤
[
min
x

T∑
i=1

fi(x)
]
+ ϵ.

It is very possible that
[∑T

i=1 fi(x(i))
]
<

[
minx

∑T
i=1 fi(x)

]
. Could

we hope for something stronger?

Exercise: Argue that the following is impossible to achieve:

T∑
i=1

fi(x(i)) ≤
[T∑

i=1
min
x

fi(x)
]
+ ϵ.

22

HARD EXAMPLE FOR ONLINE OPTIMIZATION

Convex functions:

f1(x) = |x− h1|
...

fT(x) = |x− hT|

where h1, . . . ,hT are i.i.d. uniform {0, 1}.

23

REGRET BOUNDS

T∑
i=1

fi(x(i)) ≤
[
min
x

T∑
i=1

fi(x)
]
+ ϵ.

Beautiful balance:

• Either f1, . . . , fT are similar or changing slowly, so we can
learn/predict fi from earlier functions.

• Or f1, . . . , fT are very different, in which case minx
∑T

i=1 fi(x)
is large, so regret bound is easy to achieve.

• Or we live somewhere in the middle.

24

FOLLOW-THE-LEADER

Follow-the-leader algorithm:

• Choose x(0).
• For i = 1, . . . , T:

• Let x(i) = argminx
∑i−1

j=1 fj(x).
• Play x(i).
• Observe fi and incur cost fi(x(i)).

Simple and intuitive, but there are two issues with this
approach. One is computational, one is related to the accuracy.

25

FOLLOW-THE-LEADER

Hard case with regret O(T):

https://www.desmos.com/calculator/3t8bfowo3j
26

https://www.desmos.com/calculator/3t8bfowo3j

ONLINE GRADIENT DESCENT

Online Gradient descent:

• Choose x(1) and η.
• For i = 1, . . . , T:

• Play x(i).
• Observe fi and incur cost fi(x(i)).
• x(i+1) = x(i) − η∇fi(x(i))

If f1, . . . , fT = f are all the same, this is the same as regular
gradient descent. We update parameters using the gradient ∇f
at each step.

27

ONLINE GRADIENT DESCENT (OGD)

x∗ = argminx
∑T

i=1 fi(x) (the offline optimum)

Assume:

• f1, . . . , fT are all convex.
• Each is G-Lipschitz: for all x, i, ∥∇fi(x)∥2 ≤ G.
• Starting radius: ∥x∗ − x(1)∥2 ≤ R.

Online Gradient descent:

• Choose x(1) and η = R
G
√
T .

• For i = 1, . . . , T:
• Play x(i).
• Observe fi and incur cost fi(x(i)).
• x(i+1) = x(i) − η∇fi(x(i))

28

ONLINE GRADIENT DESCENT ANALYSIS

Theorem (OGD Regret Bound)
If the conditions of the previous slide hold, then after T steps,
ϵ =

[∑T
i=1 fi(x(i))

]
−
[∑T

i=1 fi(x∗)
]
≤ RG

√
T.

Average regret overtime is bounded by ϵ
T ≤

RG√
T .

Goes→ 0 as T→∞.

All this with no assumptions on how f1, . . . , fT relate to each
other! They could have even been chosen adversarially – e.g.
with fi depending on our choice of xi and all previous choices.

29

ONLINE GRADIENT DESCENT ANALYSIS

Theorem (OGD Regret Bound)
If the conditions of the previous slide hold, then after T steps,
ϵ =

[∑T
i=1 fi(x(i))

]
−
[∑T

i=1 fi(x∗)
]
≤ RG

√
T.

Claim 1: For all i = 1, . . . , T,

fi(x(i))− fi(x∗) ≤
∥x(i) − x∗∥22 − ∥x(i+1) − x∗∥22

2η +
ηG2

2

(Same proof for standard GD. Only uses convexity of fi.)

30

ONLINE GRADIENT DESCENT ANALYSIS

Theorem (OGD Regret Bound)

After T steps, ϵ =
[∑T

i=1 fi(x(i))
]
−
[∑T

i=1 fi(x∗)
]
≤ RG

√
T.

Claim 1: For all i = 1, . . . , T,

fi(x(i))− fi(x∗) ≤
∥x(i) − x∗∥22 − ∥x(i+1) − x∗∥22

2η +
ηG2

2
Telescoping Sum:

T∑
i=1

[
fi(x(i))− fi(x∗)

]
≤ ∥x

(1) − x∗∥22 − ∥x(T) − x∗∥22
2η +

TηG2

2

≤ R2

2η +
TηG2

2

That’s it! 31

STOCHASTIC GRADIENT DESCENT (SGD)

Efficient offline optimization method for functions f with finite
sum structure:

f(x) =
n∑
i=1

fi(x).

Goal is to find x̂ such that f(x̂) ≤ f(x∗) + ϵ.

• The most widely use optimization algorithm in modern
machine learning.

• Easily analyzed as a special case of online gradient
descent!

32

STOCHASTIC GRADIENT DESCENT

Recall the machine learning setup. In empirical risk
minimization, we can typically write:

f(x) =
n∑
i=1

fi(x)

where fi is the loss function for a particular data example
(a(i), y(i)).

Example: least squares linear regression.

f(x) =
n∑
i=1

(xTa(i) − y(i))2

Note that by linearity, ∇f(x) =
∑n

i=1∇fi(x).

33

STOCHASTIC GRADIENT DESCENT

Main idea: Use random approximate gradient in place of
actual gradient.

Pick random j ∈ 1, . . . ,n and update x using ∇fj(x).

E
[
∇fj(x)

]
=

1
n∇f(x).

n∇fj(x) is an unbiased estimate for the true gradient ∇f(x),
but can typically be computed in a 1/n fraction of the time!

Trade slower convergence for cheaper iterations.

34

STOCHASTIC GRADIENT DESCENT

Stochastic first-order oracle for f(x) =
∑n

i=1 fi(x).

• Function Query: For any chosen j, x, return fj(x)
• Gradient Query: For any chosen j, x, return ∇fj(x)

Stochastic Gradient descent:

• Choose starting vector x(1), step size η

• For i = 1, . . . , T:
• Pick random ji ∈ 1, . . . ,n.
• x(i+1) = x(i) − η∇fji(x

(i))

• Return x̂ = 1
T
∑T

i=1 x(i)

35

VISUALIZING SGD

36

STOCHASTIC GRADIENT DESCENT

Assume:
• Finite sum structure: f(x) =

∑n
i=1 fi(x), with f1, . . . , fn all convex.

• Lipschitz functions: for all x, j, ∥∇fj(x)∥2 ≤ G′

n .
• What does this imply about Lipschitz constant of f?

• Starting radius: ∥x∗ − x(1)∥2 ≤ R.

Stochastic Gradient descent:
• Choose x(1), steps T, step size η = R

G′
√
T .

• For i = 1, . . . , T:
• Pick random ji ∈ 1, . . . ,n.
• x(i+1) = x(i) − η∇fji(x(i))

• Return x̂ = 1
T
∑T

i=1 x(i)

Approach: View as online gradient descent run on function
sequence fj1 , . . . , fjT .

37

STOCHASTIC GRADIENT DESCENT BOUND

Claim (SGD Convergence)
After T = R2G′2

ϵ2
iterations:

E [f(x̂)− f(x∗)] ≤ ϵ.

Will prove using:

1. Black-box result for online gradient descent (already
proven).

2. The fact that n · E[fji(x
(i))] = f(x(i)).

3. Jensen’s inequality.

38

JENSEN’S INEQUALITY

For a convex function f and points x(1), . . . , x(t)

f
(
1
t · x

(1) + . . .+
1
t · x

(t)
)
≤ 1

t · f(x
(1)) + . . .+

1
t · f(x

(t))

39

STOCHASTIC GRADIENT DESCENT ANALYSIS

Claim (SGD Convergence)
After T = R2G′2

ϵ2
iterations:

E [f(x̂)− f(x∗)] ≤ ϵ.

Claim 1:

f(x̂)− f(x∗) ≤ 1
T

T∑
i=1

[
f(x(i))− f(x∗)

]
Prove using Jensen’s Inequality:

40

STOCHASTIC GRADIENT DESCENT ANALYSIS

Claim (SGD Convergence)
After T = R2G′2

ϵ2 iterations:
E [f(x̂)− f(x∗)] ≤ ϵ.

E[f(x̂)− f(x∗)] ≤ 1
T

T∑
i=1

E
[
f(x(i))− f(x∗)

]

=
1
T

T∑
i=1

nE
[
fji(x

(i))− fji(x
∗)
]

41

STOCHASTIC GRADIENT DESCENT ANALYSIS

Claim (SGD Convergence)
After T = R2G′2

ϵ2 iterations:
E [f(x̂)− f(x∗)] ≤ ϵ.

E[f(x̂)− f(x∗)] ≤ 1
T

T∑
i=1

E
[
f(x(i))− f(x∗)

]

=
1
T

T∑
i=1

nE
[
fji(x

(i))− fji(x
∗)
]

≤ n
T · E

[T∑
i=1

fji(x
(i))− fji(x

offline)

]
,

where xoffline = argminx
∑T

i=1 fji(x).

42

STOCHASTIC GRADIENT DESCENT ANALYSIS

Claim (SGD Convergence)
After T = R2G′2

ϵ2 iterations:
E [f(x̂)− f(x∗)] ≤ ϵ.

E[f(x̂)− f(x∗)] ≤ 1
T

T∑
i=1

E
[
f(x(i))− f(x∗)

]

=
1
T

T∑
i=1

nE
[
fji(x

(i))− fji(x
∗)
]

≤ n
T · E

[T∑
i=1

fji(x
(i))− fji(x

offline)

]

≤ n
T ·

(
R · G

′

n ·
√
T
)

(by OGD guarantee.)

43

STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

Number of iterations for error ϵ:

• Gradient Descent: T = R2G2

ϵ2
.

• Stochastic Gradient Descent: T = R2G′2

ϵ2
.

Always have G ≤ G′:

max
x
∥∇f(x)∥2 ≤ max

x
(∥∇f1(x)∥2 + . . .+ ∥∇fn(x)∥2)

≤ max
x

(∥∇f1(x)∥2) + . . .+max
x

(∥∇fn(x)∥2)

≤ n · G
′

n = G′.

So GD converges strictly faster than SGD.

But for a fair comparison:

• SGD cost = (# of iterations) · O(1)
• GD cost = (# of iterations) · O(n) 44

STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

We always have G ≤ G′. When it is much smaller then GD will
perform better. When it is closer to this upper bound, SGD will
perform better.

What is an extreme case where G = G′?

45

STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

What if each gradient ∇fi(x) looks like random vectors in Rd?
E.g. with N (0, 1) entries?

E
[
∥∇fi(x)∥22

]
=

E
[
∥∇f(x)∥22

]
= E

[
∥

n∑
i=1
∇fi(x)∥22

]
=

46

STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

Takeaway: SGD performs better when there is more structure
or repetition in the data set.

47

PRECONDITIONING

47

PRECONDITIONING

Main idea: Instead of minimizing f(x), find another function
g(x) with the same minimum but which is better suited for first
order optimization (e.g., is smoother, or has a smaller
conditioner number).

Claim: Let h(x) : Rd → Rd be an invertible function. Let
g(x) = f(h(x)). Then

min
x

f(x) = min
y

g(y) and argmin
x

f(x) = h
(
argmin

y
g(y)

)
.

48

PRECONDITIONING

First Goal: We need g(x) to still be convex.

Claim: Let P be an invertible d× d matrix and let g(x) = f(Px).

g(x) is always convex.

49

PRECONDITIONING

Second Goal:

g(x) should have better condition number κ than f(x).

Example:

• f(x) = ∥Ax− b∥22. κf =
λ1(ATA)
λd(ATA)

.

• g(x) = ∥APx− b∥22. κg = λ1(PTATAP)
λd(PTATAP)

.

50

DIAGONAL PRECONDITIONER

Third Goal: P should be easy to compute.

Many, many problem specific preconditioners are used in
practice. There design is usually a heuristic process.

Example: Diagonal preconditioner.

• Let D = diag(ATA)
• Intuitively, we roughly have that D ≈ ATA.
• Let P =

√
D−1

P is often called a Jacobi preconditioner. Often works very well
in practice!

51

DIAGONAL PRECONDITIONER

52

ADAPTIVE STEPSIZES

Another view: If g(x) = f(Px) then ∇g(x) = PT∇f(Px).

∇g(x) = P∇f(Px) when P is symmetric.

Gradient descent on g:

• For t = 1, . . . , T,
• x(t+1) = x(t) − ηP

[
∇f(Px(t))

]
• Return Px(T)

Gradient descent on g:

• For t = 1, . . . , T,
• y(t+1) = y(t) − ηP2 [∇f(y(t))]

When P is diagonal, this is just gradient descent with a
different step size for each parameter! 53

ADAPTIVE STEPSIZES

Algorithms based on this idea:

• AdaGrad
• RMSprop
• Adam optimizer

(Pretty much all of the most widely used optimization methods
for training neural networks.)

54

COORDINATE DESCENT

54

STOCHASTIC METHODS

Main idea: Trade slower convergence (more iterations) for
cheaper iterations.

Stochastic Gradient Descent: When f(x) =
∑n

i=1 fi(x),
approximate ∇f(x) with ∇fi(x) for randomly chosen i.

55

STOCHASTIC METHODS

Main idea: Trade slower convergence (more iterations) for
cheaper iterations.

Stochastic Coordinate Descent: Only compute a single random
entry of ∇f(x) on each iteration:

∇f(x) =


∂f
∂x1 (x)
∂f
∂x2 (x)...
∂f
∂xd (x)

 ∇if(x) =


0

∂f
∂xi (x)...
0


Update: x(t+1) ← x(t) + η∇if(x(t)).

56

