CS-GY 6763: Lecture 8 Projected Gradient Descent, Second order conditions

NYU Tandon School of Engineering, Prof. Christopher Musco

Goal: Find approximate minizer for a function *f*(**x**).

Gradient Descent Algorithm:

- \cdot Choose starting point $\mathbf{x}^{(0)}$.
- For i = 0, ..., T:

•
$$\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} - \eta \nabla f(\mathbf{x}^{(i)})$$

• Return $\mathbf{x}^{(T)}$ (or $\arg \min_{i \leq T} f(\mathbf{x}^{(i)})$.

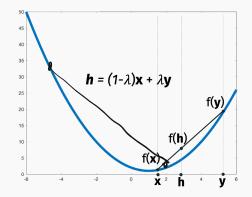
 $\underline{\eta}$ is a step-size parameter.

CONVEXITY: OTH ORDER

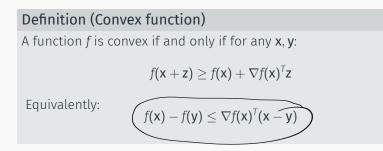
Definition (Convex)

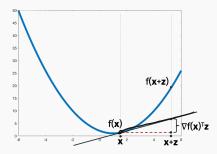
A function *f* is convex iff for any $\mathbf{x}, \mathbf{y}, \lambda \in [0, 1]$:

$$(1-\lambda) \cdot f(\mathbf{x}) + \lambda \cdot f(\mathbf{y}) \ge f((1-\lambda) \cdot \mathbf{x} + \lambda \cdot \mathbf{y})$$



CONVEXITY: 1ST ORDER





convexity: 2nd order

Definition (Convex function) A twice differentiable function $f(\mathbb{R}) \to \mathbb{R}$ is convex if and only if for all *x*,

 $f''(x)\geq 0.$

We will discuss the high-dimensional generalization of this fact after break.

GRADIENT DESCENT ANALYSIS

Assume:

- *f* is convex.
- Lipschitz function: for all \mathbf{x} , $\|\nabla f(\mathbf{x})\|_2 \leq \mathbf{G}$.
- Starting radius: $\|\mathbf{x}^* \mathbf{x}^{(0)}\|_2 \leq R$.

Claim (GD Convergence Bound)

If we run GD for $T \ge \frac{R^2 G^2}{\epsilon^2}$ iterations then $f(\hat{\mathbf{x}}) \le f(\mathbf{x}^*) + \epsilon$.

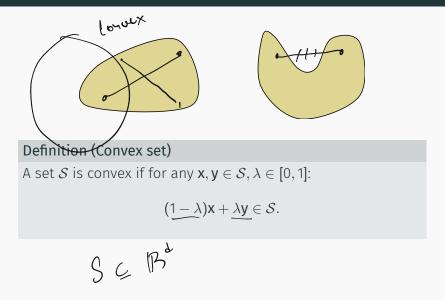
Common goal: Solve a <u>convex minimization problem</u> with additional <u>convex constraints</u>.

where S is a **convex set**.



Which of these is convex?

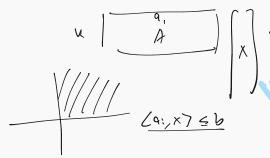
CONSTRAINED CONVEX OPTIMIZATION



CONSTRAINED CONVEX OPTIMIZATION

Examples:

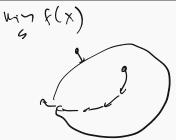
- **Norm constraint:** minimize $\|\mathbf{A}\mathbf{x} \mathbf{b}\|_2$ subject to $\|\mathbf{x}\|_2 \le \lambda$. Used e.g. for regularization, finding a sparse solution, etc.
- Positivity constraint: minimize $f(\mathbf{x})$ subject to $\mathbf{x} \ge 0$.
- Linear constraint: minimize $c^T x$ subject to $Ax \leq b$.



PROBLEM WITH GRADIENT DESCENT

Gradient descent:

- For i = 0, ..., T:
 - $\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} \eta \nabla f(\mathbf{x}^{(i)})$
- Return $\hat{\mathbf{x}} = \arg\min_i f(\mathbf{x}^{(i)})$.



Even if we start with $\mathbf{x}^{(0)} \in S$, there is no guarantee that $\mathbf{x}^{(0)} - \eta \nabla f(\mathbf{x}^{(0)})$ will remain in our set.

Extremely simple modification: Force $\mathbf{x}^{(i)}$ to be in \mathcal{S} by **projecting** onto the set.

Given a function f to minimize and a convex constraint set S, assume we have:

- (Function oracle: Evaluate $f(\mathbf{x})$ for any \mathbf{x} .
- (Gradient oracle: Evaluate $\nabla f(\mathbf{x})$ for any \mathbf{x} .
- **Projection oracle**: Evaluate $P_{\mathcal{S}}(\mathbf{x})$ for any \mathbf{x} .

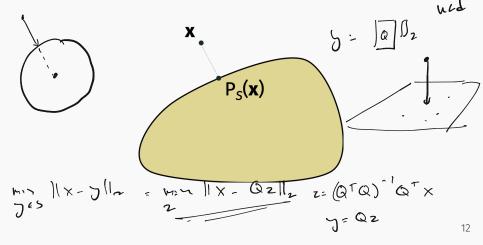
$$P_{\mathcal{S}}(\mathbf{x}) = \arg\min_{\mathbf{y}\in\mathcal{S}} \|\mathbf{x} - \mathbf{y}\|_2$$

PROJECTION ORACLES

$$P_s(x) = \frac{x}{11x11_2}$$

• How would you implement $P_{\mathcal{S}}$ for $\mathcal{S} = \{\mathbf{y} : \|\mathbf{y}\|_2 \leq 1\}$.

• How would you implement $P_{\mathcal{S}}$ for $\mathcal{S} = \{y : \underline{y} = Qz\}$. $\mathcal{E}[\mathbb{R}^{k}]$



Given function $f(\mathbf{x})$ and set S, such that $\|\nabla f(\mathbf{x})\|_2 \leq G$ for all $\mathbf{x} \in S$ and starting point $\mathbf{x}^{(0)}$ with $\||\mathbf{x}^{(0)} - \mathbf{x}^*\|_2 \leq R$.

Projected gradient descent:

• Select starting point $\underline{\mathbf{x}}^{(0)}, \ \eta = \frac{R}{G\sqrt{T}}$.

• For
$$i = 0, ..., T$$
:

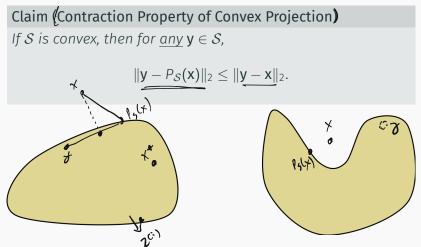
$$\underbrace{\mathbf{z}}_{\mathbf{x}} = \underbrace{\mathbf{x}}_{(i)} - \underbrace{\eta \nabla f(\mathbf{x}^{(i)})}_{\mathbf{x}^{(i+1)}} = P_{\mathcal{S}}(\mathbf{z})$$

• Return
$$\hat{\mathbf{x}} = \arg\min_i f(\mathbf{x}^{(i)})$$
.

Claim (PGD Convergence Bound)

If f, S are convex and $T \ge \frac{R^2G^2}{\epsilon^2}$, then $f(\hat{\mathbf{x}}) \le f(\mathbf{x}^*) + \epsilon$.

Analysis is almost identical to standard gradient descent! We just need one additional claim:



Claim (PGD Convergence Bound)

If f, S are convex and $T \ge \frac{R^2 G^2}{\epsilon^2}$, then $f(\hat{\mathbf{x}}) \le f(\mathbf{x}^*) + \epsilon$.

Claim 1: For all i = 0, ..., T, let $\mathbf{z}^{(i)} = \mathbf{x}^{(i)} - \eta \nabla f(\mathbf{x}^{(i)})$. Then: $\underbrace{\left(f(\mathbf{x}^{(i)}) - f(\mathbf{x})\right)}_{\leq q} \underbrace{\frac{\|\mathbf{x}^{(i)} - \mathbf{x}^{*}\|_{2}^{2} - \|\mathbf{z}^{(i)} - \mathbf{x}^{*}\|_{2}^{2}}{2\eta} + \frac{\eta G^{2}}{2}\right)}_{\leq \frac{\|\mathbf{x}^{(i)} - \mathbf{x}^{*}\|_{2}^{2} - \|\mathbf{x}^{(i+1)} - \mathbf{x}^{*}\|_{2}^{2}}{2\eta} + \frac{\eta G^{2}}{2}$ $\chi^{*} : \underset{\leq}{\operatorname{min}} f(\mathbf{x})$

Same telescoping sum argument:

$$\left[\frac{1}{T}\sum_{i=0}^{T-1}f(\mathbf{x}^{(i)})\right]-f(\mathbf{x}^*)\leq \frac{R^2}{2T\eta}+\frac{\eta G^2}{2}.$$

GRADIENT DESCENT

Conditions:

- **Convexity:** f is a convex function, S is a convex set.
- · Bounded initial distant:

$$\|\mathbf{x}^{(0)}-\mathbf{x}^*\|_2 \leq \mathbb{R}$$

• Bounded gradients (Lipschitz function):

$$\|\nabla f(\mathbf{x})\|_2 \in \mathbf{G}$$
 for all $\mathbf{x} \in \mathcal{S}$.

Theorem (GD Convergence Bound)

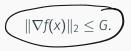
(Projected) Gradient Descent returns $\hat{\mathbf{x}}$ with $f(\hat{\mathbf{x}}) \leq \min_{\mathbf{x} \in S} f(\mathbf{x}) + \epsilon$ after

$$T = \frac{R^2 G^2}{\epsilon^2}$$
 iterations.

The previous bounds are <u>optimal</u> for convex first order optimization in general.

But in practice, the dependence on $1/\epsilon^2$ is pessimistic: gradient descent typically requires far fewer steps to reach ϵ error.

Previous bounds only make a very weak first order assumption:



In practice, many function satisfy stronger assumptions.

Often possible to place assumptions on the <u>second derivative</u> of *f*.

In particular, we say that a scalar function f is α -strongly convex and β -smooth if for all x:

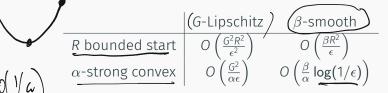
$$0 < \alpha \leq |f''(x)| \leq \beta.$$

We will give an appropriate generalization of these conditions to multi-dimensional functions shortly.

Take away: Having <u>either</u> an upper and lower bound on the second derivative helps convergence. Having both helps a lot.

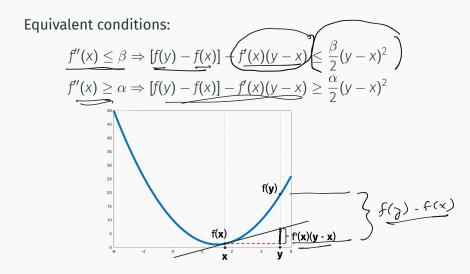
Take away: Having <u>either</u> an upper and lower bound on the second derivative helps convergence. Having both helps a lot.

Number of iterations for ϵ error:



As we defined them so far, smoothness and strong convexity require *f* to be <u>twice</u> differentiable. On the other hand, gradient descent only requires <u>first order differentiability</u>.

SECOND ORDER CONDITIONS



Recall: For all convex functions $[f(y) - f(x)] - f'(x)(y - x) \ge 0$.

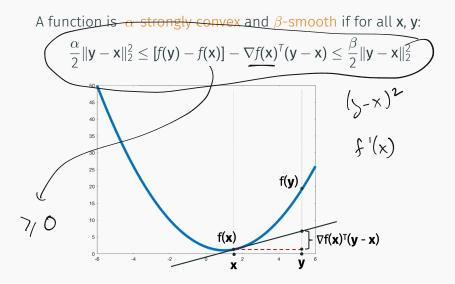
Proof that
$$f''(x) \leq \beta \Rightarrow [f(y) - f(x)] - f'(x)(y - x) \leq \frac{\beta}{2}(y - x)^2$$
:

$$f(\gamma) - f(x) = \int_{X}^{Y} f'(x) + \beta(x - t)$$

$$= \int_{X}^{Y} f'(x) + \beta(x - t)$$

Proof for α -strongly convex is similar, as are the other directions when f is twice differentiable.

MULTIDIMENSIONAL GENERALIZATION



Definition (β -smoothness) A function f is β smooth if and only if, for all \mathbf{x}, \mathbf{y} $\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_2 \le \beta \|\mathbf{x} - \mathbf{y}\|_2$

I.e., the gradient function is a β -Lipschitz function.

We won't use this definition directly, but it's good to know. Easy to prove equivalency to previous definition (see Lem. 3.4 in **Bubeck's book**). Theorem (GD convergence for β -smooth functions.) Let f be a β smooth convex function and assume we have $\|\mathbf{x}^* - \mathbf{x}^{(0)}\|_2 \leq R$. If we run GD for T steps, we have:

$$f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \frac{2\beta R^2}{T}$$

Corollary: If
$$T = O\left(\frac{\beta R^2}{\epsilon}\right)$$
 we have $f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \epsilon$.

Compare this to $T = O\left(\frac{G^2R^2}{\epsilon^2}\right)$ without a smoothness assumption.

Why do you think gradient descent might be faster when a function is β -smooth?

Previously learning rate/step size η depended on *G*. Now choose it based on β :

$$\mathbf{x}^{(t+1)} \leftarrow \mathbf{x}^{(t)} - \frac{1}{\beta} \nabla f(\mathbf{x}^{(t)})$$

Progress per step of gradient descent:

1.
$$[f(\mathbf{x}^{(t+1)}) - f(\mathbf{x}^{(t)})] - \nabla f(\mathbf{x}^{(t)})^{\mathsf{T}}(\mathbf{x}^{(t+1)} - \mathbf{x}^{(t)}) \le \frac{\beta}{2} \|\mathbf{x}^{(t)} - \mathbf{x}^{(t+1)}\|_2^2$$
.

2. $[f(\mathbf{x}^{(t+1)}) - f(\mathbf{x}^{(t)})] + \frac{1}{\beta} \|\nabla f(\mathbf{x}^{(t)})\|_2^2 \le \frac{\beta}{2} \|\frac{1}{\beta} \nabla f(\mathbf{x}^{(t)})\|_2^2$.

3. $f(\mathbf{x}^{(t)}) - f(\mathbf{x}^{(t+1)}) \ge \frac{1}{2\beta} \|\nabla f(\mathbf{x}^{(t)})\|_2^2$.

Once we have the bound from the previous page, proving a convergence result isn't hard, but not obvious. A concise proof can be found in Page 15 in Garrigos and Gower's notes.

Theorem (GD convergence for β -smooth functions.)

Let f be a β smooth convex function and assume we have $\|\mathbf{x}^* - \mathbf{x}^{(1)}\|_2 \leq R$. If we run GD for T steps with $\eta = \frac{1}{\beta}$ we have:

$$f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \frac{2\beta R^2}{T}$$

Corollary: If $T = O\left(\frac{\beta R^2}{\epsilon}\right)$ we have $f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \epsilon$.

Note: This is not optimal! Can be improved to depend on $O(1/T^2)$ using a technique called <u>acceleration</u>.

Where did we use convexity in this proof?

Progress per step of gradient descent:

1.
$$[f(\mathbf{x}^{(t+1)}) - f(\mathbf{x}^{(t)})] - \nabla f(\mathbf{x}^{(t)})^{\mathsf{T}}(\mathbf{x}^{(t+1)} - \mathbf{x}^{(t)}) \le \frac{\beta}{2} \|\mathbf{x}^{(t)} - \mathbf{x}^{(t+1)}\|_2^2$$
.

2.
$$[f(\mathbf{x}^{(t+1)}) - f(\mathbf{x}^{(t)})] + \frac{1}{\beta} \|\nabla f(\mathbf{x}^{(t)})\|_2^2 \le \frac{\beta}{2} \|\frac{1}{\beta} \nabla f(\mathbf{x}^{(t)})\|_2^2$$

3. $f(\mathbf{x}^{(t)}) - f(\mathbf{x}^{(t+1)}) \ge \frac{1}{2\beta} \|\nabla f(\mathbf{x}^{(t)})\|_2^2$.

Definition (Stationary point)

For a differentiable function *f*, a <u>stationary point</u> is any **x** with:

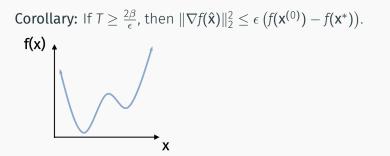
$$\nabla f(\mathbf{x}) = \mathbf{0}$$

local/global minima - local/global maxima - saddle points

Theorem (Convergence to Stationary Point)

For any β -smooth differentiable function f (convex or not), if we run GD for T steps, we can find a point $\hat{\mathbf{x}}$ such that:

$$\|\nabla f(\hat{\mathbf{x}})\|_2^2 \leq \frac{2\beta}{T} \left(f(\mathbf{x}^{(0)}) - f(\mathbf{x}^*) \right)$$



Theorem (Convergence to Stationary Point)

For any β -smooth differentiable function f (convex or not), if we run GD for T steps, we can find a point $\hat{\mathbf{x}}$ such that:

$$\|\nabla f(\hat{\mathbf{x}})\|_2^2 \leq \frac{2\beta}{T} \left(f(\mathbf{x}^{(0)}) - f(\mathbf{x}^*) \right)$$

We have that $\frac{1}{2\beta} \|\nabla f(\mathbf{x}^{(t)})\|_2^2 \le f(\mathbf{x}^{(t)}) - f(\mathbf{x}^{(t+1)})$. So:

$$\begin{split} &\sum_{t=0}^{T-1} \frac{1}{2\beta} \|\nabla f(\mathbf{x}^{(t)})\|_2^2 \le f(\mathbf{x}^{(0)}) - f(\mathbf{x}^{(t)}) \\ &\frac{1}{T} \sum_{t=0}^{T-1} \|\nabla f(\mathbf{x}^{(t)})\|_2^2 \le \frac{2\beta}{T} \left(f(\mathbf{x}^{(0)}) - f(\mathbf{x}^*) \right) \\ &\min_t \|\nabla f(\mathbf{x}^{(t)})\|_2^2 \le \frac{2\beta}{T} \left(f(\mathbf{x}^{(0)}) - f(\mathbf{x}^*) \right) \end{split}$$

I said it was a bit tricky to prove that $f(\hat{\mathbf{x}}) - f(\mathbf{x}^*) \leq \frac{2\beta R^2}{T}$ for convex functions. But we just easily proved that $\|\nabla f(\hat{\mathbf{x}})\|_2^2$ is small. Why doesn't this show we are close to the minimum?

STRONG CONVEXITY

Definition (α -strongly convex)

A convex function f is α -strongly convex if, for all \mathbf{x}, \mathbf{y}

$$[f(\mathbf{y}) - f(\mathbf{x})] - \nabla f(\mathbf{x})^{\mathsf{T}}(\mathbf{y} - \mathbf{x}) \geq \frac{\alpha}{2} \|\mathbf{x} - \mathbf{y}\|_2^2$$

Compare to smoothness condition.

$$[f(\mathbf{y}) - f(\mathbf{x})] - \nabla f(\mathbf{x})^{\mathsf{T}}(\mathbf{y} - \mathbf{x}) \leq \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_2^2.$$

For a twice-differentiable scalar function f, equivalent to $f''(x) \ge \alpha$.

When f is convex, we always have that $f''(x) \ge 0$, so larger values of α correspond to a "stronger" condition.

Gradient descent for strongly convex functions:

- Choose number of steps T.
- For i = 0, ..., T:

• Return
$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}^{(i)}} f(\mathbf{x}^{(i)})$$
.

Theorem (GD convergence for α -strongly convex functions.) Let f be an α -strongly convex function and assume we have that, for all \mathbf{x} , $\|\nabla f(\mathbf{x})\|_2 \leq \mathbf{G}$. If we run GD for T steps (with adaptive step sizes) we have:

$$f(\hat{\mathbf{x}}) - f(\mathbf{x}^*) \le \frac{2G^2}{\alpha T}$$

Corollary: If $T = O\left(\frac{G^2}{\alpha\epsilon}\right)$ we have $f(\hat{\mathbf{x}}) - f(\mathbf{x}^*) \le \epsilon$

We could also have that f is both β -smooth and α -strongly convex.

Theorem (GD for β -smooth, α -strongly convex.)

Let f be a β -smooth and α -strongly convex function. If we run GD for T steps (with step size $\eta = \frac{1}{\beta}$) we have:

$$\|\mathbf{x}^{(T)} - \mathbf{x}^*\|_2^2 \le e^{-T\frac{\alpha}{\beta}} \|\mathbf{x}^{(0)} - \mathbf{x}^*\|_2^2$$

 $\kappa = \frac{\beta}{\alpha}$ is called the "condition number" of *f*. Is it better if κ is large or small? Converting to more familiar form: Using that fact the $\nabla f(x^*) = 0$ along with

$$\frac{\alpha}{2} \|\mathbf{x} - \mathbf{y}\|_2^2 \le [f(\mathbf{y}) - f(\mathbf{x})] - \nabla f(\mathbf{x})^{\mathsf{T}} (\mathbf{y} - \mathbf{x}) \le \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_2^2,$$

we have:

$$\frac{2}{\beta} \left[f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \right] \le \|\mathbf{x}^{(T)} - \mathbf{x}^*\|_2^2$$

We also assume

 $\|\mathbf{x}^{(0)} - \mathbf{x}^*\|_2^2 \le R^2.$

Corollary (GD for β -smooth, α -strongly convex.)

Let f be a β -smooth and α -strongly convex function. If we run GD for T steps (with step size $\eta = \frac{1}{\beta}$) we have:

$$f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \leq \frac{\beta}{2} e^{-T\frac{\alpha}{\beta}} \cdot R^2$$

Corollary: If $T = O\left(\frac{\beta}{\alpha}\log(R\beta/\epsilon)\right)$ we have:

$$f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \epsilon$$

Only depend on $\log(1/\epsilon)$ instead of on $1/\epsilon$ or $1/\epsilon^2$!

After break or on homework we will prove the guarantee for the special case of:

$$f(\mathbf{x}) = \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$

Goal: Get some of the key ideas across, introduces important concepts like the Hessian, and show the connection between conditioning and linear algebra.

But first we will talk about <u>online gradient descent</u> and <u>stochastic gradient descent</u> next week.