
CS-GY :ࠂ676 Lecture 8
Projected Gradient Descent, Second order
conditions

NYU Tandon School of Engineering, Prof. Christopher Musco
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GRADIENT DESCENT

Goal: Find approximate minizer for a function f(x).

Gradient Descent Algorithm:

• Choose starting point x(߿).
• For i = ,߿ . . . , T:

• x(i+ࠀ) = x(i) → η∇f(x(i))
• Return x(T) (or argmini≤T f(x(i)).

η is a step-size parameter.
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CONVEXITY: TH߿ ORDER

Definition (Convex)
A function f is convex iff for any x, y,λ ∈ ,߿] :[ࠀ

→ࠀ) λ) · f(x) + λ · f(y) ≥ f →ࠀ)) λ) · x+ λ · y)
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CONVEXITY: STࠀ ORDER

Definition (Convex function)
A function f is convex if and only if for any x, y:

f(x+ z) ≥ f(x) +∇f(x)Tz

Equivalently:
f(x)→ f(y) ≤ ∇f(x)T(x→ y)
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CONVEXITY: NDࠁ ORDER

Definition (Convex function)
A twice differentiable function f : R→ R is convex if and only if for
all x,

f′′(x) ≥ .߿

We will discuss the high-dimensional generalization of this fact after
break.
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GRADIENT DESCENT ANALYSIS

Assume:

• f is convex.
• Lipschitz function: for all x, ‖∇f(x)‖ࠁ ≤ G.
• Starting radius: ‖x∗ → x(߿)‖ࠁ ≤ R.

Claim (GD Convergence Bound)

If we run GD for T ≥ RࠁGࠁ

εࠁ
iterations then f(x̂) ≤ f(x∗) + ε.

ࠅ
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CONSTRAINED CONVEX OPTIMIZATION

Common goal: Solve a convex minimization problem with
additional convex constraints.

min
x∈S

f(x)

where S is a convex set.

Which of these is convex?
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CONSTRAINED CONVEX OPTIMIZATION

Definition (Convex set)
A set S is convex if for any x, y ∈ S,λ ∈ ,߿] :[ࠀ

→ࠀ) λ)x+ λy ∈ S.
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CONSTRAINED CONVEX OPTIMIZATION

Examples:

• Norm constraint: minimize ‖Ax→ b‖ࠁ subject to ‖x‖ࠁ ≤ λ.
Used e.g. for regularization, finding a sparse solution, etc.

• Positivity constraint: minimize f(x) subject to x ≥ .߿
• Linear constraint: minimize cTx subject to Ax ≤ b.
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PROBLEM WITH GRADIENT DESCENT

Gradient descent:

• For i = ,߿ . . . , T:
• x(i+ࠀ) = x(i) → η∇f(x(i))

• Return x̂ = argmini f(x(i)).

Even if we start with x(߿) ∈ S , there is no guarantee that
x(߿) → η∇f(x(߿)) will remain in our set.

Extremely simple modification: Force x(i) to be in S by
projecting onto the set.
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CONSTRAINED FIRST ORDER OPTIMIZATION

Given a function f to minimize and a convex constraint set S ,
assume we have:

• Function oracle: Evaluate f(x) for any x.
• Gradient oracle: Evaluate ∇f(x) for any x.
• Projection oracle: Evaluate PS(x) for any x.

PS(x) = argmin
y∈S

‖x→ y‖ࠁ
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PROJECTION ORACLES

• How would you implement PS for S = {y : ‖y‖ࠁ ≤ .{ࠀ
• How would you implement PS for S = {y : y = Qz}.
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PROJECTED GRADIENT DESCENT

Given function f(x) and set S , such that ‖∇f(x)‖ࠁ ≤ G for all
x ∈ S and starting point x(߿) with ‖x(߿) → x∗‖ࠁ ≤ R.

Projected gradient descent:

• Select starting point x(߿), η = R
G
√
T .

• For i = ,߿ . . . , T:
• z = x(i) → η∇f(x(i))
• x(i+ࠀ) = PS(z)

• Return x̂ = argmini f(x(i)).

Claim (PGD Convergence Bound)

If f,S are convex and T ≥ RࠁGࠁ

εࠁ
, then f(x̂) ≤ f(x∗) + ε.
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PROJECTED GRADIENT DESCENT ANALYSIS

Analysis is almost identical to standard gradient descent! We
just need one additional claim:

Claim (Contraction Property of Convex Projection)
If S is convex, then for any y ∈ S ,

‖y→ PS(x)‖ࠁ ≤ ‖y→ x‖ࠁ.
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GRADIENT DESCENT ANALYSIS

Claim (PGD Convergence Bound)
If f,S are convex and T ≥ RࠁGࠁ

εࠁ , then f(x̂) ≤ f(x∗) + ε.

Claim :ࠀ For all i = ,߿ . . . , T, let z(i) = x(i) → η∇f(x(i)). Then:

f(x(i))→ f(x∗) ≤ ‖x
(i) → x∗‖ࠁࠁ → ‖z(i) → x∗‖ࠁࠁ

ηࠁ
+

ηGࠁ

ࠁ

≤ ‖x
(i) → x∗‖ࠁࠁ → ‖x(i+ࠀ) → x∗‖ࠁࠁ

ηࠁ
+

ηGࠁ

ࠁ

Same telescoping sum argument:[
ࠀ
T

T−ࠀ[

i=߿

f(x(i))
]
→ f(x∗) ≤ Rࠁ

Tηࠁ
+

ηGࠁ

ࠁ
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GRADIENT DESCENT

Conditions:

• Convexity: f is a convex function, S is a convex set.
• Bounded initial distant:

‖x(߿) → x∗‖ࠁ ≤ R

• Bounded gradients (Lipschitz function):

‖∇f(x)‖ࠁ ≤ G for all x ∈ S.

Theorem (GD Convergence Bound)
(Projected) Gradient Descent returns x̂ with
f(x̂) ≤ minx∈S f(x) + ε after

T =
RࠁGࠁ

εࠁ
iterations.
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BEYOND THE BASIC BOUND

The previous bounds are optimal for convex first order
optimization in general.

But in practice, the dependence on ࠁε/ࠀ is pessimistic: gradient
descent typically requires far fewer steps to reach ε error.

Previous bounds only make a very weak first order assumption:

‖∇f(x)‖ࠁ ≤ G.

In practice, many function satisfy stronger assumptions.
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SECOND ORDER CONDITIONS

Often possible to place assumptions on the second derivative
of f.

In particular, we say that a scalar function f is α-strongly
convex and β-smooth if for all x:

α ≤ f′′(x) ≤ β.

We will give an appropriate generalization of these conditions
to multi-dimensional functions shortly.

Take away: Having either an upper and lower bound on the
second derivative helps convergence. Having both helps a lot.
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IMPROVING GRADIENT DESCENT

Take away: Having either an upper and lower bound on the
second derivative helps convergence. Having both helps a lot.

Number of iterations for ε error:

G-Lipschitz β-smooth
R bounded start O

(
GࠁRࠁ

εࠁ

)
O
(
βRࠁ

ε

)

α-strong convex O
(

Gࠁ

αε

)
O
(
β
α log(ࠀ/ε)

)

As we defined them so far, smoothness and strong convexity
require f to be twice differentiable. On the other hand,
gradient descent only requires first order differentiability.
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SECOND ORDER CONDITIONS

Equivalent conditions:

f′′(x) ≤ β ⇒ [f(y)→ f(x)]→ f′(x)(y→ x) ≤ β

ࠁ
(y→ x)ࠁ

f′′(x) ≥ α⇒ [f(y)→ f(x)]→ f′(x)(y→ x) ≥ α

ࠁ
(y→ x)ࠁ

Recall: For all convex functions [f(y)→ f(x)]→ f′(x)(y→ x) ≥ .߿
߿ࠁ
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SECOND ORDER CONDITIONS

Proof that f′′(x) ≤ β ⇒ [f(y)→ f(x)]→ f′(x)(y→ x) ≤ β
ࠁ (y→ x)ࠁ:

Proof for α-strongly convex is similar, as are the other
directions when f is twice differentiable.

ࠀࠁ
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MULTIDIMENSIONAL GENERALIZATION

A function is α-strongly convex and β-smooth if for all x, y:
α

ࠁ
‖y→ x‖ࠁࠁ ≤ [f(y)→ f(x)]→∇f(x)T(y→ x) ≤ β

ࠁ
‖y→ x‖ࠁࠁ

ࠁࠁ
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ALERNATIVE DEFINITION OF SMOOTHNESS

Definition (β-smoothness)
A function f is β smooth if and only if, for all x, y

‖∇f(x)→∇f(y)‖ࠁ ≤ β‖x→ y‖ࠁ

I.e., the gradient function is a β-Lipschitz function.

We won’t use this definition directly, but it’s good to know.
Easy to prove equivalency to previous definition (see Lem. ࠃ.ࠂ
in Bubeck’s book).

ࠂࠁ
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CONVERGENCE GUARANTEE

Theorem (GD convergence for β-smooth functions.)
Let f be a β smooth convex function and assume we have
‖x∗ → x(߿)‖ࠁ ≤ R. If we run GD for T steps, we have:

f(x(T))→ f(x∗) ≤ ࠁβRࠁ

T

Corollary: If T = O
(
βRࠁ

ε

)
we have f(x(T))→ f(x∗) ≤ ε.

Compare this to T = O
(

GࠁRࠁ

εࠁ

)
without a smoothness

assumption.
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GUARANTEED PROGRESS

Why do you think gradient descent might be faster when a
function is β-smooth?
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GUARANTEED PROGRESS

Previously learning rate/step size η depended on G. Now
choose it based on β:

x(t+ࠀ) ⇒ x(t) → ࠀ
β
∇f(x(t))

Progress per step of gradient descent:

.ࠀ
[
f(x(t+ࠀ))→ f(x(t))

]
→∇f(x(t))T(x(t+ࠀ)→x(t)) ≤ β

ࠁ ‖x
(t)→x(t+ࠀ)‖ࠁࠁ.

.ࠁ
[
f(x(t+ࠀ))→ f(x(t))

]
+ ࠀ

β‖∇f(x
(t))‖ࠁࠁ ≤

β
ࠁ ‖

ࠀ
β∇f(x

(t))‖ࠁࠁ.

.ࠂ f(x(t))→ f(x(t+ࠀ)) ≥ ࠀ
β‖∇f(xࠁ

(t))‖ࠁࠁ.
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CONVERGENCE GUARANTEE

Once we have the bound from the previous page, proving a
convergence result isn’t hard, but not obvious. A concise proof
can be found in Page ࠄࠀ in Garrigos and Gower’s notes.

Theorem (GD convergence for β-smooth functions.)
Let f be a β smooth convex function and assume we have
‖x∗ → x(ࠀ)‖ࠁ ≤ R. If we run GD for T steps with η = ࠀ

β we have:

f(x(T))→ f(x∗) ≤ ࠁβRࠁ

T

Corollary: If T = O
(
βRࠁ

ε

)
we have f(x(T))→ f(x∗) ≤ ε.

Note: This is not optimal! Can be improved to depend on
O(ࠀ/Tࠁ) using a technique called acceleration. ࠆࠁ
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GUARANTEED PROGRESS

Where did we use convexity in this proof?

Progress per step of gradient descent:

.ࠀ
[
f(x(t+ࠀ))→ f(x(t))

]
→∇f(x(t))T(x(t+ࠀ)→x(t)) ≤ β

ࠁ ‖x
(t)→x(t+ࠀ)‖ࠁࠁ.

.ࠁ
[
f(x(t+ࠀ))→ f(x(t))

]
+ ࠀ

β‖∇f(x
(t))‖ࠁࠁ ≤

β
ࠁ ‖

ࠀ
β∇f(x

(t))‖ࠁࠁ.

.ࠂ f(x(t))→ f(x(t+ࠀ)) ≥ ࠀ
β‖∇f(xࠁ

(t))‖ࠁࠁ.
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STATIONARY POINTS

Definition (Stationary point)
For a differentiable function f, a stationary point is any x with:

∇f(x) = ߿

local/global minima - local/global maxima - saddle points
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CONVERGENCE TO STATIONARY POINT

Theorem (Convergence to Stationary Point)
For any β-smooth differentiable function f (convex or not), if
we run GD for T steps, we can find a point x̂ such that:

‖∇f(x̂)‖ࠁࠁ ≤
βࠁ
T

(
f(x(߿))→ f(x∗)

)

Corollary: If T ≥ βࠁ
ε , then ‖∇f(x̂)‖

ࠁ
ࠁ ≤ ε

(
f(x(߿))→ f(x∗)

)
.
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TELESCOPING SUM PROOF

Theorem (Convergence to Stationary Point)
For any β-smooth differentiable function f (convex or not), if
we run GD for T steps, we can find a point x̂ such that:

‖∇f(x̂)‖ࠁࠁ ≤
βࠁ
T

(
f(x(߿))→ f(x∗)

)

We have that ࠀ
β‖∇f(xࠁ

(t))‖ࠁࠁ ≤ f(x(t))→ f(x(t+ࠀ)). So:
T−ࠀ[

t=߿

ࠀ
βࠁ
‖∇f(x(t))‖ࠁࠁ ≤ f(x(߿))→ f(x(t))

ࠀ
T

T−ࠀ[

t=߿
‖∇f(x(t))‖ࠁࠁ ≤

βࠁ
T

(
f(x(߿))→ f(x∗)

)

min
t
‖∇f(x(t))‖ࠁࠁ ≤

βࠁ
T

(
f(x(߿))→ f(x∗)

)
ࠀࠂ



BACK TO CONVEX FUNCTIONS

I said it was a bit tricky to prove that f(x̂)→ f(x∗) ≤ ࠁβRࠁ

T for
convex functions. But we just easily proved that ‖∇f(x̂)‖ࠁࠁ is
small. Why doesn’t this show we are close to the minimum?
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STRONG CONVEXITY

Definition (α-strongly convex)
A convex function f is α-strongly convex if, for all x, y

[f(y)→ f(x)]→∇f(x)T(y→ x) ≥ α

ࠁ
‖x→ y‖ࠁࠁ

Compare to smoothness condition.

[f(y)→ f(x)]→∇f(x)T(y→ x) ≤ β

ࠁ
‖x→ y‖ࠁࠁ.

For a twice-differentiable scalar function f, equivalent to
f′′(x) ≥ α.

When f is convex, we always have that f′′(x) ≥ ,߿ so larger
values of α correspond to a “stronger” condition. ࠂࠂ



GD FOR STRONGLY CONVEX FUNCTION

Gradient descent for strongly convex functions:

• Choose number of steps T.
• For i = ,߿ . . . , T:

• η = ࠁ
α·(i+ࠀ)

• x(i+ࠀ) = x(i) → η∇f(x(i))
• Return x̂ = argminx(i) f(x(i)).
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CONVERGENCE GUARANTEE

Theorem (GD convergence for α-strongly convex functions.)
Let f be an α-strongly convex function and assume we have
that, for all x, ‖∇f(x)‖ࠁ ≤ G. If we run GD for T steps (with
adaptive step sizes) we have:

f(x̂)→ f(x∗) ≤ ࠁGࠁ

αT

Corollary: If T = O
(

Gࠁ

αε

)
we have f(x̂)→ f(x∗) ≤ ε

ࠄࠂ



CONVERGENCE GUARANTEE

We could also have that f is both β-smooth and α-strongly
convex.

Theorem (GD for β-smooth, α-strongly convex.)
Let f be a β-smooth and α-strongly convex function. If we run
GD for T steps (with step size η = ࠀ

β ) we have:

‖x(T) → x∗‖ࠁࠁ ≤ e−Tα
β ‖x(߿) → x∗‖ࠁࠁ

κ = β
α is called the “condition number” of f.

Is it better if κ is large or small?
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SMOOTH AND STRONGLY CONVEX

Converting to more familiar form: Using that fact the
∇f(x∗) = ߿ along with

α

ࠁ
‖x→ y‖ࠁࠁ ≤ [f(y)→ f(x)]→∇f(x)T(y→ x) ≤ β

ࠁ
‖x→ y‖ࠁࠁ,

we have:

ࠁ
β

[
f(x(T))→ f(x∗)

]
≤ ‖x(T) → x∗‖ࠁࠁ

We also assume

‖x(߿) → x∗‖ࠁࠁ ≤ Rࠁ.

ࠆࠂ



CONVERGENCE GUARANTEE

Corollary (GD for β-smooth, α-strongly convex.)
Let f be a β-smooth and α-strongly convex function. If we run
GD for T steps (with step size η = ࠀ

β ) we have:

f(x(T))→ f(x∗) ≤ β

ࠁ
e−Tα

β · Rࠁ

Corollary: If T = O
(
β
α log(Rβ/ε)

)
we have:

f(x(T))→ f(x∗) ≤ ε

Only depend on log(ࠀ/ε) instead of on ε/ࠀ or !ࠁε/ࠀ
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SMOOTH, STRONGLY CONVEX OPTIMIZATION

After break or on homework we will prove the guarantee for
the special case of:

f(x) = ࠀ
ࠁ
‖Ax→ b‖ࠁࠁ

Goal: Get some of the key ideas across, introduces important
concepts like the Hessian, and show the connection between
conditioning and linear algebra.

But first we will talk about online gradient descent and
stochastic gradient descent next week.
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