CS-GY 6763: Lecture 8
Projected Gradient Descent, Second order conditions

NYU Tandon School of Engineering, Prof. Christopher Musco

GRADIENT DESCENT

Goal: Find approximate minizer for a function $f(\mathbf{x})$.

Gradient Descent Algorithm:

- Choose starting point $\mathbf{x}^{(0)}$.
- For $i = 0, \ldots, T$:

$$\cdot \mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} - \eta \nabla f(\mathbf{x}^{(i)})$$

• Return $\mathbf{x}^{(T)}$ (or arg $\min_{i \leq T} f(\mathbf{x}^{(i)})$.

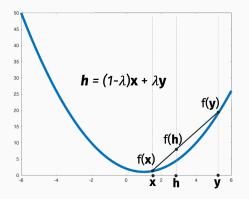
 η is a step-size parameter.

CONVEXITY: OTH ORDER

Definition (Convex)

A function f is convex iff for any $\mathbf{x}, \mathbf{y}, \lambda \in [0, 1]$:

$$(1 - \lambda) \cdot f(\mathbf{x}) + \lambda \cdot f(\mathbf{y}) \ge f((1 - \lambda) \cdot \mathbf{x} + \lambda \cdot \mathbf{y})$$



CONVEXITY: 1ST ORDER

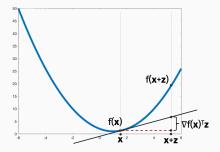
Definition (Convex function)

A function f is convex if and only if for any x, y:

$$f(\mathbf{x} + \mathbf{z}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^{\mathsf{T}} \mathbf{z}$$

Equivalently:

$$f(\mathbf{x}) - f(\mathbf{y}) \leq \nabla f(\mathbf{x})^{\mathsf{T}} (\mathbf{x} - \mathbf{y})$$



CONVEXITY: 2ND ORDER

Definition (Convex function)

A twice differentiable function $f:\mathbb{R}\to\mathbb{R}$ is convex if and only if for all x,

$$f''(x) \geq 0$$
.

We will discuss the high-dimensional generalization of this fact after break.

5

GRADIENT DESCENT ANALYSIS

Assume:

- f is convex.
- Lipschitz function: for all \mathbf{x} , $\|\nabla f(\mathbf{x})\|_2 \leq G$.
- Starting radius: $\|\mathbf{x}^* \mathbf{x}^{(0)}\|_2 \leq R$.

Claim (GD Convergence Bound)

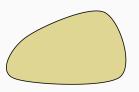
If we run GD for $T \ge \frac{R^2G^2}{\epsilon^2}$ iterations then $f(\hat{\mathbf{x}}) \le f(\mathbf{x}^*) + \epsilon$.

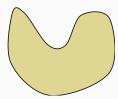
CONSTRAINED CONVEX OPTIMIZATION

Common goal: Solve a <u>convex minimization problem</u> with additional convex constraints.

$$\min_{x \in \mathcal{S}} f(x)$$

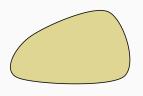
where S is a convex set.





Which of these is convex?

CONSTRAINED CONVEX OPTIMIZATION



Definition (Convex set)

A set \mathcal{S} is convex if for any $\mathbf{x},\mathbf{y}\in\mathcal{S},\lambda\in[0,1]$:

$$(1 - \lambda)x + \lambda y \in \mathcal{S}$$
.

CONSTRAINED CONVEX OPTIMIZATION

Examples:

- Norm constraint: minimize $\|\mathbf{A}\mathbf{x} \mathbf{b}\|_2$ subject to $\|\mathbf{x}\|_2 \le \lambda$. Used e.g. for regularization, finding a sparse solution, etc.
- Positivity constraint: minimize f(x) subject to $x \ge 0$.
- Linear constraint: minimize $c^T x$ subject to $Ax \le b$.

Gradient descent:

- For i = 0, ..., T: • $\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} - \eta \nabla f(\mathbf{x}^{(i)})$
- Return $\hat{\mathbf{x}} = \arg\min_{i} f(\mathbf{x}^{(i)})$.

Even if we start with $\mathbf{x}^{(0)} \in \mathcal{S}$, there is no guarantee that $\mathbf{x}^{(0)} - \eta \nabla f(\mathbf{x}^{(0)})$ will remain in our set.

Extremely simple modification: Force $\mathbf{x}^{(i)}$ to be in \mathcal{S} by projecting onto the set.

CONSTRAINED FIRST ORDER OPTIMIZATION

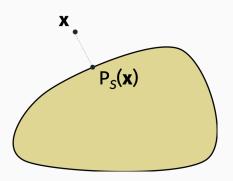
Given a function f to minimize and a convex constraint set S, assume we have:

- Function oracle: Evaluate f(x) for any x.
- Gradient oracle: Evaluate $\nabla f(\mathbf{x})$ for any \mathbf{x} .
- Projection oracle: Evaluate $P_{\mathcal{S}}(\mathbf{x})$ for any \mathbf{x} .

$$P_{\mathcal{S}}(\mathbf{x}) = \mathop{\text{arg min}}_{\mathbf{y} \in \mathcal{S}} \|\mathbf{x} - \mathbf{y}\|_2$$

PROJECTION ORACLES

- How would you implement P_S for $S = \{y : ||y||_2 \le 1\}$.
- How would you implement P_S for $S = \{y : y = Qz\}$.



PROJECTED GRADIENT DESCENT

Given function $f(\mathbf{x})$ and set \mathcal{S} , such that $\|\nabla f(\mathbf{x})\|_2 \leq G$ for all $\mathbf{x} \in \mathcal{S}$ and starting point $\mathbf{x}^{(0)}$ with $\|\mathbf{x}^{(0)} - \mathbf{x}^*\|_2 \leq R$.

Projected gradient descent:

- · Select starting point $\mathbf{x}^{(0)}$, $\eta = \frac{R}{G\sqrt{T}}$.
- For $i = 0, \ldots, T$:
 - $\cdot z = \mathbf{x}^{(i)} \eta \nabla f(\mathbf{x}^{(i)})$
 - $\cdot \mathbf{x}^{(i+1)} = P_{\mathcal{S}}(\mathbf{z})$
- Return $\hat{\mathbf{x}} = \arg\min_{i} f(\mathbf{x}^{(i)})$.

Claim (PGD Convergence Bound)

If f, S are convex and $T \ge \frac{R^2G^2}{\epsilon^2}$, then $f(\hat{\mathbf{x}}) \le f(\mathbf{x}^*) + \epsilon$.

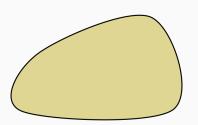
PROJECTED GRADIENT DESCENT ANALYSIS

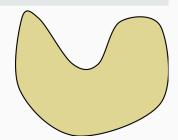
Analysis is almost identical to standard gradient descent! We just need one additional claim:

Claim (Contraction Property of Convex Projection)

If \mathcal{S} is convex, then for $\underline{any} \ \mathbf{y} \in \mathcal{S}$,

$$\|y - P_{\mathcal{S}}(x)\|_2 \le \|y - x\|_2.$$





GRADIENT DESCENT ANALYSIS

Claim (PGD Convergence Bound)

If f, S are convex and $T \ge \frac{R^2 G^2}{\epsilon^2}$, then $f(\hat{\mathbf{x}}) \le f(\mathbf{x}^*) + \epsilon$.

Claim 1: For all i = 0, ..., T, let $\mathbf{z}^{(i)} = \mathbf{x}^{(i)} - \eta \nabla f(\mathbf{x}^{(i)})$. Then:

$$f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*) \le \frac{\|\mathbf{x}^{(i)} - \mathbf{x}^*\|_2^2 - \|\mathbf{z}^{(i)} - \mathbf{x}^*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$$
$$\le \frac{\|\mathbf{x}^{(i)} - \mathbf{x}^*\|_2^2 - \|\mathbf{x}^{(i+1)} - \mathbf{x}^*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$$

Same telescoping sum argument:

$$\left[\frac{1}{T}\sum_{i=0}^{T-1} f(\mathbf{x}^{(i)})\right] - f(\mathbf{x}^*) \le \frac{R^2}{2T\eta} + \frac{\eta G^2}{2}.$$

Conditions:

- Convexity: f is a convex function, S is a convex set.
- · Bounded initial distant:

$$\|\mathbf{x}^{(0)} - \mathbf{x}^*\|_2 \le R$$

· Bounded gradients (Lipschitz function):

$$\|\nabla f(\mathbf{x})\|_2 \leq \mathbf{G}$$
 for all $\mathbf{x} \in \mathcal{S}$.

Theorem (GD Convergence Bound)

(Projected) Gradient Descent returns $\hat{\mathbf{x}}$ with $f(\hat{\mathbf{x}}) \leq \min_{\mathbf{x} \in \mathcal{S}} f(\mathbf{x}) + \epsilon$ after

$$T = \frac{R^2 G^2}{\epsilon^2}$$
 iterations.

BEYOND THE BASIC BOUND

The previous bounds are <u>optimal</u> for convex first order optimization in general.

But in practice, the dependence on $1/\epsilon^2$ is pessimistic: gradient descent typically requires far fewer steps to reach ϵ error.

Previous bounds only make a very weak <u>first order</u> assumption:

$$\|\nabla f(x)\|_2 \leq G.$$

In practice, many function satisfy stronger assumptions.

SECOND ORDER CONDITIONS

Often possible to place assumptions on the $\underline{\text{second derivative}}$ of f.

In particular, we say that a scalar function f is α -strongly convex and β -smooth if for all x:

$$\alpha \leq f''(x) \leq \beta$$
.

We will give an appropriate generalization of these conditions to multi-dimensional functions shortly.

Take away: Having <u>either</u> an upper and lower bound on the second derivative helps convergence. Having both helps a lot.

IMPROVING GRADIENT DESCENT

Take away: Having <u>either</u> an upper and lower bound on the second derivative helps convergence. Having both helps a lot.

Number of iterations for ϵ error:

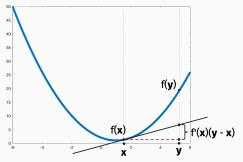
	G-Lipschitz	eta-smooth
R bounded start	$O\left(\frac{G^2R^2}{\epsilon^2}\right)$	$O\left(\frac{\beta R^2}{\epsilon}\right)$
lpha-strong convex	$O\left(\frac{G^2}{\alpha\epsilon}\right)$	$O\left(\frac{\beta}{\alpha}\log(1/\epsilon)\right)$

As we defined them so far, smoothness and strong convexity require f to be <u>twice</u> differentiable. On the other hand, gradient descent only requires <u>first order differentiability</u>.

Equivalent conditions:

$$f''(x) \le \beta \Rightarrow [f(y) - f(x)] - f'(x)(y - x) \le \frac{\beta}{2}(y - x)^2$$

$$f''(x) \ge \alpha \Rightarrow [f(y) - f(x)] - f'(x)(y - x) \ge \frac{\alpha}{2}(y - x)^2$$



Recall: For all convex functions $[f(y) - f(x)] - f'(x)(y - x) \ge 0$.

SECOND ORDER CONDITIONS

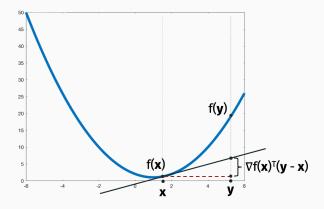
Proof that $f''(x) \le \beta \Rightarrow [f(y) - f(x)] - f'(x)(y - x) \le \frac{\beta}{2}(y - x)^2$:

Proof for α -strongly convex is similar, as are the other directions when f is twice differentiable.

MULTIDIMENSIONAL GENERALIZATION

A function is α -strongly convex and β -smooth if for all x, y:

$$\frac{\alpha}{2} \|\mathbf{y} - \mathbf{x}\|_{2}^{2} \le [f(\mathbf{y}) - f(\mathbf{x})] - \nabla f(\mathbf{x})^{\mathsf{T}} (\mathbf{y} - \mathbf{x}) \le \frac{\beta}{2} \|\mathbf{y} - \mathbf{x}\|_{2}^{2}$$



ALERNATIVE DEFINITION OF SMOOTHNESS

Definition (β -smoothness)

A function f is β smooth if and only if, for all x, y

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_2 \le \frac{\beta}{\beta} \|\mathbf{x} - \mathbf{y}\|_2$$

I.e., the gradient function is a β -Lipschitz function.

We won't use this definition directly, but it's good to know. Easy to prove equivalency to previous definition (see Lem. 3.4 in **Bubeck's book**).

CONVERGENCE GUARANTEE

Theorem (GD convergence for β -smooth functions.)

Let f be a β smooth convex function and assume we have $\|\mathbf{x}^* - \mathbf{x}^{(0)}\|_2 \leq R$. If we run GD for T steps, we have:

$$f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \frac{2\beta R^2}{T}$$

Corollary: If $T = O\left(\frac{\beta R^2}{\epsilon}\right)$ we have $f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \epsilon$.

Compare this to $T = O\left(\frac{G^2R^2}{\epsilon^2}\right)$ without a smoothness assumption.

GUARANTEED PROGRESS

Why do you think gradient descent might be faster when a function is β -smooth?

GUARANTEED PROGRESS

Previously learning rate/step size η depended on G. Now choose it based on β :

$$\mathbf{x}^{(t+1)} \leftarrow \mathbf{x}^{(t)} - \frac{1}{\beta} \nabla f(\mathbf{x}^{(t)})$$

Progress per step of gradient descent:

1.
$$[f(\mathbf{x}^{(t+1)}) - f(\mathbf{x}^{(t)})] - \nabla f(\mathbf{x}^{(t)})^{\mathsf{T}} (\mathbf{x}^{(t+1)} - \mathbf{x}^{(t)}) \le \frac{\beta}{2} \|\mathbf{x}^{(t)} - \mathbf{x}^{(t+1)}\|_{2}^{2}.$$

2.
$$[f(\mathbf{x}^{(t+1)}) - f(\mathbf{x}^{(t)})] + \frac{1}{\beta} \|\nabla f(\mathbf{x}^{(t)})\|_2^2 \le \frac{\beta}{2} \|\frac{1}{\beta} \nabla f(\mathbf{x}^{(t)})\|_2^2$$
.

3.
$$f(\mathbf{x}^{(t)}) - f(\mathbf{x}^{(t+1)}) \ge \frac{1}{2\beta} \|\nabla f(\mathbf{x}^{(t)})\|_2^2$$
.

CONVERGENCE GUARANTEE

Once we have the bound from the previous page, proving a convergence result isn't hard, but not obvious. A concise proof can be found in Page 15 in Garrigos and Gower's notes.

Theorem (GD convergence for β -smooth functions.)

Let f be a β smooth convex function and assume we have $\|\mathbf{x}^* - \mathbf{x}^{(1)}\|_2 \leq R$. If we run GD for T steps with $\eta = \frac{1}{\beta}$ we have:

$$f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \frac{2\beta R^2}{T}$$

Corollary: If $T = O\left(\frac{\beta R^2}{\epsilon}\right)$ we have $f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \epsilon$.

Where did we use convexity in this proof?

Progress per step of gradient descent:

1.
$$[f(\mathbf{x}^{(t+1)}) - f(\mathbf{x}^{(t)})] - \nabla f(\mathbf{x}^{(t)})^{\mathsf{T}} (\mathbf{x}^{(t+1)} - \mathbf{x}^{(t)}) \le \frac{\beta}{2} ||\mathbf{x}^{(t)} - \mathbf{x}^{(t+1)}||_2^2.$$

2.
$$[f(\mathbf{x}^{(t+1)}) - f(\mathbf{x}^{(t)})] + \frac{1}{\beta} \|\nabla f(\mathbf{x}^{(t)})\|_2^2 \le \frac{\beta}{2} \|\frac{1}{\beta} \nabla f(\mathbf{x}^{(t)})\|_2^2$$
.

3.
$$f(\mathbf{x}^{(t)}) - f(\mathbf{x}^{(t+1)}) \ge \frac{1}{2\beta} \|\nabla f(\mathbf{x}^{(t)})\|_2^2$$
.

STATIONARY POINTS

Definition (Stationary point)

For a differentiable function f, a stationary point is any \mathbf{x} with:

$$\nabla f(\mathbf{x}) = \mathbf{0}$$

local/global minima - local/global maxima - saddle points

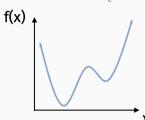
CONVERGENCE TO STATIONARY POINT

Theorem (Convergence to Stationary Point)

For any β -smooth differentiable function f (convex or not), if we run GD for T steps, we can find a point $\hat{\mathbf{x}}$ such that:

$$\|\nabla f(\hat{\mathbf{x}})\|_2^2 \le \frac{2\beta}{T} \left(f(\mathbf{x}^{(0)}) - f(\mathbf{x}^*) \right)$$

Corollary: If $T \ge \frac{2\beta}{\epsilon}$, then $\|\nabla f(\hat{\mathbf{x}})\|_2^2 \le \epsilon \left(f(\mathbf{x}^{(0)}) - f(\mathbf{x}^*)\right)$.



TELESCOPING SUM PROOF

Theorem (Convergence to Stationary Point)

For <u>any</u> β -smooth differentiable function f (convex or not), if we run GD for T steps, we can find a point $\hat{\mathbf{x}}$ such that:

$$\|\nabla f(\hat{\mathbf{x}})\|_2^2 \le \frac{2\beta}{T} \left(f(\mathbf{x}^{(0)}) - f(\mathbf{x}^*) \right)$$

We have that $\frac{1}{2\beta} \|\nabla f(\mathbf{x}^{(t)})\|_2^2 \le f(\mathbf{x}^{(t)}) - f(\mathbf{x}^{(t+1)})$. So:

$$\sum_{t=0}^{T-1} \frac{1}{2\beta} \|\nabla f(\mathbf{x}^{(t)})\|_{2}^{2} \le f(\mathbf{x}^{(0)}) - f(\mathbf{x}^{(t)})$$

$$\frac{1}{T} \sum_{t=0}^{T-1} \|\nabla f(\mathbf{x}^{(t)})\|_{2}^{2} \le \frac{2\beta}{T} \left(f(\mathbf{x}^{(0)}) - f(\mathbf{x}^{*}) \right)$$

$$\min_{t} \|\nabla f(\mathbf{x}^{(t)})\|_{2}^{2} \le \frac{2\beta}{T} \left(f(\mathbf{x}^{(0)}) - f(\mathbf{x}^{*}) \right)$$

BACK TO CONVEX FUNCTIONS

I said it was a bit tricky to prove that $f(\hat{\mathbf{x}}) - f(\mathbf{x}^*) \leq \frac{2\beta R^2}{T}$ for convex functions. But we just easily proved that $\|\nabla f(\hat{\mathbf{x}})\|_2^2$ is small. Why doesn't this show we are close to the minimum?

STRONG CONVEXITY

Definition (α -strongly convex)

A convex function f is α -strongly convex if, for all x, y

$$[f(\mathbf{y}) - f(\mathbf{x})] - \nabla f(\mathbf{x})^{\mathsf{T}} (\mathbf{y} - \mathbf{x}) \ge \frac{\alpha}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2}$$

Compare to smoothness condition.

$$[f(y) - f(x)] - \nabla f(x)^{T}(y - x) \le \frac{\beta}{2} ||x - y||_{2}^{2}.$$

For a twice-differentiable scalar function f, equivalent to $f''(x) \ge \alpha$.

When f is convex, we always have that $f''(x) \ge 0$, so larger values of α correspond to a "stronger" condition.

GD FOR STRONGLY CONVEX FUNCTION

Gradient descent for strongly convex functions:

- · Choose number of steps T.
- For $i = 0, \ldots, T$:

•
$$\eta = \frac{2}{\alpha \cdot (i+1)}$$

$$\cdot \mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} - \eta \nabla f(\mathbf{x}^{(i)})$$

• Return $\hat{\mathbf{x}} = \arg\min_{\mathbf{x}^{(i)}} f(\mathbf{x}^{(i)})$.

CONVERGENCE GUARANTEE

Theorem (GD convergence for α -strongly convex functions.)

Let f be an α -strongly convex function and assume we have that, for all \mathbf{x} , $\|\nabla f(\mathbf{x})\|_2 \leq \mathbf{G}$. If we run GD for T steps (with adaptive step sizes) we have:

$$f(\hat{\mathbf{x}}) - f(\mathbf{x}^*) \le \frac{2G^2}{\alpha T}$$

Corollary: If $T = O\left(\frac{G^2}{\alpha \epsilon}\right)$ we have $f(\hat{\mathbf{x}}) - f(\mathbf{x}^*) \le \epsilon$

CONVERGENCE GUARANTEE

We could also have that f is both β -smooth and α -strongly convex.

Theorem (GD for β -smooth, α -strongly convex.)

Let f be a β -smooth and α -strongly convex function. If we run GD for T steps (with step size $\eta = \frac{1}{\beta}$) we have:

$$\|\mathbf{x}^{(T)} - \mathbf{x}^*\|_2^2 \le e^{-T\frac{\alpha}{\beta}} \|\mathbf{x}^{(0)} - \mathbf{x}^*\|_2^2$$

 $\kappa = \frac{\beta}{\alpha}$ is called the "condition number" of f.

Is it better if κ is large or small?

Converting to more familiar form: Using that fact the $\nabla f(\mathbf{x}^*) = \mathbf{0}$ along with

$$\frac{\alpha}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2} \le [f(\mathbf{y}) - f(\mathbf{x})] - \nabla f(\mathbf{x})^{\mathsf{T}} (\mathbf{y} - \mathbf{x}) \le \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2},$$

we have:

$$\frac{2}{\beta} \left[f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \right] \le \|\mathbf{x}^{(T)} - \mathbf{x}^*\|_2^2$$

We also assume

$$\|\mathbf{x}^{(0)} - \mathbf{x}^*\|_2^2 \le R^2.$$

CONVERGENCE GUARANTEE

Corollary (GD for β -smooth, α -strongly convex.)

Let f be a β -smooth and α -strongly convex function. If we run GD for T steps (with step size $\eta = \frac{1}{\beta}$) we have:

$$f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \frac{\beta}{2} e^{-T\frac{\alpha}{\beta}} \cdot R^2$$

Corollary: If $T = O\left(\frac{\beta}{\alpha}\log(R\beta/\epsilon)\right)$ we have:

$$f(\mathbf{X}^{(T)}) - f(\mathbf{X}^*) \le \epsilon$$

Only depend on $\log(1/\epsilon)$ instead of on $1/\epsilon$ or $1/\epsilon^2$!

SMOOTH, STRONGLY CONVEX OPTIMIZATION

After break or on homework we will prove the guarantee for the special case of:

$$f(\mathbf{x}) = \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$

Goal: Get some of the key ideas across, introduces important concepts like the Hessian, and show the connection between conditioning and linear algebra.

But first we will talk about <u>online gradient descent</u> and <u>stochastic gradient descent</u> next week.