CS-GY 6763: Lecture 6 Gradient Descent and Projected Gradient Descent

NYU Tandon School of Engineering, Prof. Christopher Musco

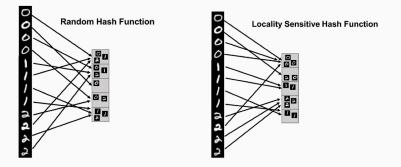
- Homework 3 due on Monday.
- Exam on Friday. 1 hour 15 minutes, cheat sheet allowed.

FINISH UP LSH + NEAR NEIGHBOR SEARCH

Let $h : \mathbb{R}^d \to \{1, \dots, m\}$ be a random hash function.

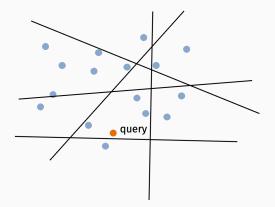
We call h <u>locality sensitive</u> for similarity function s(q, y) if Pr [h(q) == h(y)] is:

- Higher when **q** and **y** are more similar, i.e. s(q, y) is higher.
- Lower when **q** and **y** are more dissimilar, i.e. *s*(**q**, **y**) is lower.



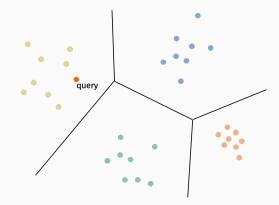
LSH is widely used in practice, but is starting to get replaced by other methods. Most of these are <u>data dependent</u> in some way.

Starting point: Think of LSH as a randomized <u>space-partitioning method</u>.



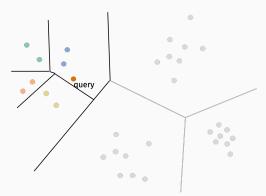
In practice, we can often get partitions with better <u>margin</u> but partitioning in a data-dependent way.

Common approach: Split data using k-means clustering.



NEAREST-NEIGHBOR SEARCH IN PRACTICE

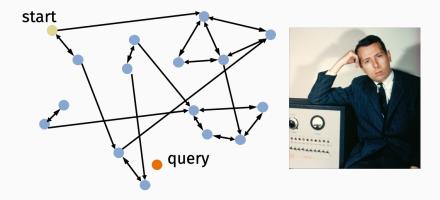
Common approach: Split data using k-means clustering.



Main approach behind "k-means tree" and "inverted file index" based near-neighbor search methods like Meta's FAISS library and Google's SCANN.

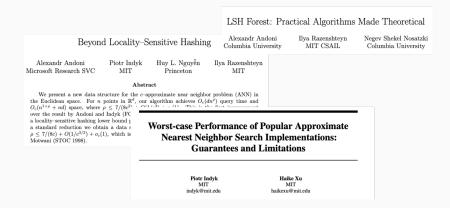
NEAREST-NEIGHBOR SEARCH IN PRACTICE

New kid on the block: Graph-based nearest neighbor search.



Idea behind methods like NSG, HNSW, DiskANN, etc. Inspired by Milgram's famous "small-world" experiments from the 1960's.

Can we better explain the success of data-dependent nearest-neighbor search methods?



OPTIMIZATION

Have some function $f : \mathbb{R}^d \to \mathbb{R}$. Want to find \mathbf{x}^* such that:

 $f(\mathbf{x}^*) = \min_{\mathbf{x}} f(\mathbf{x}).$

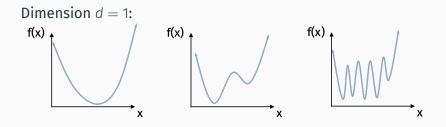
Or at least $\hat{\mathbf{x}}$ which is close to a minimum. E.g.

$$f(\hat{\mathbf{x}}) \leq \min_{\mathbf{x}} f(\mathbf{x}) + \epsilon.$$

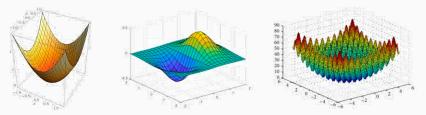
Often we have some additional constraints:

- **x** > 0.
- $\|\mathbf{x}\|_{2} \le R$, $\|\mathbf{x}\|_{1} \le R$.
- $\mathbf{a}^T \mathbf{x} = c$.

CONTINUOUS OPTIMIZATION



Dimension d = 2:



Continuouos optimization is the foundation of modern machine learning.

Supervised learning: Want to learn a model that maps inputs

- numerical data vectors
- images, video
- \cdot a sequence of tokens/works

to predictions

- numerical value (probability stock price increases)
- label (does the image contain a car? what is the next token in the sequence?)
- decision (turn car left, rotate robotic arm)

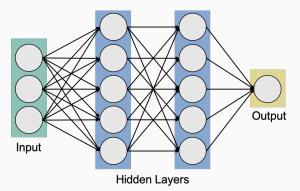
Let M_x be a model with parameters $\mathbf{x} = \{x_1, \dots, x_k\}$, which takes as input a data vector \mathbf{a} and outputs a prediction.

Example:

$$M_{\mathbf{x}}(\mathbf{a}) = \operatorname{sign}(\mathbf{a}^{\mathsf{T}}\mathbf{x})$$

MACHINE LEARNING MODEL

Example:



 $x \in \mathbb{R}^{(\text{\# of connections})}$ is the parameter vector containing all the network weights.

Classic approach in <u>supervised learning</u>: Find a model that works well on data that you already have the answer for (labels, values, classes, etc.).

- Model M_x parameterized by a vector of numbers x.
- Dataset $\mathbf{a}^{(1)}, \ldots, \mathbf{a}^{(n)}$ with outputs $y^{(1)}, \ldots, y^{(n)}$.

Want to find $\hat{\mathbf{x}}$ so that $M_{\hat{\mathbf{x}}}(\mathbf{a}^{(i)}) \approx y^{(i)}$ for $i \in 1, ..., n$.

How do we turn this into a function minimization problem?

Loss function $L(M_x(\mathbf{a}), y)$: Some measure of distance between prediction $M_x(\mathbf{a})$ and target output y. Increases if they are further apart.

- Squared (ℓ_2) loss: $|M_x(\mathbf{a}) y|^2$
- Absolute deviation (ℓ_1) loss: $|M_x(a) y|$
- Hinge loss: $1 y \cdot M_x(a)$
- Cross-entropy loss (log loss).

Empirical risk minimization: Given a training dataset $(a^{(1)}, y^{(1)}) \dots, (a^{(n)}, y^{(n)})$:

$$f(\mathbf{x}) = \sum_{i=1}^{n} L\left(M_{\mathbf{x}}(\mathbf{a}^{(i)}), y^{(i)}\right)$$

Solve the optimization problem $\min_{\mathbf{x}} f(\mathbf{x})$.

- $M_x(a) = x^T a$. x contains the regression coefficients.
- $L(z, y) = |z y|^2$.
- $f(\mathbf{x}) = \sum_{i=1}^{n} |\mathbf{x}^{T} \mathbf{a}^{(i)} y^{(i)}|^2$

$$f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2$$

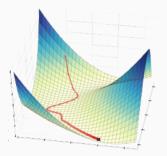
where **A** is a matrix with $\mathbf{a}^{(i)}$ as its *i*th row and **y** is a vector with $y^{(i)}$ as its *i*th entry.

The choice of algorithm to minimize $f(\mathbf{x})$ will depend on:

- The form of $f(\mathbf{x})$ (is it linear, is it quadratic, does it have finite sum structure, etc.)
- If there are any additional constraints imposed on **x**. E.g. $\|\mathbf{x}\|_2 \leq c$.

What are some example algorithms for continuous optimization?

Gradient descent: A greedy algorithm for minimizing functions of multiple variables that often works amazingly well.



Runtime generally scales <u>linearly</u> with the dimension of **x** (although this is a bit of an over-simplification).

- Cutting plane methods (e.g. center-of-gravity, ellipsoid)
- Interior point methods

Faster and more accurate in low-dimensions, slower in very high dimensions. Generally runtime scales <u>polynomially</u> with the dimension of \mathbf{x} (e.g., $O(d^3)$).

For i = 1, ..., d, let x_i be the i^{th} entry of **x**. Let $e^{(i)}$ be the i^{th} standard basis vector.

Partial derivative:

$$\frac{\partial f}{\partial x_i}(\mathbf{x}) = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{e}^{(i)}) - f(\mathbf{x})}{t}$$

Directional derivative:

$$D_{\mathbf{v}}f(\mathbf{x}) = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{v}) - f(\mathbf{x})}{t}$$

Gradient:

$$\nabla f(\mathbf{x}) = \begin{bmatrix} rac{\partial f}{\partial x_1}(\mathbf{x}) \\ rac{\partial f}{\partial x_2}(\mathbf{x}) \\ \vdots \\ rac{\partial f}{\partial x_d}(\mathbf{x}) \end{bmatrix}$$

7

Directional derivative:

$$D_{\mathbf{v}}f(\mathbf{x}) = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{v}) - f(\mathbf{x})}{t} = \nabla f(\mathbf{x})^{\mathsf{T}}\mathbf{v}$$

Given a function *f* to minimize, assume we have:

- Function oracle: Evaluate f(x) for any x.
- Gradient oracle: Evaluate $\nabla f(\mathbf{x})$ for any \mathbf{x} .

We view the implementation of these oracles as black-boxes, but they can often require a fair bit of computation. Linear least-squares regression:

- Given $\mathbf{a}^{(1)}, \dots \mathbf{a}^{(n)} \in \mathbb{R}^d$, $y^{(1)}, \dots y^{(n)} \in \mathbb{R}$.
- Want to minimize:

$$f(\mathbf{x}) = \sum_{i=1}^{n} \left(\mathbf{x}^{\mathsf{T}} \mathbf{a}^{(i)} - \mathbf{y}^{(i)} \right)^2 = \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2.$$

What is the time complexity to implement a function oracle for f(x)?

Linear least-squares regression:

• Want to minimize:

$$f(\mathbf{x}) = \sum_{i=1}^{n} \left(\mathbf{x}^{\mathsf{T}} \mathbf{a}^{(i)} - \mathbf{y}^{(i)} \right)^2 = \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2.$$

$$\frac{\partial f}{\partial x_j} = \sum_{i=1}^n 2\left(\mathbf{x}^{\mathsf{T}} \mathbf{a}^{(i)} - y^{(i)}\right) \cdot a_j^{(i)} = 2\boldsymbol{\alpha}^{(j)^{\mathsf{T}}} (\mathbf{A}\mathbf{x} - \mathbf{y})$$

where $\alpha^{(j)}$ is the jth <u>column</u> of A.

Linear least-squares regression:

$$\frac{\partial f}{\partial x_j} = \sum_{i=1}^n 2\left(\mathbf{x}^T \mathbf{a}^{(i)} - y^{(i)}\right) \cdot a_j^{(i)} = 2\boldsymbol{\alpha}^{(j)^T} (\mathbf{A}\mathbf{x} - \mathbf{y})$$

where $\alpha^{(j)}$ is the j^{th} <u>column</u> of **A**.

$$\nabla f(\mathbf{x}) = 2\mathbf{A}^T (\mathbf{A}\mathbf{x} - \mathbf{y})$$

What is the time complexity of a gradient oracle for $\nabla f(\mathbf{x})$?

Greedy approach: Given a starting point **x**, make a small adjustment that decreases $f(\mathbf{x})$. In particular, $\mathbf{x} \leftarrow \mathbf{x} + \eta \mathbf{v}$.

What property do I want in **v**?

Leading question: When η is small, what's an approximation for $f(\mathbf{x} + \eta \mathbf{v}) - f(\mathbf{x})$?

$$f(\mathbf{x} + \eta \mathbf{v}) - f(\mathbf{x}) \approx$$

DIRECTIONAL DERIVATIVES

$$D_{\mathbf{v}}f(\mathbf{x}) = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{v}) - f(\mathbf{x})}{t} = \nabla f(\mathbf{x})^{\mathsf{T}}\mathbf{v}.$$

So:

$$f(\mathbf{x} + \eta \mathbf{v}) - f(\mathbf{x}) \approx \eta \cdot \nabla f(\mathbf{x})^{\mathsf{T}} \mathbf{v}.$$

How should we choose v so that $f(x + \eta v) < f(x)$?

Prototype algorithm:

- Choose starting point $\mathbf{x}^{(0)}$.
- For i = 0, ..., T:

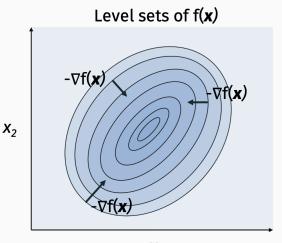
•
$$\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} - \eta \nabla f(\mathbf{x}^{(i)})$$

• Return $\mathbf{x}^{(T)}$.

 η is a step-size parameter, which is often adapted on the go. For now, assume it is fixed ahead of time.

1 dimensional example:

2 dimensional example:



For a convex function $f(\mathbf{x})$: For sufficiently small η and a sufficiently large number of iterations *T*, gradient descent will converge to a near global minimum:

 $f(\mathbf{x}^{(T)}) \leq f(\mathbf{x}^*) + \epsilon.$

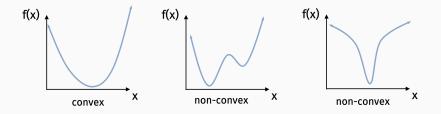
Examples: least squares regression, logistic regression, kernel regression, SVMs.

For a non-convex function $f(\mathbf{x})$: For sufficiently small η and a sufficiently large number of iterations *T*, gradient descent will converge to a near stationary point:

 $\|\nabla f(\mathbf{x}^{(T)})\|_2 \leq \epsilon.$

Examples: neural networks, matrix completion problems, mixture models.

CONVEX VS. NON-CONVEX



One issue with non-convex functions is that they can have **local minima**. Even when they don't, convergence analysis requires different assumptions than convex functions.

We care about <u>how fast</u> gradient descent and related methods converge, not just that they do converge.

- Bounding iteration complexity requires placing some assumptions on $f(\mathbf{x})$.
- Stronger assumptions lead to better bounds on the convergence.

Understanding these assumptions can help us design faster variants of gradient descent (there are many!).

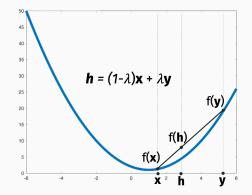
Today, we will start with **convex** functions.

CONVEXITY

Definition (Convex)

A function *f* is convex iff for any $\mathbf{x}, \mathbf{y}, \lambda \in [0, 1]$:

$$(1 - \lambda) \cdot f(\mathbf{x}) + \lambda \cdot f(\mathbf{y}) \ge f((1 - \lambda) \cdot \mathbf{x} + \lambda \cdot \mathbf{y})$$



GRADIENT DESCENT

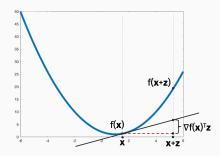
Definition (Convex)

A function *f* is convex if and only if for any **x**, **y**:

 $f(\mathbf{x} + \mathbf{z}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^{\mathsf{T}} \mathbf{z}$

Equivalently:

$$f(\mathbf{x}) - f(\mathbf{y}) \leq \nabla f(\mathbf{x})^{\mathsf{T}}(\mathbf{x} - \mathbf{y})$$



It is easy but not obvious how to prove the equivalence between these definitions. A short proof can be found in Karthik Sridharan's lecture notes here:

http://www.cs.cornell.edu/courses/cs6783/2018fa/lec16supplement.pdf

Assume:

- *f* is convex.
- Lipschitz function: for all \mathbf{x} , $\|\nabla f(\mathbf{x})\|_2 \leq \mathbf{G}$.
- Starting radius: $\|\mathbf{x}^* \mathbf{x}^{(0)}\|_2 \leq R$.

Gradient descent:

- Choose number of steps T.
- Starting point $\mathbf{x}^{(0)}$. E.g. $\mathbf{x}^{(0)} = \vec{0}$.
- $\eta = \frac{R}{G\sqrt{T}}$
- For i = 0, ..., T:

•
$$\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} - \eta \nabla f(\mathbf{x}^{(i)})$$

• Return $\hat{\mathbf{x}} = \arg\min_{\mathbf{x}^{(i)}} f(\mathbf{x}^{(i)})$.

Claim (GD Convergence Bound)

If we run GD for $T \ge \frac{R^2G^2}{\epsilon^2}$ iterations then $f(\hat{\mathbf{x}}) \le f(\mathbf{x}^*) + \epsilon$.

Proof is made tricky by the fact that $f(\mathbf{x}^{(i)})$ does not improve monotonically. We can "overshoot" the minimum.

Claim (GD Convergence Bound)

If we run GD for $T \ge \frac{R^2 G^2}{\epsilon^2}$ iterations with step-size $\eta = \frac{R}{G\sqrt{T}}$, then $f(\hat{\mathbf{x}}) \le f(\mathbf{x}^*) + \epsilon$.

Proof is made tricky by the fact that $f(\mathbf{x}^{(i)})$ does not improve monotonically. We can "overshoot" the minimum.

We will prove that the <u>average</u> solution value is low after $T = \frac{R^2 G^2}{c^2}$ iterations. I.e. that:

$$\frac{1}{T}\sum_{i=0}^{T-1}\left[f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*)\right] \le \epsilon$$

Of course the best solution found, $\hat{\boldsymbol{x}}$ is only better than the average.

Claim (GD Convergence Bound)

If we run GD for $T \ge \frac{R^2 G^2}{\epsilon^2}$ iterations with step-size $\eta = \frac{R}{G\sqrt{T}}$, then $f(\hat{\mathbf{x}}) \le f(\mathbf{x}^*) + \epsilon$.

Claim 1: For all *i* = 0, ..., *T*,

$$f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*) \le \frac{\|\mathbf{x}^{(i)} - \mathbf{x}^*\|_2^2 - \|\mathbf{x}^{(i+1)} - \mathbf{x}^*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$$

Claim 1(a): For all *i* = 0, ..., *T*,

$$\nabla f(\mathbf{x}^{(i)})^{\mathsf{T}}(\mathbf{x}^{(i)} - \mathbf{x}^{*}) \leq \frac{\|\mathbf{x}^{(i)} - \mathbf{x}^{*}\|_{2}^{2} - \|\mathbf{x}^{(i+1)} - \mathbf{x}^{*}\|_{2}^{2}}{2\eta} + \frac{\eta G^{2}}{2}$$

Claim 1 follows from Claim 1(a) by definition of convexity.

Claim (GD Convergence Bound)

If we run GD for $T \geq \frac{R^2G^2}{\epsilon^2}$ iterations with step size $\eta = \frac{R}{G\sqrt{T}}$, then $f(\hat{\mathbf{x}}) \leq f(\mathbf{x}^*) + \epsilon$.

Claim 1(a): For all *i* = 0, ..., *T*,

$$\frac{\|\mathbf{x}^{(i)} - \mathbf{x}^*\|_2^2 - \|\mathbf{x}^{(i+1)} - \mathbf{x}^*\|_2^2}{2\eta} + \frac{\eta G^2}{2} \ge \nabla f(\mathbf{x}^{(i)})^{\mathsf{T}} (\mathbf{x}^{(i)} - \mathbf{x}^*)$$

Claim (GD Convergence Bound) If $T \ge \frac{R^2G^2}{\epsilon^2}$ and $\eta = \frac{R}{G\sqrt{7}}$, then $f(\mathbf{\hat{X}}) \le f(\mathbf{x}^*) + \epsilon$.

Claim 1: For all *i* = 0,..., *T*,

$$f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*) ≤ \frac{\|\mathbf{x}^{(i)} - \mathbf{x}^*\|_2^2 - \|\mathbf{x}^{(i+1)} - \mathbf{x}^*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$$

Telescoping sum:

$$\sum_{i=0}^{r-1} \left[f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*) \right] \le \frac{\|\mathbf{x}^{(0)} - \mathbf{x}^*\|_2^2 - \|\mathbf{x}^{(1)} - \mathbf{x}^*\|_2^2}{2\eta} + \frac{\eta G^2}{2} \\ + \frac{\|\mathbf{x}^{(1)} - \mathbf{x}^*\|_2^2 - \|\mathbf{x}^{(2)} - \mathbf{x}^*\|_2^2}{2\eta} + \frac{\eta G^2}{2} \\ + \frac{\|\mathbf{x}^{(2)} - \mathbf{x}^*\|_2^2 - \|\mathbf{x}^{(3)} - \mathbf{x}^*\|_2^2}{2\eta} + \frac{\eta G^2}{2} \\ \vdots \\ + \frac{\|\mathbf{x}^{(T-1)} - \mathbf{x}^*\|_2^2 - \|\mathbf{x}^{(T)} - \mathbf{x}^*\|_2^2}{2\eta} + \frac{\eta G^2}{2} \end{bmatrix}$$

Claim (GD Convergence Bound) If $T \ge \frac{R^2G^2}{\epsilon^2}$ and $\eta = \frac{R}{G\sqrt{T}}$, then $f(\mathbf{\hat{x}}) \le f(\mathbf{x}^*) + \epsilon$.

Telescoping sum:

$$\sum_{i=0}^{T-1} \left[f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*) \right] \le \frac{\|\mathbf{x}^{(0)} - \mathbf{x}^*\|_2^2 - \|\mathbf{x}^{(T)} - \mathbf{x}^*\|_2^2}{2\eta} + \frac{T\eta G^2}{2}$$
$$\frac{1}{T} \sum_{i=0}^{T-1} \left[f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*) \right] \le \frac{R^2}{2T\eta} + \frac{\eta G^2}{2}$$

Claim (GD Convergence Bound) If $T \ge \frac{R^2G^2}{\epsilon^2}$ and $\eta = \frac{R}{G\sqrt{T}}$, then $f(\hat{\mathbf{x}}) \le f(\mathbf{x}^*) + \epsilon$.

Final step:

$$\frac{1}{T}\sum_{i=0}^{T-1} \left[f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*) \right] \le \epsilon$$
$$\left[\frac{1}{T}\sum_{i=0}^{T-1} f(\mathbf{x}^{(i)}) \right] - f(\mathbf{x}^*) \le \epsilon$$

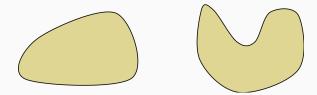
We always have that $f(\hat{\mathbf{x}}) = \min_i f(\mathbf{x}^{(i)}) \le \frac{1}{T} \sum_{i=0}^{T-1} f(\mathbf{x}^{(i)})$, which gives the final bound:

$$f(\hat{\mathbf{X}}) \leq f(\mathbf{X}^*) + \epsilon.$$

Typical goal: Solve a <u>convex minimization problem</u> with additional <u>convex constraints</u>.

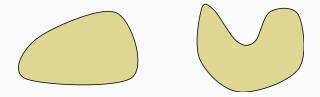
 $\min_{\mathbf{x}\in\mathcal{S}}f(\mathbf{x})$

where \mathcal{S} is a **convex set**.



Which of these is convex?

CONSTRAINED CONVEX OPTIMIZATION



Definition (Convex set)

A set S is convex if for any $\mathbf{x}, \mathbf{y} \in S, \lambda \in [0, 1]$:

 $(1-\lambda)\mathbf{x} + \lambda \mathbf{y} \in \mathcal{S}.$

Examples:

- Norm constraint: minimize $\|Ax b\|_2$ subject to $\|x\|_2 \le \lambda$. Used e.g. for regularization, finding a sparse solution, etc.
- Positivity constraint: minimize f(x) subject to $x \ge 0$.
- Linear constraint: minimize c^Tx subject to Ax ≤ b. Linear program used in training support vector machines, industrial optimization, subroutine in integer programming, etc.

Gradient descent:

- For i = 0, ..., T:
 - $\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} \eta \nabla f(\mathbf{x}^{(i)})$
- Return $\hat{\mathbf{x}} = \arg\min_i f(\mathbf{x}^{(i)})$.

Even if we start with $\mathbf{x}^{(0)} \in S$, there is no guarantee that $\mathbf{x}^{(0)} - \eta \nabla f(\mathbf{x}^{(0)})$ will remain in our set.

Extremely simple modification: Force $\mathbf{x}^{(i)}$ to be in S by **projecting** onto the set.

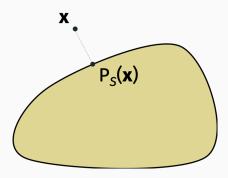
Given a function f to minimize and a convex constraint set S, assume we have:

- Function oracle: Evaluate $f(\mathbf{x})$ for any \mathbf{x} .
- Gradient oracle: Evaluate $\nabla f(\mathbf{x})$ for any \mathbf{x} .
- **Projection oracle**: Evaluate $P_{\mathcal{S}}(\mathbf{x})$ for any \mathbf{x} .

 $P_{\mathcal{S}}(\mathbf{x}) = \underset{\mathbf{y} \in \mathcal{S}}{\arg\min} \|\mathbf{x} - \mathbf{y}\|_2$

PROJECTION ORACLES

- How would you implement $P_{\mathcal{S}}$ for $\mathcal{S} = \{\mathbf{y} : \|\mathbf{y}\|_2 \leq 1\}$.
- How would you implement $P_{\mathcal{S}}$ for $\mathcal{S} = \{y : y = Qz\}$.



Given function $f(\mathbf{x})$ and set S, such that $\|\nabla f(\mathbf{x})\|_2 \leq G$ for all $\mathbf{x} \in S$ and starting point $\mathbf{x}^{(0)}$ with $\|\mathbf{x}^{(0)} - \mathbf{x}^*\|_2 \leq R$.

Projected gradient descent:

- Select starting point $\mathbf{x}^{(0)}$, $\eta = \frac{R}{G\sqrt{T}}$.
- For i = 0, ..., T:

$$\cdot \mathbf{z} = \mathbf{x}^{(i)} - \eta \nabla f(\mathbf{x}^{(i)})$$

- $\cdot \mathbf{x}^{(l+1)} = P_{\mathcal{S}}(\mathbf{z})$
- Return $\hat{\mathbf{x}} = \arg\min_i f(\mathbf{x}^{(i)})$.

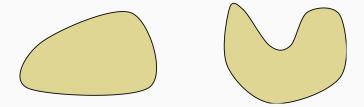
Claim (PGD Convergence Bound)

If f, S are convex and $T \ge \frac{R^2G^2}{\epsilon^2}$, then $f(\hat{\mathbf{x}}) \le f(\mathbf{x}^*) + \epsilon$.

Analysis is almost identical to standard gradient descent! We just need one additional claim:

Claim (Contraction Property of Convex Projection) If S is convex, then for any $y \in S$,

 $\|\mathbf{y} - P_{\mathcal{S}}(\mathbf{x})\|_2 \leq \|\mathbf{y} - \mathbf{x}\|_2.$



Claim (PGD Convergence Bound)

If f, S are convex and $T \ge \frac{R^2 G^2}{\epsilon^2}$, then $f(\hat{\mathbf{x}}) \le f(\mathbf{x}^*) + \epsilon$.

Claim 1: For all i = 0, ..., T, let $\mathbf{z}^{(i)} = \mathbf{x}^{(i)} - \eta \nabla f(\mathbf{x}^{(i)})$. Then: $f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*) \le \frac{\|\mathbf{x}^{(i)} - \mathbf{x}^*\|_2^2 - \|\mathbf{z}^{(i)} - \mathbf{x}^*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$ $\le \frac{\|\mathbf{x}^{(i)} - \mathbf{x}^*\|_2^2 - \|\mathbf{x}^{(i+1)} - \mathbf{x}^*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$

Same telescoping sum argument:

$$\left[\frac{1}{T}\sum_{i=0}^{T-1}f(\mathbf{x}^{(i)})\right]-f(\mathbf{x}^*)\leq \frac{R^2}{2T\eta}+\frac{\eta G^2}{2}.$$

Conditions:

- **Convexity:** f is a convex function, S is a convex set.
- · Bounded initial distant:

 $\|\mathbf{x}^{(0)} - \mathbf{x}^*\|_2 \le R$

• Bounded gradients (Lipschitz function):

 $\|\nabla f(\mathbf{x})\|_2 \leq \mathbf{G} \text{ for all } \mathbf{x} \in \mathcal{S}.$

Theorem (GD Convergence Bound)

(Projected) Gradient Descent returns $\hat{\mathbf{x}}$ with $f(\hat{\mathbf{x}}) \leq \min_{\mathbf{x} \in S} f(\mathbf{x}) + \epsilon$ after

$$T = \frac{R^2 G^2}{\epsilon^2}$$
 iterations.

The previous bounds are <u>optimal</u> for convex first order optimization in general.

But in practice, the dependence on $1/\epsilon^2$ is pessimistic: gradient descent typically requires far fewer steps to reach ϵ error.

Previous bounds only make a very weak <u>first order</u> assumption:

 $\|\nabla f(x)\|_2 \leq G.$

In practice, many function satisfy stronger assumptions.

Often possible to place assumptions on the <u>second derivative</u> of *f*.

In particular, we say that a scalar function f is α -strongly convex and β -smooth if for all x:

 $\alpha \leq f''(\mathbf{X}) \leq \beta.$

We will give an appropriate generalization of these conditions to multi-dimensional functions shortly.

Take away: Having <u>either</u> an upper and lower bound on the second derivative helps convergence. Having both helps a lot.

Take away: Having <u>either</u> an upper and lower bound on the second derivative helps convergence. Having both helps a lot.

Number of iterations for ϵ error:

	G-Lipschitz	eta-smooth
R bounded start	$O\left(\frac{G^2R^2}{\epsilon^2}\right)$	$O\left(\frac{\beta R^2}{\epsilon}\right)$
$\alpha\text{-}strong\ convex$	$O\left(\frac{G^2}{\alpha\epsilon}\right)$	$O\left(\frac{\beta}{\alpha}\log(1/\epsilon)\right)$

As we defined them so far, smoothness and strong convexity require *f* to be <u>twice</u> differentiable. On the other hand, gradient descent only requires <u>first order differentiability</u>.

Equivalent conditions:

0 L -6

-4

-2

$$f''(x) \leq \beta \iff [f(y) - f(x)] - f'(x)(y - x) \leq \frac{\beta}{2}(y - x)^{2}$$

$$f''(x) \geq \alpha \iff [f(y) - f(x)] - f'(x)(y - x) \geq \frac{\alpha}{2}(y - x)^{2}$$

Recall: For all convex functions $[f(y) - f(x)] - f'(x)(y - x) \ge 0$.

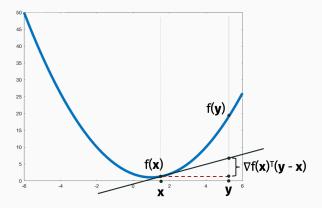
X² 4 **V**⁶

Proof that $f''(x) \leq \beta \Rightarrow [f(y) - f(x)] - f'(x)(y - x) \leq \frac{\beta}{2}(y - x)^2$:

Proof for α -strongly convex is similar, as are the other directions.

A function is α -strongly convex and β -smooth if for all **x**, **y**:

$$\frac{\alpha}{2} \|\mathbf{y} - \mathbf{x}\|_2^2 \le [f(\mathbf{y}) - f(\mathbf{x})] - \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) \le \frac{\beta}{2} \|\mathbf{y} - \mathbf{x}\|_2^2$$



Definition (β -smoothness) A function f is β smooth if and only if, for all \mathbf{x}, \mathbf{y} $\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_2 \le \beta \|\mathbf{x} - \mathbf{y}\|_2$

I.e., the gradient function is a β -Lipschitz function.

We won't use this definition directly, but it's good to know. Easy to prove equivalency to previous definition (see Lem. 3.4 in **Bubeck's book**). Theorem (GD convergence for β -smooth functions.) Let f be a β smooth convex function and assume we have $\|\mathbf{x}^* - \mathbf{x}^{(0)}\|_2 \leq R$. If we run GD for T steps, we have:

$$f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \frac{2\beta R^2}{T}$$

Corollary: If
$$T = O\left(rac{\beta R^2}{\epsilon}\right)$$
 we have $f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \epsilon$.

Compare this to $T = O\left(\frac{G^2R^2}{\epsilon^2}\right)$ without a smoothness assumption.

Why do you think gradient descent might be faster when a function is β -smooth?

Previously learning rate/step size η depended on G. Now choose it based on β :

$$\mathbf{x}^{(t+1)} \leftarrow \mathbf{x}^{(t)} - \frac{1}{\beta} \nabla f(\mathbf{x}^{(t)})$$

Progress per step of gradient descent:

1.
$$[f(\mathbf{x}^{(t+1)}) - f(\mathbf{x}^{(t)})] - \nabla f(\mathbf{x}^{(t)})^{\mathsf{T}}(\mathbf{x}^{(t+1)} - \mathbf{x}^{(t)}) \le \frac{\beta}{2} \|\mathbf{x}^{(t)} - \mathbf{x}^{(t+1)}\|_2^2.$$

2. $[f(\mathbf{x}^{(t+1)}) - f(\mathbf{x}^{(t)})] + \frac{1}{\beta} \|\nabla f(\mathbf{x}^{(t)})\|_2^2 \le \frac{\beta}{2} \|\frac{1}{\beta} \nabla f(\mathbf{x}^{(t)})\|_2^2$.

3. $f(\mathbf{x}^{(t)}) - f(\mathbf{x}^{(t+1)}) \ge \frac{1}{2\beta} \|\nabla f(\mathbf{x}^{(t)})\|_2^2$.

Once we have the bound from the previous page, proving a convergence result isn't hard, but not obvious. A concise proof can be found in Page 15 in Garrigos and Gower's notes.

Theorem (GD convergence for β -smooth functions.) Let f be a β smooth convex function and assume we have

 $\|\mathbf{x}^* - \mathbf{x}^{(1)}\|_2 \leq \mathbf{R}$. If we run GD for T steps with $\eta = \frac{1}{\beta}$ we have:

$$f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \frac{2\beta R^2}{T}$$

Corollary: If $T = O\left(\frac{\beta R^2}{\epsilon}\right)$ we have $f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \epsilon$.

Where did we use convexity in this proof?

Progress per step of gradient descent:

1.
$$[f(\mathbf{x}^{(t+1)}) - f(\mathbf{x}^{(t)})] - \nabla f(\mathbf{x}^{(t)})^{\mathsf{T}}(\mathbf{x}^{(t+1)} - \mathbf{x}^{(t)}) \le \frac{\beta}{2} \|\mathbf{x}^{(t)} - \mathbf{x}^{(t+1)}\|_2^2.$$

2.
$$[f(\mathbf{x}^{(t+1)}) - f(\mathbf{x}^{(t)})] + \frac{1}{\beta} \|\nabla f(\mathbf{x}^{(t)})\|_2^2 \le \frac{\beta}{2} \|\frac{1}{\beta} \nabla f(\mathbf{x}^{(t)})\|_2^2$$

3.
$$f(\mathbf{x}^{(t)}) - f(\mathbf{x}^{(t+1)}) \ge \frac{1}{2\beta} \|\nabla f(\mathbf{x}^{(t)})\|_2^2$$
.

Definition (Stationary point)

For a differentiable function *f*, a <u>stationary point</u> is any **x** with:

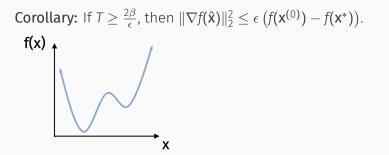
$$\nabla f(\mathbf{x}) = \mathbf{0}$$

local/global minima - local/global maxima - saddle points

Theorem (Convergence to Stationary Point)

For any β -smooth differentiable function f (convex or not), if we run GD for T steps, we can find a point $\hat{\mathbf{x}}$ such that:

$$\|\nabla f(\hat{\mathbf{x}})\|_2^2 \leq \frac{2\beta}{T} \left(f(\mathbf{x}^{(0)}) - f(\mathbf{x}^*) \right)$$



Theorem (Convergence to Stationary Point)

For any β -smooth differentiable function f (convex or not), if we run GD for T steps, we can find a point $\hat{\mathbf{x}}$ such that:

$$\|\nabla f(\hat{\mathbf{x}})\|_2^2 \leq \frac{2\beta}{T} \left(f(\mathbf{x}^{(0)}) - f(\mathbf{x}^*) \right)$$

We have that $\frac{1}{2\beta} \|\nabla f(\mathbf{x}^{(t)})\|_2^2 \le f(\mathbf{x}^{(t)}) - f(\mathbf{x}^{(t+1)})$. So:

$$\begin{split} &\sum_{t=0}^{T-1} \frac{1}{2\beta} \|\nabla f(\mathbf{x}^{(t)})\|_2^2 \le f(\mathbf{x}^{(0)}) - f(\mathbf{x}^{(t)}) \\ &\frac{1}{T} \sum_{t=0}^{T-1} \|\nabla f(\mathbf{x}^{(t)})\|_2^2 \le \frac{2\beta}{T} \left(f(\mathbf{x}^{(0)}) - f(\mathbf{x}^*) \right) \\ &\min_t \|\nabla f(\mathbf{x}^{(t)})\|_2^2 \le \frac{2\beta}{T} \left(f(\mathbf{x}^{(0)}) - f(\mathbf{x}^*) \right) \end{split}$$

70

I said it was a bit tricky to prove that $f(\hat{\mathbf{x}}) - f(\mathbf{x}^*) \leq \frac{2\beta R^2}{T}$ for convex functions. But we just easily proved that $\|\nabla f(\hat{\mathbf{x}})\|_2^2$ is small. Why doesn't this show we are close to the minimum?

STRONG CONVEXITY

Definition (α -strongly convex)

A convex function f is α -strongly convex if, for all \mathbf{x}, \mathbf{y}

$$[f(\mathbf{y}) - f(\mathbf{x})] - \nabla f(\mathbf{x})^{\mathsf{T}}(\mathbf{y} - \mathbf{x}) \geq \frac{\alpha}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2}$$

Compare to smoothness condition.

$$[f(\mathbf{y}) - f(\mathbf{x})] - \nabla f(\mathbf{x})^{\mathsf{T}}(\mathbf{y} - \mathbf{x}) \leq \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_2^2.$$

For a twice-differentiable scalar function f, equivalent to $f''(x) \ge \alpha$.

When f is convex, we always have that $f''(x) \ge 0$, so larger values of α correspond to a "stronger" condition.

Gradient descent for strongly convex functions:

- Choose number of steps T.
- For i = 0, ..., T:

•
$$\eta = \frac{2}{\alpha \cdot (i+1)}$$

• $\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} - \eta \nabla f(\mathbf{x}^{(i)})$

• Return
$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}^{(i)}} f(\mathbf{x}^{(i)})$$
.

Theorem (GD convergence for α -strongly convex functions.) Let f be an α -strongly convex function and assume we have that, for all \mathbf{x} , $\|\nabla f(\mathbf{x})\|_2 \leq \mathbf{G}$. If we run GD for T steps (with adaptive step sizes) we have:

$$f(\hat{\mathbf{x}}) - f(\mathbf{x}^*) \le \frac{2G^2}{\alpha T}$$

Corollary: If $T = O\left(\frac{G^2}{\alpha\epsilon}\right)$ we have $f(\hat{\mathbf{x}}) - f(\mathbf{x}^*) \le \epsilon$

We could also have that f is both β -smooth and α -strongly convex.

Theorem (GD for β -smooth, α -strongly convex.)

Let f be a β -smooth and α -strongly convex function. If we run GD for T steps (with step size $\eta = \frac{1}{\beta}$) we have:

$$\|\mathbf{x}^{(T)} - \mathbf{x}^*\|_2^2 \le e^{-T\frac{\alpha}{\beta}} \|\mathbf{x}^{(0)} - \mathbf{x}^*\|_2^2$$

 $\kappa = \frac{\beta}{\alpha}$ is called the "condition number" of *f*. Is it better if κ is large or small? Converting to more familiar form: Using that fact the $\nabla f(x^*) = 0$ along with

$$\frac{\alpha}{2} \|\mathbf{x} - \mathbf{y}\|_2^2 \le [f(\mathbf{y}) - f(\mathbf{x})] - \nabla f(\mathbf{x})^{\mathsf{T}} (\mathbf{y} - \mathbf{x}) \le \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_2^2,$$

we have:

$$\|\mathbf{x}^{(T)} - \mathbf{x}^*\|_2^2 \ge \frac{2}{\beta} \left[f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \right].$$

We also assume

 $\|\mathbf{x}^{(0)}-\mathbf{x}^*\|_2^2 \le R^2.$

Corollary (GD for β -smooth, α -strongly convex.)

Let f be a β -smooth and α -strongly convex function. If we run GD for T steps (with step size $\eta = \frac{1}{\beta}$) we have:

$$f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \frac{\beta}{2}e^{-T\frac{\alpha}{\beta}} \cdot R^2$$

Corollary: If $T = O\left(\frac{\beta}{\alpha}\log(R\beta/\epsilon)\right)$ we have:

$$f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \epsilon$$

Only depend on $\log(1/\epsilon)$ instead of on $1/\epsilon$ or $1/\epsilon^2$!

We are going to prove the guarantee on the previous page for the special case of:

$$f(\mathbf{x}) = \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$

Goal: Get some of the key ideas across, introduces important concepts like the Hessian, and show the connection between conditioning and linear algebra.