
CS-GY 6763: Lecture 6
Gradient Descent and Projected Gradient
Descent

NYU Tandon School of Engineering, Prof. Christopher Musco

1

ADMINISTRATIVE

• Homework 3 due on Monday.
• Exam on Friday. 1 hour 15 minutes, cheat sheet allowed.

2

FINISH UP LSH + NEAR NEIGHBOR SEARCH

2

LOCALITY SENSITIVE HASH FUNCTIONS

Let h : Rd → {1, . . . ,m} be a random hash function.

We call h locality sensitive for similarity function s(q, y) if
Pr [h(q) == h(y)] is:

• Higher when q and y are more similar, i.e. s(q, y) is higher.
• Lower when q and y are more dissimilar, i.e. s(q, y) is
lower.

3

NEAREST-NEIGHBOR SEARCH IN PRACTICE

LSH is widely used in practice, but is starting to get replaced by
other methods. Most of these are data dependent in some way.

Starting point: Think of LSH as a randomized
space-partitioning method.

4

NEAREST-NEIGHBOR SEARCH IN PRACTICE

In practice, we can often get partitions with better margin but
partitioning in a data-dependent way.

Common approach: Split data using k-means clustering.

5

NEAREST-NEIGHBOR SEARCH IN PRACTICE

Common approach: Split data using k-means clustering.

Main approach behind “k-means tree” and “inverted file index”
based near-neighbor search methods like Meta’s FAISS library
and Google’s SCANN. 6

NEAREST-NEIGHBOR SEARCH IN PRACTICE

New kid on the block: Graph-based nearest neighbor search.

Idea behind methods like NSG, HNSW, DiskANN, etc. Inspired by
Milgram’s famous “small-world” experiments from the 1960’s.

7

OPEN THEORY CHALLENGE

Can we better explain the success of data-dependent
nearest-neighbor search methods?

8

OPTIMIZATION

8

NEXT UNIT: CONTINUOUS OPTIMIZATION

Have some function f : Rd → R. Want to find x∗ such that:

f(x∗) = min
x

f(x).

Or at least x̂ which is close to a minimum. E.g.

f(x̂) ≤ min
x

f(x) + ϵ.

Often we have some additional constraints:

• x > 0.
• ∥x∥2 ≤ R, ∥x∥1 ≤ R.
• aTx = c.

9

CONTINUOUS OPTIMIZATION

Dimension d = 1:

Dimension d = 2:

10

OPTIMIZATION IN MACHINE LEARNING

Continuouos optimization is the foundation of modern
machine learning.

Supervised learning: Want to learn a model that maps inputs

• numerical data vectors
• images, video
• a sequence of tokens/works

to predictions

• numerical value (probability stock price increases)
• label (does the image contain a car? what is the next
token in the sequence?)

• decision (turn car left, rotate robotic arm)

11

MACHINE LEARNING MODEL

Let Mx be a model with parameters x = {x1, . . . , xk}, which
takes as input a data vector a and outputs a prediction.

Example:

Mx(a) = sign(aTx)

12

MACHINE LEARNING MODEL

Example:

x ∈ R(# of connections) is the parameter vector containing all the
network weights.

13

SUPERVISED LEARNING

Classic approach in supervised learning: Find a model that
works well on data that you already have the answer for
(labels, values, classes, etc.).

• Model Mx parameterized by a vector of numbers x.
• Dataset a(1), . . . , a(n) with outputs y(1), . . . , y(n).

Want to find x̂ so that Mx̂(a(i)) ≈ y(i) for i ∈ 1, . . . ,n.

How do we turn this into a function minimization problem?

14

LOSS FUNCTION

Loss function L (Mx(a), y): Some measure of distance between
prediction Mx(a) and target output y. Increases if they are
further apart.

• Squared (ℓ2) loss: |Mx(a)− y|2

• Absolute deviation (ℓ1) loss: |Mx(a)− y|
• Hinge loss: 1 - y ·Mx(a)
• Cross-entropy loss (log loss).

15

EMPIRICAL RISK MINIMIZATION

Empirical risk minimization: Given a training dataset
(a(1), y(1)) . . . , (a(n), y(n)):

f(x) =
n∑
i=1

L
(
Mx(a(i)), y(i)

)
Solve the optimization problem minx f(x).

16

EXAMPLE: LEAST SQUARES REGRESSION

• Mx(a) = xTa. x contains the regression coefficients.
• L(z, y) = |z− y|2.
• f(x) =

∑n
i=1 |xTa(i) − y(i)|2

f(x) = ∥Ax− y∥22

where A is a matrix with a(i) as its ith row and y is a vector with
y(i) as its ith entry.

17

ALGORITHMS FOR CONTINUOUS OPTIMIZATION

The choice of algorithm to minimize f(x) will depend on:

• The form of f(x) (is it linear, is it quadratic, does it have
finite sum structure, etc.)

• If there are any additional constraints imposed on x. E.g.
∥x∥2 ≤ c.

What are some example algorithms for continuous
optimization?

18

FIRST TOPIC: GRADIENT DESCENT + VARIANTS

Gradient descent: A greedy algorithm for minimizing functions
of multiple variables that often works amazingly well.

Runtime generally scales linearly with the dimension of x
(although this is a bit of an over-simplification).

19

SECOND TOPIC: METHODS SUITABLE FOR LOWER DIMENSION

• Cutting plane methods (e.g. center-of-gravity, ellipsoid)
• Interior point methods

Faster and more accurate in low-dimensions, slower in very
high dimensions. Generally runtime scales polynomially with
the dimension of x (e.g., O(d3)).

20

CALCULUS REVIEW

For i = 1, . . . ,d, let xi be the ith entry of x. Let e(i) be the ith

standard basis vector.

Partial derivative:

∂f
∂xi

(x) = lim
t→0

f(x+ te(i))− f(x)
t

Directional derivative:

Dvf(x) = lim
t→0

f(x+ tv)− f(x)
t

21

CALCULUS REVIEW

Gradient:

∇f(x) =

∂f
∂x1 (x)
∂f
∂x2 (x)...
∂f
∂xd (x)

Directional derivative:

Dvf(x) = lim
t→0

f(x+ tv)− f(x)
t = ∇f(x)Tv.

22

FIRST ORDER OPTIMIZATION

Given a function f to minimize, assume we have:

• Function oracle: Evaluate f(x) for any x.
• Gradient oracle: Evaluate ∇f(x) for any x.

We view the implementation of these oracles as black-boxes,
but they can often require a fair bit of computation.

23

EXAMPLE GRADIENT EVALUATION

Linear least-squares regression:

• Given a(1), . . . a(n) ∈ Rd, y(1), . . . y(n) ∈ R.
• Want to minimize:

f(x) =
n∑
i=1

(
xTa(i) − y(i)

)2
= ∥Ax− y∥22.

What is the time complexity to implement a function oracle
for f(x)?

24

EXAMPLE GRADIENT EVALUATION

Linear least-squares regression:

• Want to minimize:

f(x) =
n∑
i=1

(
xTa(i) − y(i)

)2
= ∥Ax− y∥22.

∂f
∂xj

=
n∑
i=1

2
(
xTa(i) − y(i)

)
· a(i)j = 2α(j)T(Ax− y)

where α(j) is the jth column of A.

25

EXAMPLE GRADIENT EVALUATION

Linear least-squares regression:

∂f
∂xj

=
n∑
i=1

2
(
xTa(i) − y(i)

)
· a(i)j = 2α(j)T(Ax− y)

where α(j) is the jth column of A.

∇f(x) = 2AT (Ax− y)

What is the time complexity of a gradient oracle for ∇f(x)?

26

DESCENT METHODS

Greedy approach: Given a starting point x, make a small
adjustment that decreases f(x). In particular, x← x+ ηv.

What property do I want in v?

Leading question: When η is small, what’s an approximation
for f(x+ ηv)− f(x)?

f(x+ ηv)− f(x) ≈

27

DIRECTIONAL DERIVATIVES

Dvf(x) = lim
t→0

f(x+ tv)− f(x)
t = ∇f(x)Tv.

So:

f(x+ ηv)− f(x) ≈ η · ∇f(x)Tv.

How should we choose v so that f(x+ ηv) < f(x)?

28

GRADIENT DESCENT

Prototype algorithm:

• Choose starting point x(0).
• For i = 0, . . . , T:

• x(i+1) = x(i) − η∇f(x(i))
• Return x(T).

η is a step-size parameter, which is often adapted on the go.
For now, assume it is fixed ahead of time.

29

GRADIENT DESCENT INTUITION

1 dimensional example:

30

GRADIENT DESCENT INTUITION

2 dimensional example:

31

KEY RESULTS

For a convex function f(x): For sufficiently small η and a
sufficiently large number of iterations T, gradient descent will
converge to a near global minimum:

f(x(T)) ≤ f(x∗) + ϵ.

Examples: least squares regression, logistic regression, kernel
regression, SVMs.

For a non-convex function f(x): For sufficiently small η and a
sufficiently large number of iterations T, gradient descent will
converge to a near stationary point:

∥∇f(x(T))∥2 ≤ ϵ.

Examples: neural networks, matrix completion problems,
mixture models.

32

CONVEX VS. NON-CONVEX

One issue with non-convex functions is that they can have
local minima. Even when they don’t, convergence analysis
requires different assumptions than convex functions.

33

APPROACH FOR THIS UNIT

We care about how fast gradient descent and related methods
converge, not just that they do converge.

• Bounding iteration complexity requires placing some
assumptions on f(x).

• Stronger assumptions lead to better bounds on the
convergence.

Understanding these assumptions can help us design faster
variants of gradient descent (there are many!).

Today, we will start with convex functions.

34

CONVEXITY

Definition (Convex)
A function f is convex iff for any x, y, λ ∈ [0, 1]:

(1− λ) · f(x) + λ · f(y) ≥ f ((1− λ) · x+ λ · y)

35

GRADIENT DESCENT

Definition (Convex)
A function f is convex if and only if for any x, y:

f(x+ z) ≥ f(x) +∇f(x)Tz

Equivalently:
f(x)− f(y) ≤ ∇f(x)T(x− y)

36

DEFINITIONS OF CONVEXITY

It is easy but not obvious how to prove the equivalence
between these definitions. A short proof can be found in
Karthik Sridharan’s lecture notes here:

http://www.cs.cornell.edu/courses/cs6783/2018fa/lec16-
supplement.pdf

37

http://www.cs.cornell.edu/courses/cs6783/2018fa/lec16-supplement.pdf
http://www.cs.cornell.edu/courses/cs6783/2018fa/lec16-supplement.pdf

GRADIENT DESCENT ANALYSIS

Assume:

• f is convex.
• Lipschitz function: for all x, ∥∇f(x)∥2 ≤ G.
• Starting radius: ∥x∗ − x(0)∥2 ≤ R.

Gradient descent:

• Choose number of steps T.
• Starting point x(0). E.g. x(0) = 0⃗.
• η = R

G
√
T

• For i = 0, . . . , T:
• x(i+1) = x(i) − η∇f(x(i))

• Return x̂ = argminx(i) f(x(i)).

38

GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
If we run GD for T ≥ R2G2

ϵ2
iterations then f(x̂) ≤ f(x∗) + ϵ.

Proof is made tricky by the fact that f(x(i)) does not improve
monotonically. We can “overshoot” the minimum.

39

GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
If we run GD for T ≥ R2G2

ϵ2
iterations with step-size η = R

G
√
T ,

then f(x̂) ≤ f(x∗) + ϵ.

Proof is made tricky by the fact that f(x(i)) does not improve
monotonically. We can “overshoot” the minimum.

We will prove that the average solution value is low after
T = R2G2

ϵ2
iterations. I.e. that:

1
T

T−1∑
i=0

[
f(x(i))− f(x∗)

]
≤ ϵ

Of course the best solution found, x̂ is only better than the
average.

40

GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
If we run GD for T ≥ R2G2

ϵ2 iterations with step-size η = R
G
√
T , then

f(x̂) ≤ f(x∗) + ϵ.

Claim 1: For all i = 0, . . . , T,

f(x(i))− f(x∗) ≤ ∥x
(i) − x∗∥22 − ∥x(i+1) − x∗∥22

2η +
ηG2

2

Claim 1(a): For all i = 0, . . . , T,

∇f(x(i))T(x(i) − x∗) ≤ ∥x
(i) − x∗∥22 − ∥x(i+1) − x∗∥22

2η +
ηG2

2

Claim 1 follows from Claim 1(a) by definition of convexity.

41

GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
If we run GD for T ≥ R2G2

ϵ2 iterations with step size η = R
G
√
T , then

f(x̂) ≤ f(x∗) + ϵ.

Claim 1(a): For all i = 0, . . . , T,

∥x(i) − x∗∥22 − ∥x(i+1) − x∗∥22
2η +

ηG2

2 ≥ ∇f(x(i))T(x(i) − x∗)

42

GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
If T ≥ R2G2

ϵ2 and η = R
G
√

T , then f(x̂) ≤ f(x∗) + ϵ.

Claim 1: For all i = 0, . . . , T,

f(x(i))− f(x∗) ≤ ∥x(i) − x∗∥22 − ∥x(i+1) − x∗∥22
2η +

ηG2

2
Telescoping sum:

T−1∑
i=0

[
f(x(i))− f(x∗)

]
≤ ∥x(0) − x∗∥22 − ∥x(1) − x∗∥22

2η +
ηG2

2

+
∥x(1) − x∗∥22 − ∥x(2) − x∗∥22

2η +
ηG2

2

+
∥x(2) − x∗∥22 − ∥x(3) − x∗∥22

2η +
ηG2

2
...

+
∥x(T−1) − x∗∥22 − ∥x(T) − x∗∥22

2η +
ηG2

2

T−1∑
i=0

[
f(x(i))− f(x∗)

]
≤ ∥x(0) − x∗∥22 − ∥x(T) − x∗∥22

2η +
TηG2

2

1
T

T−1∑
i=0

[
f(x(i))− f(x∗)

]
≤ R2

2Tη +
ηG2

2

43

GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
If T ≥ R2G2

ϵ2 and η = R
G
√
T , then f(x̂) ≤ f(x∗) + ϵ.

Telescoping sum:

T−1∑
i=0

[
f(x(i))− f(x∗)

]
≤ ∥x

(0) − x∗∥22 − ∥x(T) − x∗∥22
2η +

TηG2

2

1
T

T−1∑
i=0

[
f(x(i))− f(x∗)

]
≤ R2

2Tη +
ηG2

2

44

GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
If T ≥ R2G2

ϵ2
and η = R

G
√
T , then f(x̂) ≤ f(x∗) + ϵ.

Final step:

1
T

T−1∑
i=0

[
f(x(i))− f(x∗)

]
≤ ϵ

[
1
T

T−1∑
i=0

f(x(i))
]
− f(x∗) ≤ ϵ

We always have that f(x̂) = mini f(x(i)) ≤ 1
T
∑T−1

i=0 f(x(i)), which
gives the final bound:

f(x̂) ≤ f(x∗) + ϵ.

45

CONSTRAINED CONVEX OPTIMIZATION

Typical goal: Solve a convex minimization problem with
additional convex constraints.

min
x∈S

f(x)

where S is a convex set.

Which of these is convex?

46

CONSTRAINED CONVEX OPTIMIZATION

Definition (Convex set)
A set S is convex if for any x, y ∈ S, λ ∈ [0, 1]:

(1− λ)x+ λy ∈ S.

47

CONSTRAINED CONVEX OPTIMIZATION

Examples:

• Norm constraint: minimize ∥Ax− b∥2 subject to ∥x∥2 ≤ λ.
Used e.g. for regularization, finding a sparse solution, etc.

• Positivity constraint: minimize f(x) subject to x ≥ 0.
• Linear constraint: minimize cTx subject to Ax ≤ b. Linear
program used in training support vector machines,
industrial optimization, subroutine in integer
programming, etc.

48

PROBLEM WITH GRADIENT DESCENT

Gradient descent:

• For i = 0, . . . , T:
• x(i+1) = x(i) − η∇f(x(i))

• Return x̂ = argmini f(x(i)).

Even if we start with x(0) ∈ S , there is no guarantee that
x(0) − η∇f(x(0)) will remain in our set.

Extremely simple modification: Force x(i) to be in S by
projecting onto the set.

49

CONSTRAINED FIRST ORDER OPTIMIZATION

Given a function f to minimize and a convex constraint set S ,
assume we have:

• Function oracle: Evaluate f(x) for any x.
• Gradient oracle: Evaluate ∇f(x) for any x.
• Projection oracle: Evaluate PS(x) for any x.

PS(x) = argmin
y∈S

∥x− y∥2

50

PROJECTION ORACLES

• How would you implement PS for S = {y : ∥y∥2 ≤ 1}.
• How would you implement PS for S = {y : y = Qz}.

51

PROJECTED GRADIENT DESCENT

Given function f(x) and set S , such that ∥∇f(x)∥2 ≤ G for all
x ∈ S and starting point x(0) with ∥x(0) − x∗∥2 ≤ R.

Projected gradient descent:

• Select starting point x(0), η = R
G
√
T .

• For i = 0, . . . , T:
• z = x(i) − η∇f(x(i))
• x(i+1) = PS(z)

• Return x̂ = argmini f(x(i)).

Claim (PGD Convergence Bound)
If f,S are convex and T ≥ R2G2

ϵ2
, then f(x̂) ≤ f(x∗) + ϵ.

52

PROJECTED GRADIENT DESCENT ANALYSIS

Analysis is almost identical to standard gradient descent! We
just need one additional claim:

Claim (Contraction Property of Convex Projection)
If S is convex, then for any y ∈ S ,

∥y− PS(x)∥2 ≤ ∥y− x∥2.

53

GRADIENT DESCENT ANALYSIS

Claim (PGD Convergence Bound)
If f,S are convex and T ≥ R2G2

ϵ2 , then f(x̂) ≤ f(x∗) + ϵ.

Claim 1: For all i = 0, . . . , T, let z(i) = x(i) − η∇f(x(i)). Then:

f(x(i))− f(x∗) ≤ ∥x
(i) − x∗∥22 − ∥z(i) − x∗∥22

2η +
ηG2

2

≤ ∥x
(i) − x∗∥22 − ∥x(i+1) − x∗∥22

2η +
ηG2

2

Same telescoping sum argument:[
1
T

T−1∑
i=0

f(x(i))
]
− f(x∗) ≤ R2

2Tη +
ηG2

2 .

54

GRADIENT DESCENT

Conditions:

• Convexity: f is a convex function, S is a convex set.
• Bounded initial distant:

∥x(0) − x∗∥2 ≤ R

• Bounded gradients (Lipschitz function):

∥∇f(x)∥2 ≤ G for all x ∈ S.

Theorem (GD Convergence Bound)
(Projected) Gradient Descent returns x̂ with
f(x̂) ≤ minx∈S f(x) + ϵ after

T =
R2G2

ϵ2
iterations.

55

BEYOND THE BASIC BOUND

The previous bounds are optimal for convex first order
optimization in general.

But in practice, the dependence on 1/ϵ2 is pessimistic: gradient
descent typically requires far fewer steps to reach ϵ error.

Previous bounds only make a very weak first order assumption:

∥∇f(x)∥2 ≤ G.

In practice, many function satisfy stronger assumptions.

56

SECOND ORDER CONDITIONS

Often possible to place assumptions on the second derivative
of f.

In particular, we say that a scalar function f is α-strongly
convex and β-smooth if for all x:

α ≤ f′′(x) ≤ β.

We will give an appropriate generalization of these conditions
to multi-dimensional functions shortly.

Take away: Having either an upper and lower bound on the
second derivative helps convergence. Having both helps a lot.

57

IMPROVING GRADIENT DESCENT

Take away: Having either an upper and lower bound on the
second derivative helps convergence. Having both helps a lot.

Number of iterations for ϵ error:

G-Lipschitz β-smooth
R bounded start O

(
G2R2
ϵ2

)
O
(
βR2
ϵ

)
α-strong convex O

(
G2

αϵ

)
O
(
β
α log(1/ϵ)

)
As we defined them so far, smoothness and strong convexity
require f to be twice differentiable. On the other hand,
gradient descent only requires first order differentiability.

58

SECOND ORDER CONDITIONS

Equivalent conditions:

f′′(x) ≤ β ⇐⇒ [f(y)− f(x)]− f′(x)(y− x) ≤ β

2 (y− x)2

f′′(x) ≥ α ⇐⇒ [f(y)− f(x)]− f′(x)(y− x) ≥ α

2 (y− x)2

Recall: For all convex functions [f(y)− f(x)]− f′(x)(y− x) ≥ 0.
59

SECOND ORDER CONDITIONS

Proof that f′′(x) ≤ β ⇒ [f(y)− f(x)]− f′(x)(y− x) ≤ β
2 (y− x)2:

Proof for α-strongly convex is similar, as are the other
directions.

60

MULTIDIMENSIONAL GENERALIZATION

A function is α-strongly convex and β-smooth if for all x, y:
α

2 ∥y− x∥22 ≤ [f(y)− f(x)]−∇f(x)T(y− x) ≤ β

2 ∥y− x∥22

61

ALERNATIVE DEFINITION OF SMOOTHNESS

Definition (β-smoothness)
A function f is β smooth if and only if, for all x, y

∥∇f(x)−∇f(y)∥2 ≤ β∥x− y∥2

I.e., the gradient function is a β-Lipschitz function.

We won’t use this definition directly, but it’s good to know.
Easy to prove equivalency to previous definition (see Lem. 3.4
in Bubeck’s book).

62

https://arxiv.org/pdf/1405.4980.pdf

CONVERGENCE GUARANTEE

Theorem (GD convergence for β-smooth functions.)
Let f be a β smooth convex function and assume we have
∥x∗ − x(0)∥2 ≤ R. If we run GD for T steps, we have:

f(x(T))− f(x∗) ≤ 2βR2

T

Corollary: If T = O
(
βR2
ϵ

)
we have f(x(T))− f(x∗) ≤ ϵ.

Compare this to T = O
(
G2R2
ϵ2

)
without a smoothness

assumption.

63

GUARANTEED PROGRESS

Why do you think gradient descent might be faster when a
function is β-smooth?

64

GUARANTEED PROGRESS

Previously learning rate/step size η depended on G. Now
choose it based on β:

x(t+1) ← x(t) − 1
β
∇f(x(t))

Progress per step of gradient descent:

1.
[
f(x(t+1))− f(x(t))

]
−∇f(x(t))T(x(t+1)−x(t)) ≤ β

2 ∥x(t)−x(t+1)∥22.

2.
[
f(x(t+1))− f(x(t))

]
+ 1

β∥∇f(x(t))∥22 ≤
β
2 ∥

1
β∇f(x(t))∥22.

3. f(x(t))− f(x(t+1)) ≥ 1
2β∥∇f(x(t))∥22.

65

CONVERGENCE GUARANTEE

Once we have the bound from the previous page, proving a
convergence result isn’t hard, but not obvious. A concise proof
can be found in Page 15 in Garrigos and Gower’s notes.

Theorem (GD convergence for β-smooth functions.)
Let f be a β smooth convex function and assume we have
∥x∗ − x(1)∥2 ≤ R. If we run GD for T steps with η = 1

β we have:

f(x(T))− f(x∗) ≤ 2βR2

T

Corollary: If T = O
(
βR2
ϵ

)
we have f(x(T))− f(x∗) ≤ ϵ.

66

https://gowerrobert.github.io/pdf/M2_statistique_optimisation/grad_conv.pdf

GUARANTEED PROGRESS

Where did we use convexity in this proof?

Progress per step of gradient descent:

1.
[
f(x(t+1))− f(x(t))

]
−∇f(x(t))T(x(t+1)−x(t)) ≤ β

2 ∥x(t)−x(t+1)∥22.

2.
[
f(x(t+1))− f(x(t))

]
+ 1

β∥∇f(x(t))∥22 ≤
β
2 ∥

1
β∇f(x(t))∥22.

3. f(x(t))− f(x(t+1)) ≥ 1
2β∥∇f(x(t))∥22.

67

STATIONARY POINTS

Definition (Stationary point)
For a differentiable function f, a stationary point is any x with:

∇f(x) = 0

local/global minima - local/global maxima - saddle points

68

CONVERGENCE TO STATIONARY POINT

Theorem (Convergence to Stationary Point)
For any β-smooth differentiable function f (convex or not), if
we run GD for T steps, we can find a point x̂ such that:

∥∇f(x̂)∥22 ≤
2β
T

(
f(x(0))− f(x∗)

)

Corollary: If T ≥ 2β
ϵ , then ∥∇f(x̂)∥22 ≤ ϵ

(
f(x(0))− f(x∗)

)
.

69

TELESCOPING SUM PROOF

Theorem (Convergence to Stationary Point)
For any β-smooth differentiable function f (convex or not), if
we run GD for T steps, we can find a point x̂ such that:

∥∇f(x̂)∥22 ≤
2β
T

(
f(x(0))− f(x∗)

)

We have that 1
2β∥∇f(x(t))∥22 ≤ f(x(t))− f(x(t+1)). So:

T−1∑
t=0

1
2β ∥∇f(x

(t))∥22 ≤ f(x(0))− f(x(t))

1
T

T−1∑
t=0
∥∇f(x(t))∥22 ≤

2β
T

(
f(x(0))− f(x∗)

)
min
t
∥∇f(x(t))∥22 ≤

2β
T

(
f(x(0))− f(x∗)

)
70

BACK TO CONVEX FUNCTIONS

I said it was a bit tricky to prove that f(x̂)− f(x∗) ≤ 2βR2
T for

convex functions. But we just easily proved that ∥∇f(x̂)∥22 is
small. Why doesn’t this show we are close to the minimum?

71

STRONG CONVEXITY

Definition (α-strongly convex)
A convex function f is α-strongly convex if, for all x, y

[f(y)− f(x)]−∇f(x)T(y− x) ≥ α

2 ∥x− y∥22

Compare to smoothness condition.

[f(y)− f(x)]−∇f(x)T(y− x) ≤ β

2 ∥x− y∥22.

For a twice-differentiable scalar function f, equivalent to
f′′(x) ≥ α.

When f is convex, we always have that f′′(x) ≥ 0, so larger
values of α correspond to a “stronger” condition. 72

GD FOR STRONGLY CONVEX FUNCTION

Gradient descent for strongly convex functions:

• Choose number of steps T.
• For i = 0, . . . , T:

• η = 2
α·(i+1)

• x(i+1) = x(i) − η∇f(x(i))
• Return x̂ = argminx(i) f(x(i)).

73

CONVERGENCE GUARANTEE

Theorem (GD convergence for α-strongly convex functions.)
Let f be an α-strongly convex function and assume we have
that, for all x, ∥∇f(x)∥2 ≤ G. If we run GD for T steps (with
adaptive step sizes) we have:

f(x̂)− f(x∗) ≤ 2G2

αT

Corollary: If T = O
(

G2

αϵ

)
we have f(x̂)− f(x∗) ≤ ϵ

74

CONVERGENCE GUARANTEE

We could also have that f is both β-smooth and α-strongly
convex.
Theorem (GD for β-smooth, α-strongly convex.)
Let f be a β-smooth and α-strongly convex function. If we run
GD for T steps (with step size η = 1

β) we have:

∥x(T) − x∗∥22 ≤ e−Tα
β ∥x(0) − x∗∥22

κ = β
α is called the “condition number” of f.

Is it better if κ is large or small?

75

SMOOTH AND STRONGLY CONVEX

Converting to more familiar form: Using that fact the
∇f(x∗) = 0 along with

α

2 ∥x− y∥22 ≤ [f(y)− f(x)]−∇f(x)T(y− x) ≤ β

2 ∥x− y∥22,

we have:

∥x(T) − x∗∥22 ≥
2
β

[
f(x(T))− f(x∗)

]
.

We also assume

∥x(0) − x∗∥22 ≤ R2.

76

CONVERGENCE GUARANTEE

Corollary (GD for β-smooth, α-strongly convex.)
Let f be a β-smooth and α-strongly convex function. If we run
GD for T steps (with step size η = 1

β) we have:

f(x(T))− f(x∗) ≤ β

2 e
−Tα

β · R2

Corollary: If T = O
(
β
α log(Rβ/ϵ)

)
we have:

f(x(T))− f(x∗) ≤ ϵ

Only depend on log(1/ϵ) instead of on 1/ϵ or 1/ϵ2!

77

SMOOTH, STRONGLY CONVEX OPTIMIZATION

We are going to prove the guarantee on the previous page for
the special case of:

f(x) = 1
2∥Ax− b∥22

Goal: Get some of the key ideas across, introduces important
concepts like the Hessian, and show the connection between
conditioning and linear algebra.

78

