CS-GY 6763: Lecture 6
Near-neighbor search in high dimensions

NYU Tandon School of Engineering, Prof. Christopher Musco

LAST CLASS

[1

J

qn: Given vectors x,y, compute small
and C(y) that can be used to
of similarity between x and y.

)

Dimensionality reductj
space compressions
estimate the distance

1]

EUCLIDEAN DIMENSIONALITY REDUCTION

Lemma (Distributional JL Lemma)

Let M be a random matrix that compresses tq k = O ("’giﬁ)

rows. Then with probability (1 — 6):

(1= @lx =yl < [[Ax = Ny[5 < (1+€)l[x — y5

e

0O(log(1/6)/€?) {U M J

C(x) Y)

DIMENSIONALITY REDUCTION FOR JACCARD SIMILARITY

Lemma (MinHash)
Let C be a length@ =0 ("’%W))MinHash sketch. Then with

-—_—

probability (1 — 6), we can return an estimate J based on C(x)

and C(y) with:
J(x,y) — ¢ s@ J(x,y) + €.

o[]1]o]7])

[o]1]o]

9
{0
{oponn

KEY APPLICATION: MODERN VECTOR SEA SEARCH

Query (2 Database 'j

e
- .

y d, 9, 95 g, Q1 billion

Cost of naive algorithm is Q? M;b’ Ol (3/ %")

u(k\’u—?*f ‘7(3/ %} .

KEY APPLICATION: MODERN VECTOR SEA SEARCH

Dimensionality reduction reduces search cost to O(nk) and
reduces s ' nts.

G, 03 4, 1 pittion

All modern vector search systems use “fancier” versions of
methods studied in this class:

(QuantizedlL/SimHash - Product Quantization
-(b—bit MinHash - PCA-based methods

VECTOR INDEXING / NEAR NEIGHBOR SEARCH

Dimensionality reduction methods are typically paired with
vector indexing methods.

Goal of Dimensionality Reduction: Reduce dependence on d
in O(ﬁ/d) search cost. Reduce space complexity.

Goal of Vector Indexing: Reduce dependence on nin O(nd)
search cost. Often at the cost of added space complexity.

BEYOND A LINEAR SCAN

6(w)

This problem can already be solved in low-dimensions using
space partitioning approaches (namel

13
12 '
a) |
n @ ! H
o b | f
1
) .
9) ! |
H B ! 1
8 |p——t——r)
\)
7 Il '
) |
6 i | .
i |
s] r =
) | |
a ' | i
s) L. i
) 1
d . 1
2 ® j 1
] ' ! h
1 1 '
. ®
0

01 2 3 4 5 6 7 8 9 10 11 12 13

Search time is roughly O(d - log n), which is only sublinear

for d = o(log n). ’(7’_

ISSUE WITH KD-TREES

ISSUE WITH KD-TREES

(-/‘

0z

d

HIGH DIMENSIONAL NEAR NEIGHBOR SEARCH

Only been attacked much more recently:

(Locality-sensitive hashing|[Indyk, Motwani, 1998]
- Spectral hashing [Weiss, Torralba, and Fergus, 2008]
Vector quantization [Jégou, Douze, Schmid, 2009]

- Graph-based vector search [Malkov, Yashunin, 2016,
Subramanya et al., 2019]

Key ideas behind all of these methods:

1. Trade worse space-complexity +(preprocessing timd for
better time-complexity. |.e., preprocess database in data
structure that uses(an))space.

(2. Allow for approximation)

INTUITIVELY WHY DO PREPROCESSING AND SPACE HELP?
2)

u.!b/‘
Question: Suppose you want to séarch over points in [—1,1]
and to achieve accuracy e. l.e, fgr a giveny € [-1,1], you want

to find f] with ||y — @ll2 < min; |ly — qill2 +e

—_—

Can you construct a data structure that supports % time
search but uses exponential space?

(

o(d)

LOCALITY SENSITIVE HASH FUNCTIONS

Let h: RY — {1,...,m} be a random hash function.
— AR A

We call h locality sensitive for similarity function s(q,y) if
Prih(q) == h(y)] is:

— 1k —

-ﬂHigher when g and y are more similar, i.e. s(q,y) is higher.
- Lower when g and y are more dissimilar, i.e. s(q,y) is

lower. W (7]

13

LYBY~~~—0000

LOCALITY SENSITIVE HASH FUNCTIONS

LSH for s(q,y) equal to Jaccard similarity: [be ?/(D/ 134

- Let ¢ : {0, 1}9 — [0,1] be a single instantiation of MinHash.

- Let g {0, 1)— {1,...,m} be a uniform random hash
function.
- Let h(q) = g(c(q)).
4l q
[1]o[1]1]oofo[1]oofoo[1]1]o]1]
ey x

14

LOCALITY SENSITIVE HASH FUNCTIONS

Prlely)=ch)y - Xg,y)

LSH for Jaccard similarity:

- Let c: {0,1}9 — [0,1] be a single instantiation of MinHash.

- Lletg:[0,1] — {1,..., m} be a uniform random hash
function.
. Let h(x) = g(c(x)). L(‘ﬁ)) y Le () W
c(§): ey
IfJ(a,y) =v, \,\(eb> hy)
Prlh(q) == h(y)] = J(%,U) F((1 /)(q})-a)> 3
[— ",
B @(w7 K/_W—’——'—
(koo™ v~ - \,\zb\\y\'ﬁb

\3 o WS Qx> 15

NEAR NEIGHBOR SEARCH

Basic approach for LSH-based near neighbor search in a
database.

Pre-processing:

- Select random LSH function h: {0,1}9 —1,...,m.
+ Create table T with m = O(n) slots."

- Fori=1,...,n, inse?@into T(h(a))).

A
) /7\/ :
Query:

wly
- Want to find near neighbors of inputy € {_0_,1_}d.

+ Linear scan through all vectors g € T(h(y)) and return any
that are close to y. Time required is O(d -]TSh(y)]).

"Enough to make the O(1/m) term negligible.

16

NEAR NEIGHBOR SEARCH

i . ACALRED
A\ 9
\A \/\(-bv‘)
=Y
qzﬂ)(v/ ar q‘}
%ko\wjvw T

4 &%") I/‘)

17

NEAR NEIGHBOR SEARCH

Two main considerations:

(False Negative Rate: What's the probability we do not find
a vector that oy?

False Positive Rate: What's the probability that a vector in
(T(h(y) to y?

A higher false negative rate means we miss near neighbors.

A higher false positive rate meansﬁncreased runtime)— we

need to compute S(q,y) for every q € T(h(y)) to check if it's
actually close toy.

Note: The meaning of “close” and “not close” is application
dependent. E.g. we might specify that we want to find anything
with Jaccard similarity > .4, but not with Jaccard similarity < .2.

18

REDUCING FALSE NEGATIVE RATE

Let's use Jaccard similarity as a running example. We will
discuss LSH for inner product/Euclidean distance as well.
Suppose the nearest database point q hasjgy, q) =_4

What's the probability we do not find g?

0 Q G, ¢ T(\A(ﬂﬂ
v
VANV IR TR

-

FQl')C \M.bgl\vk 5)(«>\,, < I/-‘vl - L

19

REDUCING FALSE NEGATIVE RATE

¥ of Jeves

Pre-processing:

- Select t independent LSH's(hy). .., he : {0,134 = 1,...,m.
- Create tables Tq,..., T, each with m slots.

cFori=1,....,nj="1,...,t hi(y) ... \")r(U)

- Insert g; into Tj(h;(q)).

20

REDUCING FALSE NEGATIVE RATE

Query:

- Want to find near neighbors of input'y € {0,1}9.

- Linear scan through all vectors in
Ti(h(y)) U Ta(ha(y)) U ..., Te(he(y))

Suppose the nearest database point q ha

What's the probability we find g?
4 +
| = (-M)" -)-8

(10, 99%)

F

21

WHAT HAPPENS TO FALSE POSITIVES?

Suppose there is some other database poin@vith Iy,z) = .2.

What is the probability we will need to compute J(z,y) in our
hashing scheme with one table? l.e. the probability thaty
hashes into at least one bucket containing z.

In the new scheme with t = 10 tables?

(89%)

22

REDUCING FALSE POSITIVES

Change our locality sensitive hash function.
Tunable LSH for Jaccard similarity: @M'
. T
Choose parameterm\ B o5 Yo s
cleta,..., ¢ {0,] 4 — [0,1] be independnt random MinHash'’s.
- Let 9g: [O 1]"— {1,...,m} be a uniform random hash function.

 Let h(x) = g(ci(x),...,c,_(x)).

r “bands”

@ Gel [|| &

qw.g“"“’\ rdon

Y
_——)
g (e, cx(q),..., ¢(q))

‘ N

REDUCING FALSE POSITIVES

Tunable LSH for Jaccard similarity: (5,\,_ P, CM((%) =, () and

- Q\J
- Choose parameter r € Z*. 6 1$) (}.03 -

© Letc, A {0,139 — [0,1] be random MinHash. Cr (@)= c,(})J

- Letg:[0,1]" — {1,...,m} be a uniform random hash function.
c
- Let h(x) = g(a(X), - -, &(X))- £ dy,q) -
Y
IfJ(q.y) =V, then Pr[h(q) == h(y)]| = , , ((/Vf),/\,
—_— “
.

\,\&\{3 L . @r\ e \\g\\:\-'-' -

“r

24

TUNABLE LSH

e
-
=
—
=
<

<
=

o}

-

=

=}
=}
.

w
o
—_
=]

=}

o

09

08

0 01 02 03 04 05 06 o7 08 09 1

Jaccard similarity v
—_——

25

TUNABLE LSH

Full LSH cheme has two parameters to tune:

t tables

@“bands"

kc1,1(q) ‘31,2(‘-]) C1,r(q)
C2,1(q) Cz,z(q) &rﬁm
c.1(q)|cez(q) c{q)

26

TUNABLE LSH

Effect of increasing number of tables t on:

False Negatives False Positives
‘L T
Effect of increasing number of bands r on:

False Negatives False Positives

T L

27

S-CURVE TUNING

Probability we check g when queryingy if J(q,y) = v:
Ve (e D) b oo et 4]

collision probability

,lr
A |- ()-v)

03 o4 05 08 o7
Jaccard similarity v

r=51t=5

—_

28

S-CURVE TUNING

Probability we check g when queryingy if J(q,y) = v:
~1—(1-v)

e e e o
5 S & B

collision probability
I

°
&

o o1 o0z 03 04 05 o068 07 08 03 1
Jaccard similarity v

r=>51t=40

29

S-CURVE TUNING

collision probability

03 o4 05 08 o7
Jaccard similarity v

r=40,t=5

30

S-CURVE TUNING

Probability we check g when queryingy if J(q,y) = v:
1—(1 =Vt

e

e
&

e
2

°
&

collision probability
°
5

o
o

01

. Y
o o1 02 03 o0a4 ‘05 o8
Jaccard similarity v

Increasing both r and t gives a steeper curve.

Better for search, but worse space complexity.

31

FIXED THRESHOLD

Use Case 1: Fixed threshold
- Shazam wants to find match tof@udio clipy Jn a database of 1Q,

million clips

— ’
- There are 10 true matches with J(y, q .

- There are 10,000 near matches with J(y,q) e[.7,.9]
" —

- All other items have J(y,q) < .7. K :
—_—— / ¥ + —
With r = 25 and t = 40, - (1-v) / "
- Hit probability for J(y, q) > .9is 21— (1 .9%)" ’
- Hit probability for J(y, q) € [.7,.9] is < 1— 1f.925)40 (95)
- Hit probability for J(y,q) < .7 is (1 — (1 — .75)} :

Upper bound on total number of items checked:

@' .95-10,000 H- .005 {9,989, 99() ~4 60, 000) 10,000, 000. 32

6

FIXED THRESHOLD

Space complexity: 40 hash tables 4 O(Vzé)
Directly trade space for fast search.

33

LSH BASED NEAREST-NEIGHBOR IN THEORY

Possible to prove concrete worst-case results for distance
functions that satisfy triangle inequality.

Theorem (Indyk, Motwani, 1998. Point Location in Ball)
Fix a distance R. If there exists some q with || —y|lo <R,
return a vector q with ||g —y|lo < C-Rin:

+ Time: O (n"/©).
+ Space: O (n"™/C + nd).

Ila — y|lo = “hamming distance” = number of elements that
differ between q andy.

34

LSH BASED NEAREST-NEIGHBOR IN THEORY

To obtain a nearest-neighbor search algorithm build multiple
data structures for exponentially growing distances:

R 2R 4R 8R

Search from most accurate level to least accurate.

()
O

35

LSH BASED NEAREST-NEIGHBOR IN THEORY

To obtain a nearest-neighbor search algorithm build multiple
data structures for exponentially growing distances:

R 2R 4R 8R

Search from most accurate level to least accurate.

35

LSH BASED NEAREST-NEIGHBOR IN THEORY

To obtain a nearest-neighbor search algorithm build multiple
data structures for exponentially growing distances:

R 2R 4R 8R

Search from most accurate level to least accurate.

35

APPROXIMATE NEAREST NEIGHBOR SEARCH

Total number of levels = O(log(dmax/dmin)), Where

dmax = max; ’ @ = CIH and dmin = mini’j Hq, = CIJH dmax Omin is
called th

Theorem (Indyk, Motwani, 1998)

nuye
Let) *be the closest database vector to Y Return a vector q
with 1§ = yljo < C IIq Yllo in:

+ Time: O (n"/©). 0(63 -2
- Space: O (N +nd). oy T , W)

Similar results can be proven for other metrics, including
Euclidean distance. But you need a good LSH function.

H b (ocehes wolaa %cw\mh)

36

OTHER LSH FUNCTIONS

Good locality sensitive hash functions exists for other
similarity measures.

Cosine similarity cos (6(x,y)) = HXTIXVIXI?/IIz:

X

—

—1 < cos(0(x,y)) <

-

D

37

COSINE SIMILARITY

Cosine similarity is natural “inverse” for Euclidean distance
when ||x||2 = |ly||5 = 1 (often the case for ML-based
embeddings)”

G>(0(%5)) = <x, 901 'Lobll*

[(y- D\\”V; x> ,,U[)U,L - L4y y)- 2-2/x%9)

LSH functions also exist for Euclidean distance, but are a bit
more complex to describe/analyze. See [Andoni, Indyk, 2006] if
you are interested.

38

SIMHASH

Locality sensitive hash for cosine similarity:

0 Lete randomly chosen with each entry A/(0,1).

- Letf: {=1,1} = {J,...,m} be a uniformly random hash
function.

: ﬁ :RY — {1,...,m} is definied h(x) = f(sign((g, X))).

If cos(6(x,y)) = v, what is Pr[h(x) == h(y)]?

Y - -

39

SIMHASH ANALYSIS IN 2D

Theorem (to be proven): If@then

0.5

041

collision probability

02+

0.1H

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
cosine similarity
_/'/
40

SIMHASH

SimHash can be banded, just like our MinHash based LSH
function for Jaccard similarity:

> el g oo 0n By € R? be randomly chosen with each entry

N(0,1).
- Letf: {-1,1} — {1,...,m} be a uniformly random hash
function.

- h:R?— {1,...,m} is defined
h(X)ZL([Sign(@% X)), - - ,sign((gr, X))])-

Prin() == hiyll =1~)

™

41

SIMHASH ANALYSIS IN 2D

To prove: Pr[h(x) == h(y)] =~ 1— % where h(x) = f(sign((g, X)))
and fis uniformly random hash function.

L BW(LOJ/X7>
\/ /)/ o C,"DV\) (Waae \
€ a e

Prine) == hy)] =~ A7)

where z = Prlsign((g, X)) == sign((g, ¥))] 42

SIMHASH ANALYSIS 2D

Pr[sign((g, x)) == sign((g,y))] = probability x and y are on the
same side of hyperplane orthogonal to g.

43

SIMHASH ANALYSIS HIGHER DIMENSIONS

\L o

There is always some rotation matrix U such that Ux, Uy are
spanned by the first two-standard basis vectors and have the
same cosine similarity as x and y.

44

SIMHASH ANALYSIS HIGHER DIMENSIONS

There is always some rotation matrix U such that x,y are
spanned by the first two-standard basis vectors.

Note: A rotation matrix U has the property that UTU = I. l.e, U7
is a rotation matrix itself, which reverses the rotation of U.

45

SIMHASH ANALYSIS HIGHER DIMENSIONS

Claim:

Prsign((g, X)) == sign((8,y)) = Prlsign((g, Ux)) == sign((g, Uy))]
= Prlsign((g[1, 2], (UX)[1,2])) == sign({g[1,2], (Uy[1,2]))]
0

=1- 2.
s

The first step is the trickiest here. Why does it hold?

46

NEAREST-NEIGHBOR SEARCH IN PRACTICE

LSH is widely used in practice, but is starting to get replaced by
other methods. Most of these are data dependent in some way.

Starting point: Think of LSH as a randomized
space-partitioning method.

=

@ query

47

NEAREST-NEIGHBOR SEARCH IN PRACTICE

In practice, we can often get partitions with better margin but
partitioning in a data-dependent way.

Common approach: Split data using k-means clustering.

[)
query

NEAREST-NEIGHBOR SEARCH IN PRACTICE

Common approach: Split data using k-means clustering.

uery

Main approach behind “k-means tree” and “inverted file index”
based near-neighbor search methods like Meta’s FAISS library
and Google’s SCANN. 49

NEAREST-NEIGHBOR SEARCH IN PRACTICE

New kid on the block: Graph-based nearest neighbor search.

start

N /\

Idea behind methods like NSG, HNSW, DiskANN, etc. Inspired by

Milgram’s famous “small-world” experiments from the 1960's.
50

OPEN THEORY CHALLENGE

Can we better explain the success of data-dependent
nearest-neighbor search methods?

LSH Forest: Practical Algorithms Made Theoretical

. s . Alexandr Andoni Tlya Razenshteyn Negev Shekel Nosatzki
Beyond Locality-Sensitive Hashing cgumbia University MIT CSAIL Columbia University
Alexandr Andoni Piotr Indyk Huy L. Nguyén Ilya Razenshteyn
Microsoft Research SVC MIT Princeton MIT

Abstract
‘We present a new data structure for the c-approximate near
the Euclidean space. For n points in R?, our algorithm achi
0.(n**? + nd) space, where p < 7/(8c2* + 2/ /-h - oy
over the result by Andoni and Indyk (FC
a locality-sensitive hashing lower bound |
a standard reduction we obtain a data ¢

Worst-case Performance of Popular Approximate
) ¥?) + 0 vhich is . .
hm et g gy T o Nearest Neighbor Search Implementations:
Guarantees and Limitations

ighbor problem (ANN) in
(dn time and

Piotr Indyk Haike Xu
MIT MIT
indyk@mit.edu haikexu@mit.edu

51

