
CS-GY 6763: Lecture 6
Near-neighbor search in high dimensions

NYU Tandon School of Engineering, Prof. Christopher Musco
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LAST CLASS

Dimensionality reduction: Given vectors x, y, compute small
space compressions C(x) and C(y) that can be used to
estimate the distance or similarity between x and y.
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EUCLIDEAN DIMENSIONALITY REDUCTION

Lemma (Distributional JL Lemma)

Let Π be a random matrix that compresses to k = O
(
log(ࠀ/δ)

εࠁ

)

rows. Then with probability →ࠀ) δ):

→ࠀ) ε)‖x→ y‖ࠁࠁ ≤ ‖Πx→Πy‖ࠁࠁ ≤ +ࠀ) ε)‖x→ y‖ࠁࠁ
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DIMENSIONALITY REDUCTION FOR JACCARD SIMILARITY

Lemma (MinHash)

Let C be a length k = O
(
log(ࠀ/δ)

εࠁ

)
MinHash sketch. Then with

probability →ࠀ) δ), we can return an estimate J̃ based on C(x)
and C(y) with:

J(x, y)→ ε ≤ J̃ ≤ J(x, y) + ε.
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KEY APPLICATION: MODERN VECTOR SEA SEARCH

Cost of naive algorithm is O(nd).
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KEY APPLICATION: MODERN VECTOR SEA SEARCH

Dimensionality reduction reduces search cost to O(nk) and
reduces space requirements.

All modern vector search systems use “fancier” versions of
methods studied in this class:

• Quantized JL/SimHash
• b-bit MinHash

• Product Quantization
• PCA-based methods
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VECTOR INDEXING / NEAR NEIGHBOR SEARCH

Dimensionality reduction methods are typically paired with
vector indexing methods.

Goal of Dimensionality Reduction: Reduce dependence on d
in O(nd) search cost. Reduce space complexity.

Goal of Vector Indexing: Reduce dependence on n in O(nd)
search cost. Often at the cost of added space complexity.
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BEYOND A LINEAR SCAN

This problem can already be solved in low-dimensions using
space partitioning approaches (namely, kd-trees).

Search time is roughly O(d · log n · ,((dࠁ which is only sublinear
for d = o(log n).
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ISSUE WITH KD-TREES
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ISSUE WITH KD-TREES
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HIGH DIMENSIONAL NEAR NEIGHBOR SEARCH

Only been attacked much more recently:

• Locality-sensitive hashing [Indyk, Motwani, 1998]
• Spectral hashing [Weiss, Torralba, and Fergus, [ࠇ߿߿ࠁ
• Vector quantization [Jégou, Douze, Schmid, [ࠈ߿߿ࠁ
• Graph-based vector search [Malkov, Yashunin, ,ࠅࠀ߿ࠁ
Subramanya et al., [ࠈࠀ߿ࠁ

Key ideas behind all of these methods:

.ࠀ Trade worse space-complexity + preprocessing time for
better time-complexity. I.e., preprocess database in data
structure that uses Ω(n) space.

.ࠁ Allow for approximation.
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INTUITIVELY WHY DO PREPROCESSING AND SPACE HELP?

Question: Suppose you want to search over points in ,ࠀ→] d[ࠀ

and to achieve accuracy ε. I.e., for a given y ∈ ,ࠀ→] ,d[ࠀ you want
to find q̃ with ‖y→ q̃‖ࠁ ≤ mini ‖y→ qi‖ࠁ + ε.

Can you construct a data structure that supports O(ࠀ) time
search but uses exponential space?
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LOCALITY SENSITIVE HASH FUNCTIONS

Let h : Rd → ,ࠀ} . . . ,m} be a random hash function.

We call h locality sensitive for similarity function s(q, y) if
Pr [h(q) == h(y)] is:

• Higher when q and y are more similar, i.e. s(q, y) is higher.
• Lower when q and y are more dissimilar, i.e. s(q, y) is
lower.
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LOCALITY SENSITIVE HASH FUNCTIONS

LSH for s(q, y) equal to Jaccard similarity:

• Let c : ,߿} d{ࠀ → ,߿] [ࠀ be a single instantiation of MinHash.
• Let g : ,߿] [ࠀ → ,ࠀ} . . . ,m} be a uniform random hash
function.

• Let h(q) = g(c(q)).
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LOCALITY SENSITIVE HASH FUNCTIONS

LSH for Jaccard similarity:

• Let c : ,߿} d{ࠀ → ,߿] [ࠀ be a single instantiation of MinHash.
• Let g : ,߿] [ࠀ → ,ࠀ} . . . ,m} be a uniform random hash
function.

• Let h(x) = g(c(x)).

If J(q, y) = v,

Pr [h(q) == h(y)] =
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NEAR NEIGHBOR SEARCH

Basic approach for LSH-based near neighbor search in a
database.

Pre-processing:

• Select random LSH function h : ,߿} d{ࠀ → ,ࠀ . . . ,m.
• Create table T with m = O(n) slots.ࠀ

• For i = ,ࠀ . . . ,n, insert qi into T(h(qi)).

Query:

• Want to find near neighbors of input y ∈ ,߿} .d{ࠀ
• Linear scan through all vectors q ∈ T(h(y)) and return any
that are close to y. Time required is O(d · |T(h(y)|).

Enoughࠀ to make the O(ࠀ/m) term negligible.
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NEAR NEIGHBOR SEARCH
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NEAR NEIGHBOR SEARCH

Two main considerations:

• False Negative Rate: What’s the probability we do not find
a vector that is close to y?

• False Positive Rate: What’s the probability that a vector in
T(h(y)) is not close to y?

A higher false negative rate means we miss near neighbors.

A higher false positive rate means increased runtime – we
need to compute S(q, y) for every q ∈ T(h(y)) to check if it’s
actually close to y.

Note: The meaning of “close” and “not close” is application
dependent. E.g. we might specify that we want to find anything
with Jaccard similarity > ,ࠃ. but not with Jaccard similarity < .ࠁ.
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REDUCING FALSE NEGATIVE RATE

Let’s use Jaccard similarity as a running example. We will
discuss LSH for inner product/Euclidean distance as well.
Suppose the nearest database point q has J(y,q) = .ࠃ.

What’s the probability we do not find q?
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REDUCING FALSE NEGATIVE RATE

Pre-processing:

• Select t independent LSH’s hࠀ, . . . ,ht : ,߿} d{ࠀ → ,ࠀ . . . ,m.
• Create tables Tࠀ, . . . , Tt, each with m slots.
• For i = ,ࠀ . . . ,n, j = ,ࠀ . . . , t,

• Insert qi into Tj(hj(qi)).
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REDUCING FALSE NEGATIVE RATE

Query:

• Want to find near neighbors of input y ∈ ,߿} .d{ࠀ
• Linear scan through all vectors in
Tࠀ(hࠀ(y)) ∪ Tࠁ(hࠁ(y)) ∪ . . . , Tt(ht(y)).

Suppose the nearest database point q has J(y,q) = .ࠃ.

What’s the probability we find q?
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WHAT HAPPENS TO FALSE POSITIVES?

Suppose there is some other database point z with J(y, z) = .ࠁ.

What is the probability we will need to compute J(z, y) in our
hashing scheme with one table? I.e. the probability that y
hashes into at least one bucket containing z.

In the new scheme with t = ߿ࠀ tables?
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REDUCING FALSE POSITIVES

Change our locality sensitive hash function.

Tunable LSH for Jaccard similarity:

• Choose parameter r ∈ Z+.

• Let cࠀ, . . . , cr : ,߿} d{ࠀ → ,߿] [ࠀ be independnt random MinHash’s.

• Let g : ,߿] r[ࠀ → ,ࠀ} . . . ,m} be a uniform random hash function.

• Let h(x) = g(cࠀ(x), . . . , cr(x)).
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REDUCING FALSE POSITIVES

Tunable LSH for Jaccard similarity:

• Choose parameter r ∈ Z+.

• Let cࠀ, . . . , cr : ,߿} d{ࠀ → ,߿] [ࠀ be random MinHash.

• Let g : ,߿] r[ࠀ → ,ࠀ} . . . ,m} be a uniform random hash function.

• Let h(x) = g(cࠀ(x), . . . , cr(x)).

If J(q, y) = v, then Pr [h(q) == h(y)] =
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TUNABLE LSH
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TUNABLE LSH

Full LSH cheme has two parameters to tune:

ࠅࠁ

00--0



TUNABLE LSH

Effect of increasing number of tables t on:

False Negatives False Positives

Effect of increasing number of bands r on:

False Negatives False Positives
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s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

r = ,ࠄ t = ࠄ
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s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

≈ →ࠀ →ࠀ) vr)t

r = ,ࠄ t = ߿ࠃ
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s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

≈ →ࠀ →ࠀ) vr)t

r = ,߿ࠃ t = ࠄ
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s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

→ࠀ →ࠀ) vr)t

Increasing both r and t gives a steeper curve.

Better for search, but worse space complexity. ࠀࠂ
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FIXED THRESHOLD

Use Case 1: Fixed threshold.

• Shazam wants to find match to audio clip y in a database of ߿ࠀ
million clips.

• There are ߿ࠀ true matches with J(y,q) > .ࠈ.

• There are ߿߿߿,߿ࠀ near matches with J(y,q) ∈ ,ࠆ.] .[ࠈ.

• All other items have J(y,q) < .ࠆ.

With r = ࠄࠁ and t = ,߿ࠃ

• Hit probability for J(y,q) > ࠈ. is ! →ࠀ →ࠀ) ߿ࠃ(ࠄࠁࠈ. = ࠄࠈ.

• Hit probability for J(y,q) ∈ ,ࠆ.] [ࠈ. is " →ࠀ →ࠀ) ߿ࠃ(ࠄࠁࠈ. = ࠄࠈ.

• Hit probability for J(y,q) < ࠆ. is " →ࠀ →ࠀ) ߿ࠃ(ࠄࠁࠆ. = ࠄ߿߿.

Upper bound on total number of items checked:

+߿ࠀ ࠄࠈ. · ,߿ࠀ +߿߿߿ ࠄ߿߿. · ,ࠈ ,ࠈࠇࠈ ߿ࠈࠈ ≈ ,߿ࠅ ߿߿߿ ( ,߿ࠀ ,߿߿߿ .߿߿߿ ࠁࠂ
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FIXED THRESHOLD

Space complexity: ߿ࠃ hash tables ≈ ߿ࠃ · O(n).

Directly trade space for fast search.
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LSH BASED NEAREST-NEIGHBOR IN THEORY

Possible to prove concrete worst-case results for distance
functions that satisfy triangle inequality.

Theorem (Indyk, Motwani, 1998. Point Location in Ball)
Fix a distance R. If there exists some q with ‖q→ y‖߿ ≤ R,
return a vector q̃ with ‖q̃→ y‖߿ ≤ C · R in:

• Time: O
(
nࠀ/C).

• Space: O
(
nࠀ+ࠀ/C + nd

)
.

‖q→ y‖߿ = “hamming distance” = number of elements that
differ between q and y.

If there is no point at distance R, algorithm does not need to
return anything.
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LSH BASED NEAREST-NEIGHBOR IN THEORY

To obtain a nearest-neighbor search algorithm build multiple
data structures for exponentially growing distances:

R Rࠁ Rࠃ Rࠇ . . .

Search from most accurate level to least accurate.
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LSH BASED NEAREST-NEIGHBOR IN THEORY

To obtain a nearest-neighbor search algorithm build multiple
data structures for exponentially growing distances:

R Rࠁ Rࠃ Rࠇ . . .

Search from most accurate level to least accurate.
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LSH BASED NEAREST-NEIGHBOR IN THEORY

To obtain a nearest-neighbor search algorithm build multiple
data structures for exponentially growing distances:

R Rࠁ Rࠃ Rࠇ . . .

Search from most accurate level to least accurate.
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APPROXIMATE NEAREST NEIGHBOR SEARCH

Total number of levels = O(log(dmax/dmin)), where
dmax = maxi,j ‖qi → qj‖ and dmin = mini,j ‖qi → qj‖. dmax/dmin is
called the dynamic range.

Theorem (Indyk, Motwani, 1998)
Let q be the closest database vector to y. Return a vector q̃
with ‖q̃→ y‖߿ ≤ C · ‖q→ y‖߿ in:

• Time: Õ
(
nࠀ/C).

• Space: Õ
(
nࠀ+ࠀ/C + nd

)
.

Similar results can be proven for other metrics, including
Euclidean distance. But you need a good LSH function.
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OTHER LSH FUNCTIONS

Good locality sensitive hash functions exists for other
similarity measures.

Cosine similarity cos (θ(x, y)) = 〈x,y〉
‖x‖ࠁ‖y‖ࠁ :

ࠀ→ ≤ cos (θ(x, y)) ≤ .ࠀ
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COSINE SIMILARITY

Cosine similarity is natural “inverse” for Euclidean distance
when ‖x‖ࠁࠁ = ‖y‖ࠁࠁ = ࠀ (often the case for ML-based
embeddings).

LSH functions also exist for Euclidean distance, but are a bit
more complex to describe/analyze. See [Andoni, Indyk, [ࠅ߿߿ࠁ if
you are interested.
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SIMHASH

Locality sensitive hash for cosine similarity:

• Let g ∈ Rd be randomly chosen with each entry N ,߿) .(ࠀ
• Let f : ,ࠀ→} {ࠀ → ,ࠀ} . . . ,m} be a uniformly random hash
function.

• h : Rd → ,ࠀ} . . . ,m} is definied h(x) = f (sign(〈g, x〉)).

If cos(θ(x, y)) = v, what is Pr[h(x) == h(y)]?
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SIMHASH ANALYSIS IN 2D

Theorem (to be proven): If cos(θ(x, y)) = v, then

Pr[h(x) == h(y)] = →ࠀ θ

π
+

θ/π

m
= →ࠀ cos−ࠀ(v)

π
+

θ/π

m
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SIMHASH

SimHash can be banded, just like our MinHash based LSH
function for Jaccard similarity:

• Let gࠀ, . . . , gr ∈ Rd be randomly chosen with each entry
N ,߿) .(ࠀ

• Let f : ,ࠀ→} r{ࠀ → ,ࠀ} . . . ,m} be a uniformly random hash
function.

• h : Rd → ,ࠀ} . . . ,m} is defined
h(x) = f ([sign(〈gࠀ, x〉), . . . , sign(〈gr, x〉)]).

Pr[h(x) == h(y)] ≈
(
→ࠀ θ

π

)r
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SIMHASH ANALYSIS IN 2D

To prove: Pr[h(x) == h(y)] ≈ →ࠀ θ
π , where h(x) = f (sign(〈g, x〉))

and f is uniformly random hash function.

Pr[h(x) == h(y)] = z+ →ࠀ z
m

≈ z.

where z = Pr[sign(〈g, x〉) == sign(〈g, y〉)] ࠁࠃ
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SIMHASH ANALYSIS 2D

Pr[sign(〈g, x〉) == sign(〈g, y〉)] = probability x and y are on the
same side of hyperplane orthogonal to g.
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SIMHASH ANALYSIS HIGHER DIMENSIONS

There is always some rotation matrix U such that Ux,Uy are
spanned by the first two-standard basis vectors and have the
same cosine similarity as x and y.
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SIMHASH ANALYSIS HIGHER DIMENSIONS

There is always some rotation matrix U such that x, y are
spanned by the first two-standard basis vectors.

Note: A rotation matrix U has the property that UTU = I. I.e., UT

is a rotation matrix itself, which reverses the rotation of U.
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SIMHASH ANALYSIS HIGHER DIMENSIONS

Claim:

Pr[sign(〈g, x〉) == sign(〈g, y〉) = Pr[sign(〈g,Ux〉) == sign(〈g,Uy〉)]
= Pr[sign(〈g[ࠀ, ,[ࠁ (Ux)[ࠀ, (〈[ࠁ == sign(〈g[ࠀ, ,[ࠁ (Uy[ࠀ, [(〈[ࠁ

= →ࠀ θ

π
.

The first step is the trickiest here. Why does it hold?
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NEAREST-NEIGHBOR SEARCH IN PRACTICE

LSH is widely used in practice, but is starting to get replaced by
other methods. Most of these are data dependent in some way.

Starting point: Think of LSH as a randomized
space-partitioning method.
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NEAREST-NEIGHBOR SEARCH IN PRACTICE

In practice, we can often get partitions with better margin but
partitioning in a data-dependent way.

Common approach: Split data using k-means clustering.
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NEAREST-NEIGHBOR SEARCH IN PRACTICE

Common approach: Split data using k-means clustering.

Main approach behind “k-means tree” and “inverted file index”
based near-neighbor search methods like Meta’s FAISS library
and Google’s SCANN. ࠈࠃ



NEAREST-NEIGHBOR SEARCH IN PRACTICE

New kid on the block: Graph-based nearest neighbor search.

Idea behind methods like NSG, HNSW, DiskANN, etc. Inspired by
Milgram’s famous “small-world” experiments from the .s’߿ࠅࠈࠀ
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OPEN THEORY CHALLENGE

Can we better explain the success of data-dependent
nearest-neighbor search methods?
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