
CS-GY 6763: Lecture 6
Near-neighbor search in high dimensions

NYU Tandon School of Engineering, Prof. Christopher Musco

1

LAST CLASS

Dimensionality reduction: Given vectors x, y, compute small
space compressions C(x) and C(y) that can be used to
estimate the distance or similarity between x and y.

2

EUCLIDEAN DIMENSIONALITY REDUCTION

Lemma (Distributional JL Lemma)

Let Π be a random matrix that compresses to k = O
(
log(1/δ)

ϵ2

)
rows. Then with probability (1− δ):

(1− ϵ)∥x− y∥22 ≤ ∥Πx−Πy∥22 ≤ (1+ ϵ)∥x− y∥22

3

DIMENSIONALITY REDUCTION FOR JACCARD SIMILARITY

Lemma (MinHash)

Let C be a length k = O
(
log(1/δ)

ϵ2

)
MinHash sketch. Then with

probability (1− δ), we can return an estimate J̃ based on C(x)
and C(y) with:

J(x, y)− ϵ ≤ J̃ ≤ J(x, y) + ϵ.

4

KEY APPLICATION: MODERN VECTOR SEA SEARCH

Cost of naive algorithm is O(nd).

5

KEY APPLICATION: MODERN VECTOR SEA SEARCH

Dimensionality reduction reduces search cost to O(nk) and
reduces space requirements.

All modern vector search systems use “fancier” versions of
methods studied in this class:

• Quantized JL/SimHash
• b-bit MinHash

• Product Quantization
• PCA-based methods

6

VECTOR INDEXING / NEAR NEIGHBOR SEARCH

Dimensionality reduction methods are typically paired with
vector indexing methods.

Goal of Dimensionality Reduction: Reduce dependence on d
in O(nd) search cost. Reduce space complexity.

Goal of Vector Indexing: Reduce dependence on n in O(nd)
search cost. Often at the cost of added space complexity.

7

BEYOND A LINEAR SCAN

This problem can already be solved in low-dimensions using
space partitioning approaches (namely, kd-trees).

Search time is roughly O(d · log n · 2d)), which is only sublinear
for d = o(log n).

8

ISSUE WITH KD-TREES

9

ISSUE WITH KD-TREES

10

HIGH DIMENSIONAL NEAR NEIGHBOR SEARCH

Only been attacked much more recently:

• Locality-sensitive hashing [Indyk, Motwani, 1998]
• Spectral hashing [Weiss, Torralba, and Fergus, 2008]
• Vector quantization [Jégou, Douze, Schmid, 2009]
• Graph-based vector search [Malkov, Yashunin, 2016,
Subramanya et al., 2019]

Key ideas behind all of these methods:

1. Trade worse space-complexity + preprocessing time for
better time-complexity. I.e., preprocess database in data
structure that uses Ω(n) space.

2. Allow for approximation.

11

INTUITIVELY WHY DO PREPROCESSING AND SPACE HELP?

Question: Suppose you want to search over points in [−1, 1]d

and to achieve accuracy ϵ. I.e., for a given y ∈ [−1, 1]d, you want
to find q̃ with ∥y− q̃∥2 ≤ mini ∥y− qi∥2 + ϵ.

Can you construct a data structure that supports O(1) time
search but uses exponential space?

12

LOCALITY SENSITIVE HASH FUNCTIONS

Let h : Rd → {1, . . . ,m} be a random hash function.

We call h locality sensitive for similarity function s(q, y) if
Pr [h(q) == h(y)] is:

• Higher when q and y are more similar, i.e. s(q, y) is higher.
• Lower when q and y are more dissimilar, i.e. s(q, y) is
lower.

13

LOCALITY SENSITIVE HASH FUNCTIONS

LSH for s(q, y) equal to Jaccard similarity:

• Let c : {0, 1}d → [0, 1] be a single instantiation of MinHash.
• Let g : [0, 1] → {1, . . . ,m} be a uniform random hash
function.

• Let h(q) = g(c(q)).

14

LOCALITY SENSITIVE HASH FUNCTIONS

LSH for Jaccard similarity:

• Let c : {0, 1}d → [0, 1] be a single instantiation of MinHash.
• Let g : [0, 1] → {1, . . . ,m} be a uniform random hash
function.

• Let h(x) = g(c(x)).

If J(q, y) = v,

Pr [h(q) == h(y)] =

15

NEAR NEIGHBOR SEARCH

Basic approach for LSH-based near neighbor search in a
database.

Pre-processing:

• Select random LSH function h : {0, 1}d → 1, . . . ,m.
• Create table T with m = O(n) slots.1

• For i = 1, . . . ,n, insert qi into T(h(qi)).

Query:

• Want to find near neighbors of input y ∈ {0, 1}d.
• Linear scan through all vectors q ∈ T(h(y)) and return any
that are close to y. Time required is O(d · |T(h(y)|).

1Enough to make the O(1/m) term negligible.

16

NEAR NEIGHBOR SEARCH

17

NEAR NEIGHBOR SEARCH

Two main considerations:

• False Negative Rate: What’s the probability we do not find
a vector that is close to y?

• False Positive Rate: What’s the probability that a vector in
T(h(y)) is not close to y?

A higher false negative rate means we miss near neighbors.

A higher false positive rate means increased runtime – we
need to compute S(q, y) for every q ∈ T(h(y)) to check if it’s
actually close to y.

Note: The meaning of “close” and “not close” is application
dependent. E.g. we might specify that we want to find anything
with Jaccard similarity > .4, but not with Jaccard similarity < .2.

18

REDUCING FALSE NEGATIVE RATE

Let’s use Jaccard similarity as a running example. We will
discuss LSH for inner product/Euclidean distance as well.
Suppose the nearest database point q has J(y,q) = .4.

What’s the probability we do not find q?

19

REDUCING FALSE NEGATIVE RATE

Pre-processing:

• Select t independent LSH’s h1, . . . ,ht : {0, 1}d → 1, . . . ,m.
• Create tables T1, . . . , Tt, each with m slots.
• For i = 1, . . . ,n, j = 1, . . . , t,

• Insert qi into Tj(hj(qi)).

20

REDUCING FALSE NEGATIVE RATE

Query:

• Want to find near neighbors of input y ∈ {0, 1}d.
• Linear scan through all vectors in
T1(h1(y)) ∪ T2(h2(y)) ∪ . . . , Tt(ht(y)).

Suppose the nearest database point q has J(y,q) = .4.

What’s the probability we find q?

(10, 99%)

21

WHAT HAPPENS TO FALSE POSITIVES?

Suppose there is some other database point z with J(y, z) = .2.

What is the probability we will need to compute J(z, y) in our
hashing scheme with one table? I.e. the probability that y
hashes into at least one bucket containing z.

In the new scheme with t = 10 tables?

(89%)

22

REDUCING FALSE POSITIVES

Change our locality sensitive hash function.

Tunable LSH for Jaccard similarity:

• Choose parameter r ∈ Z+.

• Let c1, . . . , cr : {0, 1}d → [0, 1] be independnt random MinHash’s.

• Let g : [0, 1]r → {1, . . . ,m} be a uniform random hash function.

• Let h(x) = g(c1(x), . . . , cr(x)).

23

REDUCING FALSE POSITIVES

Tunable LSH for Jaccard similarity:

• Choose parameter r ∈ Z+.

• Let c1, . . . , cr : {0, 1}d → [0, 1] be random MinHash.

• Let g : [0, 1]r → {1, . . . ,m} be a uniform random hash function.

• Let h(x) = g(c1(x), . . . , cr(x)).

If J(q, y) = v, then Pr [h(q) == h(y)] =

24

TUNABLE LSH

25

TUNABLE LSH

Full LSH cheme has two parameters to tune:

26

TUNABLE LSH

Effect of increasing number of tables t on:

False Negatives False Positives

Effect of increasing number of bands r on:

False Negatives False Positives

27

s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

r = 5, t = 5
28

s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

≈ 1− (1− vr)t

r = 5, t = 40
29

s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

≈ 1− (1− vr)t

r = 40, t = 5
30

s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

1− (1− vr)t

Increasing both r and t gives a steeper curve.

Better for search, but worse space complexity. 31

FIXED THRESHOLD

Use Case 1: Fixed threshold.

• Shazam wants to find match to audio clip y in a database of 10
million clips.

• There are 10 true matches with J(y,q) > .9.

• There are 10,000 near matches with J(y,q) ∈ [.7, .9].

• All other items have J(y,q) < .7.

With r = 25 and t = 40,

• Hit probability for J(y,q) > .9 is ≳ 1− (1− .925)40 = .95

• Hit probability for J(y,q) ∈ [.7, .9] is ≲ 1− (1− .925)40 = .95

• Hit probability for J(y,q) < .7 is ≲ 1− (1− .725)40 = .005

Upper bound on total number of items checked:

10+ .95 · 10, 000+ .005 · 9, 989, 990 ≈ 60, 000 ≪ 10, 000, 000. 32

FIXED THRESHOLD

Space complexity: 40 hash tables ≈ 40 · O(n).

Directly trade space for fast search.

33

LSH BASED NEAREST-NEIGHBOR IN THEORY

Possible to prove concrete worst-case results for distance
functions that satisfy triangle inequality.
Theorem (Indyk, Motwani, 1998. Point Location in Ball)
Fix a distance R. If there exists some q with ∥q− y∥0 ≤ R,
return a vector q̃ with ∥q̃− y∥0 ≤ C · R in:

• Time: O
(
n1/C).

• Space: O
(
n1+1/C + nd

)
.

∥q− y∥0 = “hamming distance” = number of elements that
differ between q and y.

If there is no point at distance R, algorithm does not need to
return anything.

34

LSH BASED NEAREST-NEIGHBOR IN THEORY

To obtain a nearest-neighbor search algorithm build multiple
data structures for exponentially growing distances:

R 2R 4R 8R . . .

Search from most accurate level to least accurate.

35

LSH BASED NEAREST-NEIGHBOR IN THEORY

To obtain a nearest-neighbor search algorithm build multiple
data structures for exponentially growing distances:

R 2R 4R 8R . . .

Search from most accurate level to least accurate.

35

LSH BASED NEAREST-NEIGHBOR IN THEORY

To obtain a nearest-neighbor search algorithm build multiple
data structures for exponentially growing distances:

R 2R 4R 8R . . .

Search from most accurate level to least accurate.

35

APPROXIMATE NEAREST NEIGHBOR SEARCH

Total number of levels = O(log(dmax/dmin)), where
dmax = maxi,j ∥qi − qj∥ and dmin = mini,j ∥qi − qj∥. dmax/dmin is
called the dynamic range.

Theorem (Indyk, Motwani, 1998)
Let q be the closest database vector to y. Return a vector q̃
with ∥q̃− y∥0 ≤ C · ∥q− y∥0 in:

• Time: Õ
(
n1/C).

• Space: Õ
(
n1+1/C + nd

)
.

Similar results can be proven for other metrics, including
Euclidean distance. But you need a good LSH function.

36

OTHER LSH FUNCTIONS

Good locality sensitive hash functions exists for other
similarity measures.

Cosine similarity cos (θ(x, y)) = ⟨x,y⟩
∥x∥2∥y∥2 :

−1 ≤ cos (θ(x, y)) ≤ 1.

37

COSINE SIMILARITY

Cosine similarity is natural “inverse” for Euclidean distance
when ∥x∥22 = ∥y∥22 = 1 (often the case for ML-based
embeddings).

LSH functions also exist for Euclidean distance, but are a bit
more complex to describe/analyze. See [Andoni, Indyk, 2006] if
you are interested.

38

SIMHASH

Locality sensitive hash for cosine similarity:

• Let g ∈ Rd be randomly chosen with each entry N (0, 1).
• Let f : {−1, 1} → {1, . . . ,m} be a uniformly random hash
function.

• h : Rd → {1, . . . ,m} is definied h(x) = f (sign(⟨g, x⟩)).

If cos(θ(x, y)) = v, what is Pr[h(x) == h(y)]?

39

SIMHASH ANALYSIS IN 2D

Theorem (to be proven): If cos(θ(x, y)) = v, then

Pr[h(x) == h(y)] = 1− θ

π
+

θ/π

m = 1− cos−1(v)
π

+
θ/π

m

40

SIMHASH

SimHash can be banded, just like our MinHash based LSH
function for Jaccard similarity:

• Let g1, . . . , gr ∈ Rd be randomly chosen with each entry
N (0, 1).

• Let f : {−1, 1}r → {1, . . . ,m} be a uniformly random hash
function.

• h : Rd → {1, . . . ,m} is defined
h(x) = f ([sign(⟨g1, x⟩), . . . , sign(⟨gr, x⟩)]).

Pr[h(x) == h(y)] ≈
(
1− θ

π

)r

41

SIMHASH ANALYSIS IN 2D

To prove: Pr[h(x) == h(y)] ≈ 1− θ
π , where h(x) = f (sign(⟨g, x⟩))

and f is uniformly random hash function.

Pr[h(x) == h(y)] = z+ 1− z
m ≈ z.

where z = Pr[sign(⟨g, x⟩) == sign(⟨g, y⟩)] 42

SIMHASH ANALYSIS 2D

Pr[sign(⟨g, x⟩) == sign(⟨g, y⟩)] = probability x and y are on the
same side of hyperplane orthogonal to g.

43

SIMHASH ANALYSIS HIGHER DIMENSIONS

There is always some rotation matrix U such that Ux,Uy are
spanned by the first two-standard basis vectors and have the
same cosine similarity as x and y.

44

SIMHASH ANALYSIS HIGHER DIMENSIONS

There is always some rotation matrix U such that x, y are
spanned by the first two-standard basis vectors.

Note: A rotation matrix U has the property that UTU = I. I.e., UT

is a rotation matrix itself, which reverses the rotation of U.

45

SIMHASH ANALYSIS HIGHER DIMENSIONS

Claim:

Pr[sign(⟨g, x⟩) == sign(⟨g, y⟩) = Pr[sign(⟨g,Ux⟩) == sign(⟨g,Uy⟩)]
= Pr[sign(⟨g[1, 2], (Ux)[1, 2]⟩) == sign(⟨g[1, 2], (Uy[1, 2]⟩)]

= 1− θ

π
.

The first step is the trickiest here. Why does it hold?

46

NEAREST-NEIGHBOR SEARCH IN PRACTICE

LSH is widely used in practice, but is starting to get replaced by
other methods. Most of these are data dependent in some way.

Starting point: Think of LSH as a randomized
space-partitioning method.

47

NEAREST-NEIGHBOR SEARCH IN PRACTICE

In practice, we can often get partitions with better margin but
partitioning in a data-dependent way.

Common approach: Split data using k-means clustering.

48

NEAREST-NEIGHBOR SEARCH IN PRACTICE

Common approach: Split data using k-means clustering.

Main approach behind “k-means tree” and “inverted file index”
based near-neighbor search methods like Meta’s FAISS library
and Google’s SCANN. 49

NEAREST-NEIGHBOR SEARCH IN PRACTICE

New kid on the block: Graph-based nearest neighbor search.

Idea behind methods like NSG, HNSW, DiskANN, etc. Inspired by
Milgram’s famous “small-world” experiments from the 1960’s.

50

OPEN THEORY CHALLENGE

Can we better explain the success of data-dependent
nearest-neighbor search methods?

51

